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Abstract. We propose a mixed-precision orthogonalization scheme that
takes the input matrix in a standard 32 or 64-bit floating-point precision,
but uses higher-precision arithmetics to accumulate its intermediate re-
sults. For the 64-bit precision, our scheme uses software emulation for the
higher-precision arithmetics, and requires about 20× more computation
but about the same amount of communication as the standard orthog-
onalization scheme. Since the computation is becoming less expensive
compared to the communication on new and emerging architectures, the
relative cost of our mixed-precision scheme is decreasing. Our case stud-
ies with CA-GMRES on a GPU demonstrate that using mixed-precision
for this small but critical segment of CA-GMRES can improve not only
its overall numerical stability but also, in some cases, its performance.

1 Introduction

On modern computers, communication (e.g., data movement through memory
hierarchies) is becoming expensive compared to computation (i.e., floating point
operations), in terms of both required cycle time and energy consumption. It
is critical to take this hardware trend into consideration when designing high-
performance software for new and emerging computers. For this purpose, we
studied a communication-avoiding variant of the Generalized Minimum Resid-
ual method [5] (CA-GMRES) on multicore CPUs with multiple GPUs [7]. In
this study, we found that to achieve the high performance of CA-GMRES, an
efficient and numerically stable orthogonalization scheme is crutial. In this same
study, the Cholesky QR (CholQR) orthogonalization scheme [6] showed a su-
perior performance and obtained the performance of optimized BLAS-3 GPU
kernels. Unfortunately, CholQR can be numerically unstable, and CA-GMRES
may not converge even with reorthogonalization.

To address the aforementioned deficiency, in this paper, we design and study
a mixed-precision CholQR that takes the input matrix in a standard precision
but accumulates its intermediate results in a higher-precision. Though it has a
greater computational cost, our mixed-precision scheme requires about the same

0 We thank Maho Nakata, Daichi Mukunoki, and the members of DOE “Extreme-scale
Algorithms & Solver Resilience (EASIR)” for helpful discussions.



x̂ := 0 and v1 := b/‖b‖2.
repeat (restart-loop)

Projection Subspace Generation on GPUs (inner-loop):
for j = 1, s+ 1, 2s+ 1, . . . ,m do

MPK : Generate new vectors vk+1 := Avk

for k = j, j + 1, . . . ,min(j + s,m).
BOrth: Orthogonalize Vj+1:j+s+1 against V1:j .
TSQR: Orthogonalize the vectors within Vj+1:j+s+1.

end for

Projected Subsystem Solution on CPUs (restart):

Compute the solution x̂ in the generated subspace,
which minimizes its residual norm.

Set v1 := r/‖r‖2, where r := b− Ax̂.
until solution convergence do

Fig. 1. CA-GMRES(s,m).

Step 1: Gram-matrix formation
for d = 1, 2, . . . , ng do

B(d) := V
(d)T
1:s+1

V
(d)
1:s+1

on GPU

end for

B :=
∑

B(d) (comm)

Step 2: Cholesky factorization
R := chol(B) on CPU

Step 3: Orthogonalization
for d = 1, 2, . . . , ng do

copy R to d-th GPU

V
(d)
1:s+1

:= V
(d)
1:s+1

R−1 on GPU

end for

Fig. 2. CholQR.

amount of communication as the standard scheme does. Since the computation
is becoming less expensive compared to the communication, we hope to improve
the overall numerical stability of CA-GMRES using the mixed-precision without
a significant increase in the orthogonalization time. Case studies on different
GPUs demonstrate that this scheme can improve not only the stability of CA-
GMRES but also, in some cases, the performance by allowing a larger block size,
avoiding the reorthogonalization, and improving the convergence rate.

2 Communication-Avoiding GMRES

At the j-th GMRES iteration, the (j + 1)-th basis vector vj+1 is generated
through a sparse matrix-vector multiply (SpMV ) followed by its orthonormal-
ization (Orth) against the previously-generated basis vectors. In our implemen-
tation [7], the coefficient matrix A and the basis vectors are distributed in a
block row format among the GPUs on a compute node. We generate these basis
vectors on the GPUs, while the projected subsystem is solved on the CPUs.

Even on a single GPU, which is the focus of this paper, both SpMV and Orth
require communication to move the data through the memory hierarchy of the
GPU. CA-GMRES aims to reduce this communication by replacing SpMV and
Orth with three new kernels – matrix-powers kernel (MPK ), block orthogonal-
ization (BOrth), and tall-skinny QR (TSQR) – that generate and orthogonalize
a set of s basis vectors at once. By avoiding the communication, even on a sin-
gle GPU, CA-GMRES can obtain a speedup of up to two [7]. Figure 1 shows
the pseudocode of CA-GMRES(s, m), where vj is the j-th column of V , Vj:k
is the submatrix consisting of the j-th through the k-th columns of V , and the
iteration is restarted after m+ 1 basis vectors are computed.

