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Abstract—Iterative solvers for sparse linear systems often ben-
efit from using preconditioners. While there are implementations
for many iterative methods that leverage the computing power of
accelerators, porting the latest developments in preconditioners to
accelerators has been challenging. In this paper we develop a self-
adaptive multi-elimination preconditioner for graphics processing
units (GPUs). The preconditioner is based on a multi-level
incomplete LU factorization and uses a direct dense solver for
the bottom-level system. For test matrices from the University of
Florida matrix collection, we investigate the influence of handling
the triangular solvers in the distinct iteration steps in either
single or double precision arithmetic. Integrated into a Conjugate
Gradient method, we show that our multi-elimination algorithm
is highly competitive against popular preconditioners, including
multi-colored symmetric Gauss-Seidel relaxation preconditioners,
and (multi-colored symmetric) ILU for numerous problems.

I. INTRODUCTION

Developing efficient solvers for large linear systems is one
of the main challenges in scientific computing. The reason
is that in many scientific algorithms simulating chemical,
physical, or biological processes, the solution of discretized
partial differential equations poses the main work from the
computational point of view. The partial differential equations
modeling various physical phenomena are often discretized
by finite element or finite difference methods, which usually
results in large, sparse systems of equations. To solve them,
iterative methods are often preferred to direct solvers, as itera-
tive solvers are often able to provide a solution approximation
of sufficient accuracy for a significantly lower computational
cost. However, to achieve this, iterative methods often rely on
preconditioners. A popular class is based on the incomplete
LU factorization (ILU) [20]. While using ILU without fill-ins
can lead to appealing convergence improvement to the top-
level iterative method, it may also fail due to its rather rough
approximation properties, e.g., when solving linear systems
arising from complex applications like computational fluid
dynamics [19]. To enhance the accuracy of the preconditioner,
one can allow for additional fill-in in the preconditioning
matrix ( ILU(m), see [20]). Additional fill-in usually reduces
the amount of parallelism in ILU(m) compared to ILU(0), but
there are a number of techniques designed to retain it, such as
the level-scheduling techniques [20], [17] or the multi-coloring
algorithms for the ILU factorization with levels based on the
power(q)-pattern method [16]. Another approach is the idea
of multi-elimination [19], [21], which is based on successive
independent set coloring [12]. The motivation is that in a step

of the Gaussian elimination, there usually exists a large set of
rows that can be processed in parallel. This set is called the
independent set. For multi-elimination, the idea is to determine
this set, and then eliminate the unknowns in the respective
rows simultaneously, to obtain a smaller reduced system. To
control the sparsity of the factors, multi-elimination uses an
approximate reduction based on a standard threshold strategy.
Recursively applying this step, one obtains a sequence of linear
systems with decreasing dimension and increasing fill-in. On
the lowest level, the system must be solved, e.g., either by
an iterative method, or by a direct solver based on an LU
factorization. Especially for long linear system cascades and a
permissive threshold, the small but dense lowest-level problem
may preferably be solved using a direct method. While there
exists some work on multi-elimination preconditioners using
iterative solve for the bottom-level system [19], [21], little
attention has been put on solving the lowest level using a
direct method, and, to the best of our knowledge, all existing
implementations are for CPU-based systems. To take into
account the hardware development trends, and in particular
to leverage the GPU’s high-performance potential in scientific
computing applications [13], [3], motivated us to investigate
the potential of multi-elimination preconditioned Krylov sub-
space solvers on GPU-accelerated systems. In this first attempt
to port multi-elimination preconditioners to accelerators, we
focus particularly on using long reduction sequences. We also
argue that for GPUs a combination of a sparse and direct
factorization during the preconditioner setup phase, followed
by corresponding forward-backward triangular solves during
the iterations, may provide performance advantages for various
problems vs. solving iteratively at the bottom level as initially
proposed in [19]. Furthermore, we investigate the influence
of employing the forward and backward triangular solves in a
lower precision arithmetic. The motivation stems from trading-
off solver-accuracy in an iterative process for acceleration
through a more efficient hardware use.

The rest of the paper is structured as follows. First, we
provide more details about the multi-elimination methods and
motivate the use of mixed precision in scientific computing.
Then, we describe the software we employed and details
about the hardware and the linear systems we target in our
experiments. In the experimental section we first address
the preprocessing phase of setting up the multi-elimination
preconditioner framework using a self-adaptive level depth.
We then analyze convergence and top-level solver performance



with respect to a threshold controlling the amount of fill-in.
Motivated by the more efficient hardware use, we investigate
the impact of handling the bottom-level system in lower
precision than working precision arithmetic and compare the
hybrid approach to iterative bottom-level solvers. Finally, we
compare against some popular preconditioners for symmetric
and positive definite problems.

