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High-Performance Bidiagonal Reduction using Tile Algorithms
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This article presents a new high-performance bidiagonal reduction (BRD) for homogeneous multicore ar-
chitectures. This article is an extension of the high-performance tridiagonal reduction implemented by the
same authors [Luszczek et al., IPDPS 2011] to the BRD case. The BRD is the first step toward computing the
singular value decomposition of a matrix, which is one of the most important algorithms in numerical linear
algebra due to its broad impact in computational science. The high performance of the BRD described in this
article comes from the combination of four important features: (1) tile algorithms with tile data layout, which
provide an efficient data representation in main memory; (2) a two-stage reduction approach that allows
to cast most of the computation during the first stage (reduction to band form) into calls to Level 3 BLAS
and reduces the memory traffic during the second stage (reduction from band to bidiagonal form) by using
high-performance kernels optimized for cache reuse; (3) a data dependence translation layer that maps the
general algorithm with column-major data layout into the tile data layout; and (4) a dynamic runtime system
that efficiently schedules the newly implemented kernels across the processing units and ensures that the
data dependencies are not violated. A detailed analysis is provided to understand the critical impact of the
tile size on the total execution time, which also corresponds to the matrix bandwidth size after the reduction
of the first stage. The performance results show a significant improvement over currently established alter-
natives. The new high-performance BRD achieves up to a 30-fold speedup on a 16-core Intel Xeon machine
with a 12000×12000 matrix size against the state-of-the-art open source and commercial numerical software
packages, namely LAPACK, compiled with optimized and multithreaded BLAS from MKL as well as Intel
MKL version 10.2.
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1. INTRODUCTION

The bidiagonal reduction (BRD) is an important first step when calculating the singular
value decomposition (SVD) of any rectangular dense matrix [Golub and Reinsch 1970;
Golub and Van Loan 1996, p. 257; Trefethen and Bau 1997, p. 25]:

A = U�V T A, � ∈ R
M×N,U ∈ R

M×M, V ∈ R
N×N,

where the diagonal matrix � contains the singular values and the U and V dense
orthogonal matrices are the corresponding left and right singular vectors, respectively.
The necessity for calculating SVDs emerges from various computational science areas
(e.g., in statistics where it is directly related to the principal component analysis method
[Hotelling 1933, 1935]; in signal processing and pattern recognition as an essential
filtering tool and in analysis control systems [Moore 1981]). Following the decomposi-
tional approach to matrix computation [Stewart 2000], we transform the dense matrix
A to an upper bidiagonal form B by applying successive distinct orthogonal transfor-
mations [Householder 1958] from the left (X) as well as from the right (Y ):

B = XT AY B, A ∈ R
M×N, X ∈ R

M×M, Y ∈ R
N×N.

This reduction step actually represents the most time-consuming phase when comput-
ing the singular values. Figure 1 shows the time breakdown between the main phases
of SVD calculations for various matrix sizes using LAPACK implementation from the
sequential Intel’s Math Kernel Library (MKL) version 10.2 on an Intel Xeon core based
on Core 2 architecture. The phases are: BRD (labeled Reduction), obtaining the sin-
gular values (labeled Divide and Conquer Iteration) and calculating the corresponding
singular vectors from the reduced form using either the dqds algorithm [Fernando and
Parlett 1994] (this method is labeled dqds Iteration) or using Cuppen’s divide-and-
conquer algorithm [Jessup and Sorensen 1994; Gu and Eisenstat 1995] (labeled Divide
and Conquer Backtransformation). Our primary focus is the BRD portion of the com-
putation, which can easily consume over 99% of the time needed to obtain the singular
values, and roughly 75% if singular vectors are additionally calculated (see Figure 1).
The QR iteration [Demmel and Kahan 1990; Deift et al. 1991] is no longer a method
of choice for singular vectors because it takes longer by roughly 50% of the time used
by faster methods. The QR method is now deprecated, but is still included in Figure 1
for comparison with the divide-and-conquer method. Because there are two methods in
Figure 1 the last set of timing bars extends beyond the 100% mark, and could be easily
dismissed if the reader is not interested in performance of the deprecated dqds method.
However, for completeness, we indicated the relative time spent in dqds iteration – the
timing bars are plotted above the 100% mark for each matrix size. As it was the case for
the divide and conquer method, the iteration phase quickly becomes negligible relative
to other phases.