3 Cholesky QR factorization

In this section, we use V
(d)
1:s+1 to denote the local matrix of V1:s+1 on the d-th

GPU, and ng is the number of available GPUs. To orthogonalize the s+ 1 vec-
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Fig. 3. InnerProds implementation (arrow
shows data access by a GPU thread).

double regC[mb][nb], regA[mb], regB
for ` = 1, . . . ib do

for j = 1 . . . nb

regA[i] = x
`∗nt,j

for j = 1, . . . , nb do
regB = y

`∗nt,j

for i = 1 . . .mb

regC[i][j] += regA[i] * regB
end for

end for

Fig. 4. InnerProds pseudocode (ib = h
nt

).

tors V1:s+1 (as for TSQR), CholQR first forms the Gram matrixB := V T1:s+1V1:s+1

through the matrix-matrix product B(d) := V
(d)T
1:s+1V

(d)
1:s+1 on the GPU, followed

by the reduction B :=
∑ng

d=1B
(d) on the CPU. Next, the Cholesky factor R of B

is computed on the CPU. Finally, the GPU orthogonalizes V1:s+1 by a triangular

solve V
(d)
1:s+1 := V

(d)
1:s+1R

−1. Hence, all the required GPU-GPU communication is
aggregated into a pair of messages, while the GPU computation is based on
BLAS-3. Hence, both intra and inter GPU communication can be optimized.
Figure 2 shows these three steps of CholQR. Unfortunately, the condition num-
ber of B, κ(B), is the square of κ(V1:s+1). This often causes numerical problems,
especially in CA-GMRES, where even using the Newton basis, the vector vj
converges to the principal eigenvector of A, and κ(V1:s+1) can be large.

4 Mixed-Precision Orthogonalization with a GPU

4.1 Implementation

Since the Gram matrix is much smaller in its dimension than the coefficient ma-
trix (s� n), CholQR typically spent only a small portion of its orthogonalization
time computing its Cholesky factor at Step 2. In addition, solving the triangular
system with many right-hand-sides at Step 3 exhibits a high parallelism and can
be implemented efficiently on a GPU. On the other hand, at Step 1, comput-
ing each element of the Gram matrix requires a reduction operation on n-length
vectors. These inner-products (InnerProds) are communication-intensive and ex-
hibit only limited parallelism. Hence, Step 1 often becomes the bottleneck, where
standard implementations fail to obtain high-performance on the GPU.

In our implementation of a matrix-matrix (GEMM) multiply, B := XTY ,
each thread block computes a partial InnerProds, B(i,j,k) := X(k,i)TY (k,j), where
X(k,i) and Y (k,j) are h-by-mb and h-by-nb blocks of X and Y , respectively (see
Figure 3 for an illustration). Within a thread block, each of nt threads computes
its partial result in local registries (see Figure 4 for the pseudocode, where x`,j
is the (`, j)-th element of the local X(k,i)). Then, each thread block performs the
binary reduction of the partial results among its threads, summing nr columns
at a time using the shared memory to store nt×(mb×nr) numerical values. The



# of d-instructions
dd-operation Add/Sub Mul FMA Total

Mul (dd-input) 5 3 1 9
Mul (d-input) 3 1 1 5
Add (IEEE-style) 20 0 0 20
Add (Cray-style) 11 0 0 11

Fig. 5. # of d-instructions in dd-operations.

‖I −QTQ‖ # flops GPU comm.

MGS [3] O(εκ) 2sn2, xDOT O(s2)
CGS [3] O(εκs) 2sn2, xGEMV O(s)
CholQR [6] O(εκ2) 3sn2, xGEMM O(1)
SVQR [6] O(εκ2) 3sn2, xGEMM O(1)
CAQR [2] O(ε) 4sn2, xGEQF2 O(1)

Fig. 6. Properties of standard orthogonalization
schemes. More details in [7].

final result is computed by another binary reduction among the thread blocks.
Our implementation is designed to reduce the number of synchronizations among
the threads while relying on the CUDA runtime and the parameter tuning to
exploit the data locality.1 For the symmetric (SYRK) multiply, B := V TV , the
thread blocks compute only a triangular part of B and reads V (k,j) once for
computing a diagonal block. We show their performance in the next subsection.