II. MULTI-ELIMINATION PRECONDITIONERS

While we want to recall the central ideas of the multi-
elimination concept, a detailed derivation can be found in [19].
The underlying concept is to use permutations P to bring the
original matrix A of the system Ax = b that we want to solve
into the form

PAPT ≡
(
D F
E C

)
,

where D is preferably a diagonal or at least an easy to invert
matrix, so that

PAPT ≡
(
D F
E C

)
=

(
I 0

ED−1 I

)
×
(
D F

0 Â

)
where

Â = C − ED−1F

are easy to compute. One way to achieve this is by using
an independent set ordering [12], [14], [23], [18], where non-
adjacent unknowns of the original matrix A are determined. In
the adjacency graph of A, two vertices i and j corresponding
to unknowns are adjacent, if there exists an edge connecting
them (i.e., ai,j 6= 0 or aj,i 6= 0). A greedy algorithm [11] for
independent set ordering is given in Algorithm 1.

Algorithm 1 Greedy algorithm in pseudocode for independent
set ordering [19].

1: S = ∅
2: let n0, n1 . . . nn be an ordering of the nodes
3: for(i = 0; i < n; i++){
4: if(node ni not marked){
5: S = S

⋃
ni

6: mark ni and all its neighbors
7: }
8: }

Denoting A ≡ AnlevandÂ = Anlev−1, it is possible to
define a recursive factorization from level nlev down to
level 1. In particular, for any level j one must determine the
independent set for that level, and to decompose Aj using the
permutation Pj into the desired form

PjAjPj
T =

(
I 0

EjD
−1
j I

)
×
(
Dj Fj

0 Aj−1

)
(1)

with

Aj−1 = Cj − EjD
−1
j Fj . (2)

On the lowest level, the linear system associated with the
matrix A1 must be solved. This can be done approximately
by an iterative method, including by a single application of
a preconditioner to the corresponding right-hand side, or via
a direct solver. The significantly smaller dimension of A1

however comes at the price of fill in. To control the fill-in, one
often applies dropping strategies when forming the reduced
systems. A simple dropping strategy, for example, arises by
neglecting any introduced fill-in if smaller than a prescribed
tolerance τ . Namely, one replaces (2) by

Aj−1 = Cj − EjD
−1
j Fj +Rj , (3)

where R contains the fill-in that is dropped in this reduction
step. Instead of storing the complete sequence Aj to the
lowest level, it is more efficient to generate only the bottom-
level problem A1, and to store the transformation between the
levels:

Bj−1 =

(
Dj Fj

EjD
−1
j 0

)
. (4)

While the accuracy of the multi-elimination preconditioner
depends on the threshold, the general concept of the prepro-
cessing phase is given in Algorithm 2. In the iteration phase
(see Algorithm 3) the sequence of transformations and the
low-level solver are applied to approximate the solution of the
original problem. This is achieved by applying the series of
permutations Pnlev, . . . , P1 to the right-hand-side (RHS), and
overwriting the result on the highest level with the current
solution vector x0. For an efficient implementation we apply,
on the respective level j, the decomposition [19]

xj :=

(
yj
xj−1

)
(5)

and compute according to the partitioning in (1) the forward
sweep as [19]:

xj−1 := xj−1 − EjD
−1
j yj . (6)

Consequently, backward solution for yj hence becomes [19]:

yj := D−1j (yj − Fjxj−1) . (7)

Algorithm 2 Preprocessing phase of the multi-elimination
build phase MCILU(A, level) in pseudocode [15].

1: find independent set ordering Plevel for Alevel

2: apply Plevel to Alevel to obtain the desired form (1)
3: extract Dlevel, Flevel, Elevel, Clevel

4: compute Alevel−1 and Blevel−1 according to (3), (4)
5: drop-off elements Rlevel−1 in Alevel−1
6: if (level > 1) : MCILU(Alevel−1, level − 1)
7: if (level = 1) : LU factorization of Alevel−1

The major difference between our implementation and [19]
is, that we base our implementation on a fully recursive
organization of the building and the solving phase [15].