With the emergence of multicore architectures, the state-of-the-art numerical li-
braries faced the problem of diminishing data bandwidth from the new memory design
characterized by small data caches associated with each core. The problem of adequate
performance has already been addressed in the PLASMA library [Dongarra 2010] in the
context of the one-sided factorizations (LU, QR/LQ, and Cholesky) for solving systems
of linear equations [Agullo et al. 2009] by redesigning the standard numerical methods
using tile algorithms and providing a flexible dynamic runtime system to address pro-
ductivity of the application development. More recently, the authors [Luszczek et al.
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Fig. 1. Breakdown of time between three stages of SVD computation: Reduction to bidiagonal form (BRD),
various Iteration methods to obtain singular values, and Backtransformation to obtain both sets of singular
vectors using LAPACK’s routine implementation from the sequential MKL 10.2 library on an Intel Xeon core
based on Core 2 architecture.

2011] implemented a very efficient two-stage tridiagonal reduction (TRD) approach for
dense symmetric matrices using tile algorithms on multicore architectures.

This article extends the authors’ previous work (one-sided factorizations and TRD) to
tackle the BRD case, which presents more challenges due to its increased algorithmic
complexity. The standard BRD algorithm interleaves the QR and LQ factorizations
and requires 8/3N3 floating-point operations for an N-by-N matrix: twice the cost of
the TRD algorithm. Following a two-stage approach, the matrix is transformed into a
band bidiagonal form with a bandwidth of size NB using compute intensive kernels,
introduced by Ltaief et al. [2010]. The band form is then further reduced to the required
bidiagonal form using a bulge-chasing procedure. This second stage requires the de-
velopment of new memory-aware computational kernels, which reduce memory traffic
and memory contention. A dependence translation layer (DTL) allows the mapping of
the access pattern (column major) of the bulge-chasing technique onto the tile layout,
and helps to define the appropriate data dependencies. The dynamic runtime system
called SMPSs [Perez et al. 2008; SMPSs Team 2008] enables scheduling and overlap-
ping tasks generated from both stages, while ensuring that the data dependencies are
not violated. Two-stage reduction algorithms for two-sided factorizations are not new
approaches, but have recently enjoyed rekindled interests in the community. For in-
stance, it has been used by Bischof et al. [2000] for TRD (SBR toolbox) and Kågström
et al. [2008] in the context of Hessenberg and triangular reductions for the generalized
eigenvalue problem for dense matrices. The tile bidiagonal reduction that was obtained
in this way considerably outperforms the state-of-the-art open-source and commercial
numerical libraries.

The bandwidth size of NB, which also corresponds to the tile size in our case, has a
critical impact on the overall performance of the BRD algorithm. It has to be adequately
chosen, possibly through an auto-tuning approach, so that the performance of either of
the stages is not negatively affected.
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The remainder of this document is organized as follows: Section 3 recalls the block
BRD algorithm as implemented in LAPACK [Anderson et al. 1999] and explains its
main deficiencies. Section 4 describes the implementation of the parallel tile BRD
algorithm using a two-stage approach. Section 5 outlines the dependence translation
layer (DTL). Section 6 has an overview of the different code kernels that are both
compute-intensive and memory-efficient. Section 7 presents the performance results.
A detailed analysis is provided to understand the critical impact of the bandwidth size
on the overall algorithm. Comparison tests are run on shared-memory architectures
against the state-of-the-art, high-performance dense linear algebra software libraries,
LAPACK [Anderson et al. 1999] (open-source package) and Intel MKL 10.2 [MKL
2011] (commercial package). Finally, Section 8 summarizes the results of this article
and presents the ongoing work.