Let us analyze the orthogonality error of CholQR in finite precision. Following
the standard error analysis, we denote our finite precision operations at each step
of CholQR as follows, where B̂ is the result of computing B in a finite precision,
and εi is the arithmetic precision used at Step i:

Step 1 (B := V TV ) : B̂ = B + δB, where ‖δB‖ ≤ c1ε1‖V ‖2,

Step 2 (B̂ = RTR) : R̂T R̂ = B̂ + δRT δR, where ‖δRT δR‖ ≤ c2ε2‖V ‖2,

Step 3 (Q := V R̂−1) : Q̂ = Q+ δQ, where ‖δQ‖ ≤ c3ε3‖R̂‖.

Furthermore, from Steps 1 and 2, we have ‖R̂‖2 ≤ ‖V ‖2 + (c1ε1 + c2ε2)‖B‖.
Hence, the orthogonality error of CholQR is given by

I − Q̂T Q̂ = I − (Q+ δQ)T (Q+ δQ)

= I −QTQ−QT δQ− δQTQ− δQT δQ
= I − R̂−TV TV R̂−1 −QT δQ− δQTQ− δQT δQ
= R̂−T (R̂T R̂− B̂ + δB)R̂−1 −QT δQ− δQTQ− δQT δQ
= R̂−T (δRT δR+ δB)R̂−1 −QT δQ− δQTQ− δQT δQ,

and the error norm is bounded by

‖I − Q̂T Q̂‖ ≤ (c1ε1 + c2ε2)‖V ‖2‖R̂−1‖2 + 2c3ε3‖Q‖‖R̂‖+ c23ε
2
3‖R̂‖2

≤ (c1ε1 + c2ε2)‖V ‖2‖R̂−1‖2 +O(ε3‖R̂‖) (assuming ‖R̂‖ ≤ ε−1
3 )

≤ (c1ε1 + c2ε2)‖V ‖2‖V −1‖2 +O(ε3‖V ‖2).

Based on the above analysis, our mixed-precision scheme uses a higher-
precision at the first two steps of CholQR, while the standard precision is used at
the last step, Hence, if the condition number of V is bounded by the reciprocal
of the machine precision (i.e., ‖V ‖‖V −1‖ = κ(V ) ≤ ε−1

d ), we have

‖I − Q̂T Q̂‖ = O

(
εdd
ε2d

(εdκ(V ))2

)
≤ O (εdκ(V )) ,

1 In the current implementation, the numbers of rows and columns in X and Y are a
multiple of h, and multiples of mb and nb, respectively, where nb is a multiple of nr.
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Fig. 7. Performance of InnerProds in double precision.

where εd and εdd are the machine epsilons in the standard and higher precisions,
respectively. The modified Gram-Schmidt (MGS) [1] is another popular orthog-
onalization scheme which has the same norm-wise orthogonality error bound as
dd-CholQR and was stable in our numerical studies [7]. However, MGS is based
on BLAS-1 and obtains only a fraction of the d-CholQR performance [7].

When the target hardware does not support a desired higher precision, soft-
ware emulation is needed. For instance, double-double (dd) arithmetic emulates
the quadruple precision arithmetic by representing each floating-point value by
an unevaluated sum of two double precision numbers, and is capable of repre-
senting the 106 bits precision, while the standard double value is 53 bits pre-
cision (i.e., εdd

ε2
d

= 1). There are two standard implementations [4] of dd-add,

a+ b = ĉ+ e, where one satisfies the IEEE-style error bound (e = δ(a+ b) with
δ ≤ 2εdd), and the other satisfies the weaker Cray-style error bound (e = δ1a+δ2b
with |δ1|, |δ2| ≤ εdd). Table 5 summarizes the computational costs of the dd-
arithmetics required for the mixed-precision dd-CholQR. Using this software
emulation, dd-CholQR performs much more computation than the standard
d-CholQR. On the other hand, d-CholQR and dd-CholQR communicate about
the same amount since dd-CholQR only writes the s-by-s output matrix in the
dd-precision, while reading the n-by-s input matrix in the d-precision (s� n).

4.2 Performance

Figure 7 compares the InnerProds performance in d- or dd-precision on different
GPUs. Each GPU has a different relative cost of communication to computa-
tion, and on top of each plot, we show the ratio of the double-precision peak
performance (Gflop/s) over the shared memory bandwidth (GB/s) (i.e., flop/B
to obtain the peak). This ratio tends to increase on a newer architecture, indicat-
ing a greater relative communication cost. We tuned our kernel for each matrix
dimension in each precision on each GPU (see the five tunable parameters h, mb,
nb, nr, and nt in Section 4.1), and the figure shows the optimal performance.
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Fig. 8. Performance of InnerProds in single precision.