Algorithm 3 Iteration phase of the multi-elimination precon-
ditioner MCILU −Solve(A, level, x, b) in pseudocode [15].

1: apply permutation to b and copy into x
2: split x into y and x̂ according to (5)
3: x̂ = x̂− ElevelD

−1
levely (forward sweep)

4: if (level > 1) : MCILU −Solve(Alevel, level−1, x̂, x̂)
5: if (level = 1) : Direct solve Alevelx̂ = x̂
6: y = D−1level (y − Flevelx̂) (backwards solution)
7: apply permutation to obtain solution x

As the sparsity and the dimension of the reduced systems
decrease, especially when using long cascades of factoriza-
tions, direct methods may become attractive for the solution
process on the lowest level. Indeed, the fact that the exact LU
factorization has to be computed only once in the preprocess-
ing phase, and reused for the preconditioning steps in forward
and backward triangular matrix solvers, makes this approach
appealing. On the other hand, the system on the lowest level
does not have to be solved to full double precision accuracy for
many problems. Indeed, in most implementations the bottom-
level solves are handled by iterative methods with a prescribed
residual stopping criterion. This justifies an approach that
implements the LU factorization in the preconditioner setup
in double precision, but performs the forward and backward
triangular solves at each iteration in single precision arithmetic
(possibly enhanced by mixed-precision iterative refinement,
including falling back to high precision arithmetic if needed,
to solve with prescribed residual stopping criterion). We will
motivate in the next section that using arithmetic of lower than
the working precision may accelerate the iteration process, and
potentially improve the time-to-solution performance. For this
reason, we will add a survey on the potential of using a low-
precision bottom-level solver to the experimental section.

III. MIXED PRECISION METHODS

Most scientific simulation codes are implemented in IEEE
754 double precision arithmetic. This usually allows for ef-
ficient hardware usage while providing simulation results of
sufficient accuracy. However, especially with the integration
of coprocessor technology into the computation process, it is
not always obvious whether using double precision throughout
the complete algorithm is necessary and beneficial. Especially
when solving linear systems of equations iteratively, using a
less complex precision format for parts of the solution process
may improve performance without sacrificing the accuracy of
the final solution approximation. One popular example is the
usage of single instead of double precision when solving the
error correction equation in an iterative refinement process [9],
[6], [5]. This technique works very well in accelerating dense
linear algebra solvers on GPUs as well, e.g., see the 3 to 4×
performance improvements reported on a GTX 280 GPU [22].
The motivation often stems from hardware that offers higher
computing performance in single precision. In the past, GPUs
often rendered significant speedup factors when switching
from double to single precision, especially if double precision

was not inherently supported but emulated [10], [4]. While
in recent years, similarly to CPUs, these differences have
decreased to two

(e.g., the NVIDIA Fermi GPUs), particularly for the high-
end products integrated in large supercomputers, the difference
in the newest NVIDIA GPUs, e.g., the K20 and K40, is
increased to three.

Use of lower precision arithmetic, in addition to higher
compute power, also reduces storage, and hence data commu-
nication times. The memory bandwidth, often the bottleneck
in numerical simulation codes, can handle twice as many
floating point numbers when using single instead of double
precision. As this fact applies to all levels of nowadays often
very sophisticated memory hierarchies, a baseline speedup
factor of two can be expected when switching from double to
single precision for memory-bound applications. As discussed
above, the speedups can further increase for compute-bound
applications [9], [22].

The central question when using lower precision arithmetic
is whether the demanded accuracy for the solution approxima-
tion can be achieved. While one of the most commonly used
workarounds is offered by the aforementioned mixed precision
iterative refinement, we aim for using single precision only
in the explicit solution process on the lowest level of the
multi-elimination solver. The motivation is that the lowest-
level system in a multi-elimination preconditioner could also
be handled by an iterative method for many problems, and
high accuracy in those cases may not be required for the
convergence of the top-level iterative solver.