2. RELATED WORK

Grosser and Lang [1999] describe an efficient parallel reduction to bidiagonal form by
splitting the standard algorithm in two stages, that is, dense to banded and banded to
bidiagonal, in the context of sparse linear algebra and distributed memory systems. The
QR and LQ factorizations are done using a tree approach, where multiple column/row
blocks can be reduced to triangular forms at the same time, which can ameliorate the
overall parallel performance. Those triangular blocks are then reduced without taking
into account their sparsity, which may add some extra flops. Our implementation also
uses two stages to obtain the bidiagonal form, but for dense matrices.

Ralha [2003] proposed a new approach for the bidiagonal reduction called one-sided
bidiagonalization. The main concept is to implicitly tridiagonalize the matrix AT A by
a one-sided orthogonal transformation of A, that is, F = AV . As a first step, the right
orthogonal transformation V is computed as a product of Householder reflectors. Then,
the left orthogonal transformation U and the bidiagonal matrix Bare computed using a
Gram-Schmidt QR factorization of the matrix F. This procedure has numerical stability
issues, and the matrix U may lose its orthogonality properties. In our implementation
we only use Householder reflectors to avoid potential problems with numerical stability
and at the same time we overcome the performance bottlenecks that this entails.

Barlow et al. [2005] and later, Bosner and Barlow [2007], further improved the
stability of the one-sided bidiagonalization technique by merging the two distinct steps
to compute the bidiagonal matrix B. The computation process of the left and right
orthogonal transformations is now interleaved. Within a single reduction step, their
algorithms simultaneously perform a block Gram-Schmidt QR factorization (using a
recurrence relation) and a postmultiplication of a block of Householder reflectors chosen
under a special criteria. Again, we refrain from using the Gram-Schmidt factorization in
our code, but we introduce interleaving in both stages by means of dynamic scheduling,
kernel splitting, and kernel prioritization.

3. THE LAPACK BLOCK BRD ALGORITHM

This section recalls the notion of block algorithms in LAPACK and describes, in partic-
ular, the block bidiagonal reduction (BRD).

3.1. Block Algorithms

LAPACK implements block algorithms to solve linear systems of equations as well as
eigenvalue problems and singular value decompositions. Block factorization algorithms
are characterized by two successive phases: panel factorization and update of the
trailing submatrix. During the panel factorization, the transformations are only applied
within the panel. The panel factorization is very rich in Level 2 BLAS operations
because the transformations are singly applied. Once accumulated within the panel,

ACM Transactions on Mathematical Software, Vol. 39, No. 3, Article 16, Publication date: April 2013.



High-Performance Bidiagonal Reduction using Tile Algorithms 16:5

F
IN

A
L PANEL

D
LA

B
R

D

OUTPUT

UPDATE
A := A - V*Y' - X*U'

Fig. 2. Panel-update sequence for the LAPACK BRD algorithm.

those transformations are applied to the rest of the matrix (the trailing submatrix) in
a blocked manner leading to Level 3 BLAS operations. While the update of the trailing
submatrix is compute-bound and very efficient, the panel factorization is memory-
bound and may appear to be a bottleneck for some numerical linear algebra algorithms.
Last but not least, the parallelism within LAPACK occurs only at the level of the BLAS
routines, which follows the expensive fork-join model. Basically, all processing units
need to synchronize before and after each call to BLAS kernels.

