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MPAS-Ocean [4] is a component of the MPAS framework of climate models. MPAS-Ocean is an
unstructured-mesh ocean model capable of using enhanced horizontal resolution in selected regions of
the ocean domain. The code is publicly available for download [3] and comes with several input problems
of different sizes corresponding to different simulation resolutions. In this initial study, we look at the
per-core performance of version 2.0 of the MPAS-Ocean code. Our analysis was performed on a single
node system with dual Intel Xeon E5-2690 CPUs, based on the Sandy Bridge micro-architecture. Each
processor has 8 cores and a shared 20 MB L3 cache. We compiled the code with the Intel Fortran
compiler 14.0.0 and optimization flags -O3 -g.

Figure 1: HPCToolkit time profile: the MPAS code spends 38.6% of time in the compiler intrinsic ’trim’
invoked primarily from the software timer callipers.

Due to the small system size, we used an input problem of lower resolution (240km), and performed
runs with one and four MPI processes. Figure 1 shows an initial HPCToolkit [1] time profile of the
application running with a single MPI process. We use HPCToolkit’s callers view and sort the results
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Figure 2: HPCToolkit time profile: the top time consuming routines in MPAS-Ocean after fixing the
software timers.

by exclusive time, to identify the routines where the application spends the most time. Surprisingly,
the application spends 38.6% of its execution time inside the Fortran compiler intrinsic trim. The
callers view in HPCToolkit shows the places from where a routine is called, as well as a breakdown of
the contribution of each call path to every metric. We notice that four call sites in two software timer
calipers account for 38.5% of the entire time spent in routine for trim.

Inspecting the timers code, we noticed repeated, unnecessary calls to the trim intrinsic for each
invocation of the timer calipers. We changed the code to call the trim intrinsic once per caliper use,
caching the result of its output. Figure 2 presents the updated HPCToolkit time profile after this
code fix-up. The total execution time dropped by 36.5% from 2.16e11 to 1.37e11. Routine for trim

accounts for 0.1% of the execution time in the new code version, thus, it does not show up in the list of
top time consuming routines. We use the fixed version of the code as the baseline for further analysis
and optimization.

Performance analysis using MIAMI

Figure 3 shows a snapshot of several performance metrics computed by MIAMI [2]. MIAMI uses
a modeling approach based on first-order principles to estimate the instruction schedule cost of an
application on a particular architecture, to understand the data reuse patterns responsible for the
highest number of data transfers between the various levels of the memory hierarchy, and to identify
the memory accesses that cannot be effectively prefetched by streaming hardware prefetchers.

Figure 3: MIAMI performance results: the top routines ranked by instruction schedule cost.
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The metrics included in Figure 3 focus on the insight provided by MIAMI into the instruction
schedule cost of the MPAS-Ocean code. The metrics included in the figure are, in order: the instruc-
tion schedule cost, the potential for improvement from additional machine resources, the potential for
improvement from additional instruction level parallelism, the potential for improvement from vectoriza-
tion, the number of retired MIAMI micro-operations1, the number of micro-operations used for address
arithmetic, and the number of scalar accesses to the program stack.

Before delving into the analysis of the results, we present a short guide for the reading and inter-
pretation of MIAMI results. MIAMI can output performance results in CSV format, to enable parsing
with a post-processing script, and in XML format for top-down analysis using hpcviewer, the viewer
application distributed with HPCToolkit. The screenshots included in this paper show MIAMI results
displayed in hpcviewer. The viewer presents data in tabular format. Each metric is shown in a separate
column. The rows correspond to program scopes such as loops and routines. We can expand a particular
scope to understand the contribution of its inner scopes to the various metrics. The percentages visible
on the right side of each cell (see Figure 3) are added by the viewer and are computed column-wise.
They represent the contribution of a scope (and its children) to the total value of that metric corre-
sponding to the entire experiment. The percentages are useful to quickly assess that a particular routine
is responsible for 25% of the running time of an application, or that it accounts for 40% of the potential
for improvement. However, many times we are interested in the relationship between different metrics
for a particular scope. In such cases, we have to ignore the pre-computed percentages and compare the
absolute values displayed inside the cells on the same row.

The results in Figure 3 are sorted by instruction schedule cost. The execution times shown in the
figure do not include a memory penalty component. However, the list of top time consuming routines
predicted by MIAMI matches the list and the order of routines ranked by the actual execution time
measured with HPCToolkit and shown in Figure 2. Out of the three potential for improvement metrics
computed by MIAMI, the improvement potential from vectorization is by far the largest at 8.00e10
out of 1.13e11 total instruction schedule cost. These metrics indicate that most of the code could not
be auto vectorized by the compiler. While there is a large theoretical potential for improvement from
vectorization, transforming the code to provide enough data parallelism in inner loops and adjusting
the data layout so that the compiler can automatically vectorize a large fraction of the computation, is
not a small task by any measure.