IV. EXPERIMENT SETUP

A. Implementation Details

We implement the multi-elimination preconditioner using
mixed precision for the solution of the lowest-level problem by
using the combination of two open source software libraries:
PARALUTION [15] and MAGMA [2]. PARALUTION is
a high-level software library for sparse linear algebra on
multicore any manycore systems developed at the University
of Uppsala. In the current version it supports CUDA, and an
OpenCL backend which allows for outsourcing computational
kernels to accelerators like graphics processing units or the
Xeon Phi (MIC). It provides, in addition to efficient imple-
mentations of the most commonly used iterative solvers, a
large variety of preconditioners, including multi-elimination
with flexible dropping strategies. The top-level solver we
consider in this paper is a Conjugate Gradient method (CG,
see [20]), which is among the most efficient Krylov subspace
solvers for symmetric, positive definite systems [20]. Instead
of using an iterative solver on the lowest level, we employ
an interface that enables the usage of sparse and dense linear
algebra operations implemented in MAGMA. While the sparse
matrices on all levels are handled in CSR format [7], we
convert the system on the lowest level into dense format and
apply the LU factorization provided by the MAGMA library in
double precision. During all operations in the preconditioner
setup phase, the data resides in the GPU memory. In the



iteration process, the forward and backward triangular solve
of the linear system is executed in either double or single
precision. After the solution of the lowest-level problem, the
vectors are converted back to double precision and the multi-
elimination preconditioner framework of PARALUTION is
resumed.

B. Hardware Platform

We performed the experiments on a Tesla K40c GPU that
belongs to the Atlas line of NVIDIA’s hardware accelerators.
The GPU consists of 2880 CUDA cores, and runs at 876
MHz [1]. The theoretical peaks are 1, 682 GFlop/s for double
precision arithmetic and 5, 046 GFlop/s for single precision.
It is equipped with 12 GB of GDDR5 memory accessed
with a peak bandwidth of 288 GB/s. The host processor is
an Intel Xeon E5 (codename: Sandy Bridge, model 0x2D,
family 0x06) in a two-socket configuration featuring 8 cores
in each socket with HyperThreading enabled and the nominal
frequency of 2.6 GHz.

C. Solver Parameters

All experiments solve the linear system Ax = b where we
set the initial right-hand-side to b ≡ 1, start with the initial
guess x ≡ 0 and run the iteration process until we achieve a
relative residual accuracy of 1e − 6. The algorithm-specific
GPU-kernels were based on CUDA in version 5.5, while
only the standard matrix and vector operations are handled
by NVIDIA’s CUBLAS and CUSPARSE libraries. In the
preprocessing phase of the multi-elimination, the identification
of an independent set via a graph algorithm is handled by
the CPU of the host system, the factorization process itself,
including the permutation and the generation of the lower-
level systems via a sparse matrix-matrix multiplication is
implemented on the GPU.

D. Test Matrices

For the experiments, we use a set of symmetric, positive
definite (SPD) test matrices taken either from the University
of Florida matrix collection (UFMC)1, Matrix Market2, or gen-
erated as finite difference discretization (LAPLACE 2D 1M).
The test matrices are listed along with some key characteristics
in Table I.

V. EXPERIMENTAL RESULTS

In this section, we first analyze the preprocessing phase
of the multi-elimination preconditioner. We then investigate
the influence of the drop off τ on the convergence rate, and
address the issue of whether double precision is necessary
throughout the complete algorithm. We show that handling
the forward and backward triangular solve of the bottom-
level problem A1 in single precision may improve the time-to-
solution performance by compensating for additional iterations
by a faster execution of the triangular solve. Finally, we

1UFMC; see http://www.cise.ufl.edu/research/sparse/matrices/
2see http://math.nist.gov/MatrixMarket/

Matrix #nonzeros (nnz) Size (n) nnz/n

APACHE 2 4,817,870 715,176 6.74
ECOLOGY 2 4,995,991 999,999 5.00
G2 CIRCUIT 726,674 150,102 4.83
G3 CIRCUIT 7,660,826 1,585,478 4.83
GR 30 30 7744 900 8.60
LAPLACE 2D 1M 4,996,000 1,000,000 4.99
NOS4 594 100 5.94
OFFSHORE 4,242,673 259,789 16.33
SERENA 64,131,971 1,391,349 46.09
STOCF-1465 21,005,389 1,465,137 14.34
THERMAL2 8,580,313 1,228,045 6.99

TABLE I: Description and properties of the test matrices.

compare, for suitable parameter choices, time-to-solution per-
formance against some popular preconditioners for symmetric
and positive definite problems.