3.2. LAPACK BRD Algorithm

The BRD algorithm with the TRD and the Hessenberg reduction (HRD) are the three
two-sided factorizations. As opposed to one-sided factorizations (i.e., LU, Cholesky,
QR/LQ), the computed transformations are applied from the left as well as from the
right side of the matrix. In particular, Algorithm 1 and Figure 2 describe the LAPACK
BRD algorithm for a rectangular matrix of size M by N with a block size NB (for sim-
plicity, NB divides N). The panel factorization (DLABRD) of the block BRD algorithm
interleaves two transformations, that is, left and right Householder-based reductions.
The corresponding left and right reflectors are saved in the original matrix A in lieu
of the annihilated elements. The accumulation of the left and right transformations
(saved in two temporary storages X and Y) necessitates loading into memory the whole
unreduced part of the matrix at each single reduction step. The update of the trailing
submatrix is then straightforward. Two matrix-matrix multiplications are needed: one
to apply the accumulated transformations, X, using the left reflectors (V) and the other
one to apply the accumulated transformations, Y, using the right reflectors (U). While
the update phase is compute-bound, the panel reduction involves at most Level 2 BLAS
operations on large submatrices, which cannot be efficiently parallelized on currently
available multicore systems (due to θ (n2) floating-point operations (flops) performed
on θ (n2) floating-point data). The LAPACK BRD algorithm is thus characterized by
the presence of a sequential operation (the panel factorization, i.e., DLABRD), which
represents a small fraction of the total number of flops performed, (θ (n2) flops for a
total of θ (n3) flops), but limits the scalability of the block BRD reduction on a multi-
core system when parallelism is only exploited at the level of the BLAS routines. The
final computed diagonal and upper or lower diagonal elements are stored in D and E,
respectively.

Moreover, this sequence of Panel-Update in LAPACK has shown strong limitations
on multicore architectures. Indeed, the LAPACK framework is not capable of perform-
ing any look-ahead computations, where panel or update tasks from multiple steps can
significantly overlap. Although, in practice, look-ahead techniques would be algorith-
mically possible (e.g., for one-sided factorizations). On the other hand, for two-sided
transformations, and the BRD algorithm in particular, the one-stage approach for the
reduction to the bidiagonal form necessitates that the panel computational step be
atomic because it requires access to the entire trailing submatrix, which thus prevents
any look-ahead calculations. The next section describes the concept of tile algorithms
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Fig. 3. Translation from LAPACK layout (column-major) to tile data layout.

ALGORITHM 1: LAPACK Blocked Bidiagonal Reduction
for I = 1 to min(M, N) step NB do

→ {Panel Factorization phase: Reduce rows and columns I:I+NB-1 to bidiagonal form and
return the matrices X and Y, which are needed to update the unreduced part of the matrix}
DLABRD(M-I+1, N-I+1, NB,

A(I,I), LDA,
D(I), E(I),
X, LDX, Y, LDY)

→ {Update the trailing submatrix A(I+NB:N, I+NB:N) using an update of the form
A := A− V ∗ Y ′ − X ∗ U ′}
DGEMM( ‘NoTrans’, ‘Trans’,

M-I-NB+1, N-I-NB+1, NB, -ONE,
A( I+NB, I ), LDA,
Y, LDY, ONE,
A( I+NB, I+NB ), LDA )

DGEMM( ‘NoTrans’, ‘NoTrans’,
M-I-NB+1, N-I-NB+1, NB, -ONE,
X, LDX,
A( I, I+NB ), LDA, ONE,
A( I+NB, I+NB ), LDA )

end for

and explains how these new algorithms are able to supersede block algorithms, espe-
cially in the context of the BRD algorithm.

4. THE TWO-STAGE TILE BRD APPROACH

This section recalls the general principles of tile algorithms, as well as the idea behind
two-stage approaches, and describes how these core aspects lead to the tile two-stage
BRD algorithm.

4.1. Tile Algorithms

Tile algorithms [Buttari et al. 2006, 2008, 2009; Dongarra 2010] have already shown
promising results for the one-sided factorizations as compared to LAPACK and
vendor libraries on multicore architectures [Agullo et al. 2009]. The general idea is
to transform the original matrix to tile data layout (TDL) [Gustavson 2000] where
each data tile is contiguous in memory as in Figure 3. This may demand a complete
redesign of the standard numerical algorithm. The panel factorization as well as
the update of the trailing submatrix are then decomposed into several fine-grained
tasks, which fit the memory of the small core caches better. The parallelism is no
longer hidden inside the BLAS routines, but rather is brought to the fore. The whole
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computation can then be represented with a directed acyclic graph (DAG), where
nodes are computational tasks and edges represent the data dependencies among
them. Next, it becomes critical to efficiently schedule the sequential fine-grained
tasks across the processing units. A dynamic runtime environment system is used to
distribute the tasks as soon as the data dependencies are satisfied.