Based on the shared memory bandwidth in the figure, the respective peak per-
formances of d-GEMM are 442, 625, and 720Gflop/s on M2090, K20c, and K40.
Our d-GEMM obtained 29, 26, 28% of these peak performances and speedups
of about 1.8, 1.7, and 1.7 over CUBLAS on these GPUs. In addition, though
it performs twenty times more operations, the gap between dd-InnerProds and
d-InnerProds tends to decrease on a newer architecture with a lower computa-
tional cost, and dd-InnerProds is only about three times slower on K20.

Figure 7 shows the performance of the mixed-precision ss-InnerProds in sin-
gle precision, where the input matrix is in single precision, but the intermediate
results are computed in double precision. Since the higher-precision is now sup-
ported by the hardware, even on an older GPU, the relative cost of the mixed-
precision ss-InnerProds over the standard s-InnerProds is much lower than that
of dd-InnerProds over d-InnerProds, where the software emulation is needed. In
addition, ss-InnerProds is significantly more efficient obtaining over 300Gflop/s,
in comparison to d-InnerProds that obtains just over 150Gflop/s.

Figure 9 shows the breakdown of d-CholQR orthogonalization time. Because
of our efficient implementation of InnerProds, only about 30% of the orthogonal-
ization time is now spent in d-InnerProds. As a result, while dd-InnerProds was
about three times more expensive than d-InnerProds, Figure 10 shows that dd-
CholQR is only about 1.7 or 1.4 times more expensive than d-CholQR when
GEMM or SYRK is used for InnerProds, respectively. For dd-CholQR, the
double-double Cholesky factorization on the CPU is computed using MPACK2.

5 Case Studies with CA-GMRES

Figure 11 shows the orthogonality error and its upper-bound at each orthogo-
nalization step of CA-GMRES(15, 60) for the cant matrix.3 Next, in Figure 12,

2 http://mplapack.sourceforge.net
3 Our sparse test matrices are from http://www.cise.ufl.edu/research/sparse/matrices/
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we show the average error norms over the CA-GMRES iterations using different
orthogonalization schemes (see Figure 6) for the same matrix. For this particu-
lar matrix, CGS, CholQR, and SVQR require reorthogonalization, and the white
bars show the error norms after the first orthogonalization. Though the orthogo-
nalization error of dd-CholQR is slightly greater than that of MGS, CA-GMRES
converges with the same number of iterations without the reorthogonalization.

Finally, Figure 13 shows the normalized solution time of CA-GMRES with
K20c. Using dd-CholQR, in these particular cases, the solution time was reduced
not only because the reorthogonalization was avoided but also because CA-
GMRES converged in fewer iterations in the first two cases, where the software
emulation is needed.4 In addition, dd-CholQR sometimes allowed a larger value
of s, potentially leading to more efficient performance of the GPU kernels.

6 Conclusion

We proposed a mixed-precision orthogonalization scheme to improve the nu-
merical stability of CA-GMRES. Our case studies demonstrated that though it
requires 20× more computation, the use of mixed-precision for this small but
critical segment of CA-GMRES can improve not only its overall stability but
also, in some cases, its performance. We also showed that the cost of the mixed-
precision scheme is decreasing on architectures where the relative cost of the

4 In contrast to Figure 12 (s = 15), the orthogonality error norms of d-CholQR were
significantly greater than those of dd-CholQR when s = 30.
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Fig. 13. CA-GMRES Performance: On top of each bar shows total time in sec. and
restart count. CA-GMRES with non-optimal s got speedups over GMRES using CGS.

computation is decreasing. In this paper, we studied the performance of CA-
GMRES on a single GPU. Our previous studies [7] demonstrated that on mul-
tiple GPUs of a compute node, the performance of CA-GMRES depends more
on the performance of the GPU kernels than on the CPU-GPU communication.
Hence, similar benefits of using mixed-precision are expected on the multiple
GPUs. We plan to study the effects of mixed-precision on systems where the
communication becomes more expensive (e.g., distributed GPUs, or CPUs), and
where the scheme, therefore, may lead to a greater performance improvement.
Furthermore, we will study the use of mixed-preision in eigensolvers where the
orthogonality can be more crutial. Finally, it is of interest to apply or extend
some recent mixed precision efforts (e.g., reproducible BLAS5 and precision tun-
ing6) for our studies. All the higher-precision BLAS developed for this study will
be released through the MAGMA library.
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