A. Preconditioner Setup

Using sophisticated preconditioners like the multi-
elimination often requires a comparably expensive
preprocessing phase for setting up the preconditioner [16].
While this may make them unattractive for problems where a
linear system is solved only once, many scientific simulations
address dynamic problems where the solution of the linear
problem with a changing right-hand-side is required, e.g.
fluid flow problems [8]. For these non-stationary problems,
conceding an expensive preprocessing phase usually pays
off after a few time steps. During the setup phase for the
multi-elimination preconditioner, first the transformation
matrix Plevel must be generated, which requires finding an
independent set, see Algorithm 2. Next, the transformation
is applied to Alevel to obtain the desired form (1), and
after extracting the respective matrices, Alevel−1 is formed
according to (3). Recursively applying these steps, we can
obtain a sequence of linear problems down to the bottom-level
problem that is solved by a direct dense method. In Figure 1
we visualize the sparsity pattern of the matrix sequences
generated by running the preconditioner setup phase and
applying the permutations on the distinct levels on the matrix
GR 30 30 and NOS4, respectively.

While the sparsity structure is well-preserved in the se-
quence of reduced systems, the size reductions ( 45% and 61%,
respectively) come at the cost of an increasing number of fill-
ins, see Table II. As already mentioned before, an efficient
workaround for this is given by applying some dropping
strategy to control the fill-in in the reduction process. Using
suitable parameters τ , it is possible to maintain the number of
nonzero entries in the original system throughout the sequence
of factorizations.

The preprocessing phase also includes the factorization of
the bottom-level problem. For this purpose, we convert it
to dense format and then apply the routines provided by
MAGMA. While the level-depth can be optimized to specifics
of the linear problem at hand and the available hardware, we
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Fig. 1: Sparsity pattern of the recursive factorization applied to GR 30 30 (left) and NOS4 (right), respectively.

base our implementation on a self-adaptive strategy continuing
the recursive multi-elimination factorization process until a

system size smaller than n < 12, 000 is reached. Note that
allowing for complete fill-in when forming the linear system



to be factorized improves the accuracy, and we therefore do
not apply any dropping technique for the bottom-level.

GR 30 30 NOS4
level n nnz n nnz

4 900 7744 100 594
3 675 9809 61 599
2 555 10989 46 676
1 495 14585 39 709

TABLE II: Properties of the sequence of matrices obtained by
the recursive factorization.

B. Choosing the Threshold τ

As mentioned before, the sparsity pattern of the sequence
of factorizations can be efficiently controlled by applying a
dropping criteria technique. Choosing the dropping parameter
τ has significant influence on the method’s convergence and
performance characteristics: larger values for τ allow for
additional fill-in, resulting in a larger reduced system, a longer
sequence of factorizations to the bottom-level system, and a
computationally more expensive reduction and prolongation
operation between the levels. The computational cost of every
iteration is the combination of the level transfers and the
bottom-level triangular solves. Hence, dropping more elements
may accelerate the execution of every iteration (assuming the
same size of the bottom-level problem), but due to the reduced
accuracy of the preconditioner, the top-level iteration method
may require more iterations to reach the demanded accuracy.
However, choosing the threshold τ and the level depth is
more involved than just trading off iteration count and the
cost of the preconditioner. An inappropriate choice may result
in the sequence of linear systems losing regularity, and a
singular bottom-level system will cause the breakdown of the
preconditioner. A second constraint is given by the limited
GPU memory size, that must be large enough to store the
level transformations as well as the LU factorization of the
bottom-level problem.

While different threshold strategies can be implemented, we
choose to relate the threshold to the average absolute value of
the nonzero element:

τ = β ·
∑

aij 6=0 |aij |
nnz

, (8)

where β can be used to increase or decrease τ . In Tables III
and IV, we investigate the influence of β on the factorization
sequence and the top-level solver for the matrices OFFSHORE
and STOCF-1465, respectively. As expected, choosing larger
β, which results in dropping more elements in the factorization
sequence, we decrease the number of levels necessary to obtain
a system of size n < 12, 000 (see column labelled l). This,
however, comes at the price of a higher iteration count. In the
end, the trade-off determines the time-to-solution performance,
and from the results visualized in Figure 2 we deduce, that this
is problem-dependent. For the test case OFFSHORE we observe
the overall trend that dropping more elements improves the
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Fig. 2: Time-to-solution performance of the multi-elimination
preconditioned Conjugate Gradient using double or single pre-
cision triangular solve (solid and dashed lines, respectively).