Ltaief et al. [2010] had previously attempted to apply the tile algorithm principles to
the BRD algorithm. Although high performance results were attained, the bidiagonal
reduction was not complete, and only a partial reduction to band bidiagonal was
feasible, which is impractical because the full reduction needs to be achieved in order
to calculate the singular value decomposition. They have implemented new optimized
kernels, which dramatically decrease the overhead of the panel factorization. Indeed,
the standard BRD algorithm has been redesigned so that the panel factorization
phases now involve only input/output data from the local corresponding tiles (and not
from the entire unreduced matrix). More details can be found in Section IV C in Ltaief
et al. [2010]. However, the obtained band bidiagonal form needs to be further reduced
by using the bulge-chasing technique, which is explained in the following section.

4.2. Two-Stage Approach

Two-stage approaches have recently proven to be an interesting solution in achiev-
ing high performance in the context of two-sided reductions [Bischof et al. 2000;
Kågström et al. 2008; Luszczek et al. 2011]. The first stage consists in reducing the
original matrix to band form. The overhead of the Level 2 BLAS operations dramat-
ically decreases, and most of the computation is performed in Level 3 BLAS, which
makes this stage run closer to the theoretical peak of the machine. This stage is actu-
ally so compute-intensive that Bientinesi et al. [2010] proposed to completely offload
it to GPU accelerators to further benefit from the underlying hardware. The second
stage further reduces the band matrix to the corresponding compact form. A bulge-
chasing procedure using orthogonal transformations annihilates the off-subdiagonal
elements columnwise and the off-supdiagonal elements rowwise and hunts down the
fill-in elements to the bottom, right corner of the matrix. Originally implemented for
TRD [Bischof et al. 2000], this technique has been extended for the BRD algorithm.
Figure 4 depicts the execution breakdown of chasing the first column (black elements)
on a band bidiagonal matrix of size N = 16 and NB = 4 with column-major data layout
(CDL). The red and green rectangles show the left and right transformations, respec-
tively. The dashed elements are the final elements of the bidiagonal structure of the
matrix. The dark grey elements represent the fill-in elements left after this first sweep.
They will eventually fade out thanks to the subsequent sweeps. It is noteworthy that
the introduced bulges are partially destroyed (in fact, only a single column/row per
left/right transformations, respectively). If the bulges were destroyed in their entirety
instead, the total number of operations would increase and the subsequent sweeps
would reintroduce them anew anyway. By only eliminating the necessary parts of the
bulges within one sweep, we allow the following sweeps to naturally chase down the
leftover bulges. Finally, it may be readily observed that the whole narrow band struc-
ture of the matrix has to be traversed in order to annihilate a single column. Each
sweep is very low in terms of floating-point operations and involves only small regions
around the diagonal. Therefore, the standard bulge-chasing procedure is completely
memory-bound, which renders it practically sequential. Although successive sweeps
could potentially be pipelined, it might seriously increase the memory bus traffic, as
each sweep would be working on different memory regions of the matrix and will not
be able to forward the data between the cores’ caches. A careful implementation is then
paramount to make sure the loaded data into the cores’ caches will be reused between
subsequent sweeps (See Section 6.3).
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(a) Starting point: band
bidiagonal matrix in CDL
format.

(b) First column annihi-
lation.

(c) Bulge creation: start-
ing to partially chase it.

(d) Chasing it with the
left and right transfor-
mations.

(e) Chasing it further
down.

(f) Reaching the bottom
right corner of the ma-
trix.

(g) Final matrix after the
first sweep: the original
matrix has lost its band
shape.

Fig. 4. Execution breakdown of the bulge-chasing procedure on a band bidiagonal matrix of size N = 16 and
NB = 4 with column-major data layout (CDL) after the first column annihilation (black elements). The red
and green rectangles show the left and right transformations, respectively. The dark grey elements represent
the fill-in elements, which eventually need to be chased down to the bottom right corner of the matrix. The
dashed elements are the final elements of the bidiagonal structure of the matrix.