However, one metric that stands out in Figure 3 is the count of micro-operations that perform
address arithmetic (metric AddrGen). At the entire program level, 9.32e10 out of 2.75e11 total retired
micro-operations, or roughly one out of three micro-operations performs address arithmetic. However,
when we look at the most time consuming routine, ocn time integrator split, we see that this
routine is responsible for 36.6% of all retired micro-operations, but it accounts for 72% of all address
arithmetic instructions. In fact, just about two out of every three micro-operations executed by this
routine perform address arithmetic.

Figure 4 provides a more detailed accounting of executed micro-operations broken down by func-
tionality. We use static opcode decoding and data flow analysis to classify micro-operations. The
figure includes the following metrics: the estimated instruction schedule time, the total number of re-
tired micro-operations, the number of micro-operations performing address arithmetic, the number of
micro-operations evaluating loop branch conditions, the number of scalar stack accesses, the number
of micro-operations performing floating point work, and the number of micro-operations performing
memory work. A few other categories are omitted for brevity.

1MIAMI micro-operations are very similar to x86 micro-operations, but the mapping is not necessarily 1-to-1

3



Figure 4: MIAMI performance results: breakdown of executed micro-operations by functionality.

We sorted the data by the number of address arithmetic micro-operations, and we expanded the
scopes to identify the loops that contribute the highest number of address arithmetic operations. Fig-
ure 4 shows the source code of one such loop located in file mpas ocn time integration split.F at
lines 562 - 587. There does not seem to be anything out of ordinary with this code, except the ex-
tensive use of objects of nested derived types and references to the inner components of such objects.
While the compiler should be able to hoist outside the loop most of the loop-invariant address arith-
metic code needed to access the inner components of these objects, our analysis shows that 57% of
the micro-operations executed by this loop perform address arithmetic. We manually transformed the
code to store pointers to the objects’ inner components outside the loop. Inside the loop, we are using
the pointers to reference the loop-dependent elements of each inner component. We verified that this
approach significantly reduced execution time for the transformed loop. Next, we applied the same
transformations to all the loops inside routine ocn time integrator split that were highlighted by
MIAMI as performing a disproportionately large number of address arithmetic operations.

Figure 5 shows side by side execution time profiles of the MPAS-Ocean code before and after our code
transformations. The times were collected using the integrated MPAS software timers on our testbed
machine. We used the 240km problem size, one MPI process, and 10 days of simulation. Figure 5a shows
the costs of the main simulation phases. The time integration step clearly dominates the execution time.
The transformed code achieves a 23% speedup in serial mode. Figure 5b shows the contribution of the
various time integration substeps. The data preparatory substep (timer se prep) and the barotropic
velocity prediction substep (timer se btr vel) benefit the most from our transformations.

Figure 6 presents a summary of the number and type of micro-operations executed by the MPAS code
and by the ocn time integrator split routine, before and after our transformations. The number
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(b) Time integration substeps

Figure 5: Execution time breakdown before and after optimizations.

	  	   Scope	   Re(redUOps	   AddrGen	   LoopCond	   StackTemp	   RegMove	   FpWork	   IntWork	   MemWork	  

Before	  
MPAS	  code	   2.75E+11	   9.32E+10	   2.49E+10	   2.11E+10	   8.49E+09	   4.67E+10	   1.67E+10	   5.60E+10	  
ocn_(me_integrator_split	   1.01E+11	   6.70E+10	   6.79E+09	   4.36E+09	   1.12E+09	   9.10E+09	   9.03E+08	   9.93E+09	  

A(er	  
MPAS	  code	   2.27E+11	   4.03E+10	   2.48E+10	   2.59E+10	   8.50E+09	   4.66E+10	   1.77E+10	   5.58E+10	  
ocn_(me_integrator_split	   5.28E+10	   1.40E+10	   6.68E+09	   9.16E+09	   1.13E+09	   9.08E+09	   2.03E+09	   9.83E+09	  

Figure 6: Number of executed micro-operations before and after our transformations.

of address arithmetic operations dropped by almost 80% for the time integrator routine, and by 57%
for the entire application. At the same time, we observe a more than doubling in the number of scalar
stack references for the transformed routine. Stack references correspond to scalar temporary variables
and spill / unspill code inserted by the compiler. By hoisting the bulk of the address arithmetic code
outside of loops, we increased the number of concurrent live ranges in the code, which makes the
register allocator’s job more difficult. However, overall, our transformations reduced the number of
micro-operations executed by the ocn time integrator split routine by 48%, which yields a 23%
speedup as mentioned earlier.

There are other likely opportunities for optimization of the MPAS code’s per-core performance.
However, clear understanding of these opportunities requires knowledge of the application and a careful
review of the performance results produced by MIAMI and other tools.
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