A1 double ts single ts
β l n nnz # iters time [s] # iters time [s]

1e− 4 10 9013 1599025 1220 14.95 1223 10.87
5e− 4 6 8812 967606 1251 13.89 1250 9.80
1e− 3 5 8703 792275 1242 13.32 1268 9.56
5e− 3 3 9164 483780 1292 13.97 1295 9.52
1e− 2 3 8306 421328 1309 12.27 1309 9.08
5e− 2 3 7017 284637 1347 10.31 1351 8.42
1e− 1 2 9493 384617 1324 15.01 1314 9.70
5e− 1 2 8131 306573 1356 12.28 1349 8.88
1e+ 0 2 7640 266560 1375 11.49 1364 8.68
5e+ 0 2 6605 159175 1416 9.85 1404 8.16
1e+ 1 2 6106 114758 1412 8.97 1414 8.96

TABLE III: Influence of β on the depth of the factorization
sequence (level depth l), bottom-level linear system (A1)
characteristics and top-level solver performance using either
double or single precision triangular solve (labelled double ts
and single ts, respectively). The top-level iteration method is
applied to case OFFSHORE with a relative residual stopping
criterion of 1e− 6.

time-to-solution performance. For the STOCF-1465 matrix
however, it is the other way around: superior performance can
be achieved when allowing for more fill-in.

We conclude that without detailed knowledge about the
matrix characteristics, it is hard to optimize the drop-off
threshold. For this reason, we base our implementation on
the default value of β = 0.1 as using this value we observed
convergence for all test cases. However, we keep in mind from
the data in Tables III and IV that significant performance
increase (up to a speedup factor of 10) can be achieved by
optimizing to a specific problem.

Beside tuning the parameter τ (respectively β) for a specific
system, an intelligent implementation would handle the GPU
memory problem by restarting the preconditioner setup to drop
more elements when needed.

C. Mixed Precision Implementations

In the previous section, we have observed that the per-
formance of the multi-elimination preconditioned iterative
method is sensitive to the threshold τ , impacting the approx-



MCGS-GMRES double LU solve single LU solve
matrix l n nnz # iters time [s] # iters time [s] # iters time [s]
APACHE 2 14 7637 60615 293 7.61 292 3.65 293 3.04
ECOLOGY 2 14 3568 5588 780 8.74 779 16.39 779 10.98
G2 CIRCUIT 7 8871 97817 359 10.03 358 3.62 359 2.49
G3 CIRCUIT 11 3865 4811 511 5.84 511 5.32 512 5.42
LAPLACE 2D 1M 13 5094 15270 338 4.37 338 3.52 338 3.41
OFFSHORE 2 9493 384617 1313 431.20 1323 15.02 1310 9.59
STOCF-1465 4 6218 9012 4399 825.22 4375 55.91 4395 52.06
THERMAL2 12 9891 14375 915 14.57 915 17.87 916 13.93

TABLE V: Factorization sequence characteristics (level count l, n and nnz of the bottom-level system) and top-level solver
performance using different types of bottom-level solvers. MCGS-GMRES denotes a framework similar to [19]: a GMRES
method using a multi-coloured symmetric Gauss-Seidel preconditioner and a relative residual stopping criterion of 1e − 8.
double LU solve and single LU solve denote the sparse/direct hybrid approach using an LU factorization of the bottom-level
problem and solving in either double or single precision. The factorization threshold is set to β = 0.1.

A1 double ts single ts
β l n nnz # iters time [s] # iters time [s]

1e− 4 6 4079 4417 682 7.94 1380 16.11
5e− 4 6 3489 3635 992 11.03 1259 13.93
1e− 3 6 932 944 1242 11.98 1405 13.62
5e− 3 5 8351 11311 1830 29.28 1982 26.78
1e− 2 5 4773 6438 2205 25.54 2230 25.61
5e− 2 5 2364 3104 3406 32.93 3415 33.86
1e− 1 4 6218 9012 4375 55.87 4393 52.28
5e− 1 3 9769 11863 6826 120.41 6853 93.24
1e+ 0 3 4741 5273 7928 86.52 7936 85.35
5e+ 0 3 465 471 11403 93.94 11412 94.81
1e+ 1 3 99 99 12826 114.63 12827 104.00

TABLE IV: Influence of β on the depth of the factorization
sequence (level depth l), bottom-level linear system (A1)
characteristics and top-level solver performance using either
double or single precision triangular solve (labelled double ts
and single ts, respectively). The top-level iteration method is
applied to case STOCF-1465 with a relative residual stopping
criterion of 1e− 6.

imation accuracy provided by the preconditioner, which in
turn influences the iteration number of the top-level iterative
method. In this section we focus on the bottom-level solver.
While Saad proposed a SOR-preconditioned GMRES solver
for the bottom-level system in the original paper on multi-
elimination preconditioners [19], we argue that replacing the
iterative bottom-level solver by a one-time factorization phase
in the preconditioner setup, followed by triangular solves in
the distinct iteration steps, may provide significant perfor-
mance improvement for implementations using long reduction
sequences on graphics processing units.

Motivated by the inherently approximate nature of the multi-
elimination using threshold strategies, we address the question
of potential performance benefits obtained by implementing
the forward and backward triangular solve of the bottom-level
problem in the distinct iteration steps in a less complex floating
point format than working precision3. While we motivated this
mixed precision approach with a more efficient hardware usage

3The LU factorization in the preconditioner preprocessing phase was
implemented in double precision for both implementations, using single
precision triangular solves; the matrices were converted afterwards.

in Section III, it may be particularly interesting for systems
accelerated by the commodity GPUs. We may expect that,
using single instead of double precision, we again sacrifice
some accuracy of the preconditioner, resulting in the need of
additional top-level iterations. In the end, the trade-off between
additional iterations and accelerated triangular solves deter-
mines the superiority of either implementation. In Table III
and IV of the previous section we provide iteration count
and runtime not only for the double precision implementation,
but also the modification using single precision triangular
solves for the bottom-level linear system (see columns labelled
double ts and single ts, respectively). As expected, using single
triangular solve, we usually need some additional iterations
of the top-level solver to achieve the demanded accuracy.
Especially when allowing for large fill-in via low thresholds,
the top-level solver suffers from reduced accuracy of the
bottom-level solve. Larger thresholds, on the other hand,
already introduce rounding errors in the factorization sequence
that whitewash the accuracy loss of the bottom-level solver
(see the relative iteration increase in the tables). In the end,
the higher iteration rate (number of iterations per second) when
using single precision triangular solve may compensate for the
additional iterations, resulting in a reduced time-to-solution
(see Figure 2).

For further investigation, we compare in Table V the
performance of the multi-elimination preconditioner using
different bottom-level solvers integrated into a CG top-level
solver. While we choose a self-adaptive level depth (recursive
factorization until matrix size n < 12, 000), the dropping
threshold τ is fixed by equation (8).

Porting the method proposed in [19] to GPUs, we do some
minor modifications allowing for a fair comparison and higher
efficiency. First, we replaced the SOR preconditioner in the
bottom-level GMRES solver by a multi-coloured symmetric
Gauss-Seidel preconditioner, as the sequential nature of SOR
would obviously result in very poor performance of the GPU
implementation. Furthermore, we choose different relative
residual stopping criterion of 1e − 8 for the preconditioned
GMRES bottom-level solver. This allows a fair comparison
to the hybrid approach, as it enables the top-level solver



converging within a similar number of iterations, like the
implementation using an LU factorization for the bottom-level
problem, and the double- or single-precision triangular solved
in the distinct iteration steps. While the overall solver perfor-
mance is determined by the trade-off between preconditioner
accuracy and global iteration count, a computationally more
expensive top-level solver benefits from reducing iterations.

A first observation from the performance results in Table V
is that all bottom-level solver implementations provide similar
preconditioner accuracy: we observe only small variances in
the iteration count of the top-level solver. As expected, the
single precision triangular solves may provide less accurate
results, which results in a few additional iterations of the top-
level CG solver. For the OFFSHORE matrix however, lucky
rounding causes even faster convergence. In terms of runtime,
the mixed precision approach is superior for all problems
except the G3 CIRCUIT test case. Comparing against the
implementation using a multi-coloured Gauss-Seidel precon-
ditioned GMRES bottom-level solver, the double precision
triangular solve is superior for all problems except for the
ECOLOGY 2and THERMAL2 matrix. Switching to the mixed
precision implementation, we outperform the preconditioned
GMRES bottom-level solver also for THERMAL2, but fail in
the ECOLOGY 2 case. The reason might be that the multi-
elimination factorization sequence results in an almost di-
agonal bottom-level problem, which favors iterative solvers.
While we alleviate all other problems by replacing the iterative
bottom-level solver with the mixed precision direct solution
process, the improvements depend on the sparsity of the
bottom-level problem. Lower thresholds allowing for higher
accuracy and increased fill-in result in dense matrices on the
bottom-level, especially for unstructured matrices like OFF-
SHORE and STOCF-1465. For these, we achieve significant
speedup factors of 44 and 15, respectively.

From the experimental results, we conclude that when
implementing multi-elimination preconditioners on GPUs and
allowing for long factorization sequences, it is beneficial to
replace the iterative solvers by a direct solve for the bottom-
level problem. Furthermore, it seems to be reasonable to use
single precision triangular solves as the default configuration
when comparing against other preconditioners in the next
section.

D. Performance Comparison

In this section we want to quantify the performance of our
mixed precision multi-elimination implementation for GPUs
by comparing with well-established preconditioners. The ref-
erence implementations we compare against are, like the multi-
elimination preconditioned Conjugate Gradient we benchmark
as the top-level solver, taken from the PARALUTION [15]
(version 0.4.0) open source library, which ensures a fair
comparison through sharing the same routines for the vector
and matrix operations, and the same level of GPU-specific
optimization.

In Table VI we compare iteration count and runtime with
a plain CG solver, and enhanced versions using a multi-

colored symmetric Gauss-Seidel [16], ILU-0 [20], [17] or
multi-colored ILU-(0) [16] preconditioner, respectively. For
the multi-elimination, we chose a self-adaptive level-depth
resulting in a bottom-level linear system of size n < 12, 000,
and a threshold controlling the fill-in according to (8) and
β = 0.1 in Section V-B. Like previously stated, we execute
the triangular solve in the iterations using single precision.

The runtime results in Table VI show that our self-
adaptive mixed precision multi-elimination implementation
is highly competitive to the other preconditioners. In di-
rect comparison to the, algorithmically most similar, other
algebraic preconditioners (ILU-0 and multi-colored ILU-0),
multi-elimination outperforms the multi-colored ILU-0 for
APACHE 2, G3 CIRCUIT and THERMAL2, and the plain ILU-
0 for all problems. The premise that preconditioners must be
chosen carefully with respect to a particular problem is sup-
ported by the optimization potential revealed in Section V-B:
choosing an optimized threshold, the multi-elimination pre-
conditioner outperforms the multi-colored ILU-0 also for the
STOCF-1465 matrix.

VI. SUMMARY AND FUTURE RESEARCH

Porting multi-elimination preconditioners to GPUs, we have
proposed to replace the iterative solution of the bottom level
by a direct solve in the preconditioner setup phase and
forward-backward triangular solves in the distinct iteration
steps. Solving the bottom-level system via a direct solver
offers the connection to dense linear algebra, and the possi-
bility to precondition the distinct iteration steps by highly-
optimized triangular solves based on a factorization in the
preprocessing phase. Furthermore we have proposed to employ
these triangular solves in single precision for higher resource
utilization and revealed in numerical tests that in a mixed
precision implementation the additional top-level iterations are
often compensated for by a higher iteration rate. Numerical
experiments confirmed that this hybrid approach of mixing
direct and iterative methods is in many cases beneficial to the
runtime performance of the multi-elimination preconditioner.
Implementing a self-adapting level-depth, we have shown that
the mixed precision multi-elimination preconditioner is able to
efficiently leverage the computational power of the GPU and
outperforms the un-preconditioned top-level solver and some
of the most commonly used preconditioning techniques for
numerous problems. Future research directions are given by
the fact that the performance of a multi-elimination precondi-
tioned solver is very dependent on the threshold controlling the
fill-in, and the time-to-solution can be decreased significantly
when optimizing to a specific problem. We will furthermore
investigate how to modify the multi-elimination framework for
nonlinear problems.
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CG MCGS-CG ILU0-CG MCILU0-CG MPME-CG
matrix # iters time [s] # iters time [s] # iters time [s] # iters time [s] # iters time [s]
APACHE 2 3970 5.02 1677 5.22 643 9.63 1438 4.07 293 3.04
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LAPLACE 2D 1M 1633 2.53 817 2.63 537 19.30 817 2.38 338 3.41
OFFSHORE - - 628 4.92 365 23.22 487 3.57 1314 9.59
STOCF-1465 - - 66042 1187.59 2338 158.37 16698 290.38 4388 52.06
THERMAL2 4587 9.63 2151 18.33 1945 54.13 2096 16.79 916 13.93

TABLE VI: Runtime and iteration comparison for (preconditioned) CG using a multi-colored symmetric Gauss-Seidel (MCGS-
), ILU-0 (ILU0-), multi-colored ILU-0 (MCILU0-) or the mixed precision multi-elimination (MPME-) preconditioner. In the
MPME-CG, the level-depth is self-adaptive, and the parameter β was chosen according to (8).
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