4.3. Tile Two-Stage BRD Algorithm

The goal of this two-stage tile BRD algorithm presented in this article is to incorporate
the strengths of both tile algorithms and the two-stage approach in order to build an
efficient framework for reducing a matrix to bidiagonal form.

Implementing the first stage using tile algorithms has already been implemented
in Ltaief et al. [2010]. Figure 5 recalls how the band bidiagonal structure is obtained
from a 4-by-4 tile matrix. The matrix is reduced to band form by interleaving LQ
(right transformations) and QR (left transformations) factorizations. The light gray
tiles correspond to transient data, which still need to be reduced. The black and dark
gray tiles are being reduced and the dashed tiles are final data tiles. Figures 5(a)
and 5(b) only show the last row/column tile annihilation occurring during the right/left
reductions of the first step, respectively. Figures 5(c), 5(d), 5(e), and 5(f) represent
the partial right/left reduction updates (in dark gray color) of the second/third step,
triggered by the annihilation of the corresponding tiles (in black color). Figure 5(g)
zeroes out the last tile (fourth step) and Figure 5(h) highlights the final band bidiagonal
form. All in all, four interleaved LQ/QR factorization steps are needed to achieve the
band bidiagonal form. The authors refer to the paper by Ltaief et al. [2010] for more
detailed information.

The bulge-chasing algorithm from the second stage poses its own set of challenges
that mostly reside in bridging the disparity of data layouts: TDL from the tile algorithm
of the first stage and CDL for the bulge-chasing. Figure 6 shows the extent of this dis-
parity. The bulge-chasing procedure on the tile matrix creates bulges, which could span
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(a) Right Reduction
Step 1.

(b) Left Reduction Step
1.

(c) Right Reduction
Step 2.

(d) Left Reduction Step
2.

(e) Right Reduction
Step3.

(f) Left Reduction Step
3.

(g) Right Reduction
Step4.

(h) Final Band Bidiago-
nal.

Fig. 5. First stage: Reduction to band bidiagonal form applied on a 4x4 tile matrix.

over multiple tiles, and therefore they are no longer contiguous in memory. Obviously,
special computational kernels need to be implemented to handle the various cases,
depending on the number of tiles involved in the particular task. The new kernels take
care of the computational aspect while a layer of abstraction handles the adaptation of
the bulge-chasing algorithm’s CDL-based formulation to the underlying TDL format.
This abstraction layer is important for the two-stage tile BRD algorithm, as it unifies
the layout format across both stages and thus avoids costly data reorganization during
the process.

The next section describes the data dependence translation layer in the context of
the BRD algorithm.

5. DEPENDENCE TRANSLATION LAYER

To reiterate the premise explained in the previous sections: the first stage (band re-
duction) of the BRD reduction fits well with the tile data layout, while the second
stage (reduction from band to bidiagonal form) does not. The main reason for the mis-
match is the misalignment of algorithmic tiles and storage tiles. The former operates at
increments of a tile, and thus can easily be made to match the storage tiles. The latter,
on the other hand, works in one column increments, as each column is annihilated by
a similarity transformation, and this results in algorithmic tiles spanning one, two or
four storage tiles. The four-tile case is shown in Figure 7 where the misaligned tile
spans four storage tiles. The translation layer (DTL) we have devised provides a con-
nection between the data access originating from the algorithmic formulation and the
memory storage scheme. The abstraction provided by DTL affords the programmer the
flexibility of working with a column-major layout, while the data dependences between
computational tasks are appropriately propagated to the dynamic scheduling module
as though they were specified for tile storage.

Furthermore, DTL is essential in that it provides the necessary information to the
runtime system that allows for overlapping of tasks from both stages. The translation
layer supplies the data dependences from the second stage in terms of data used in
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(a) Starting point: band
bidiagonal matrix in TDL
format.

(b) First column anni-
hilation spanning across
two tiles.

(c) Bulge creation: start-
ing to partially chase it.
The new bulges span over
four tiles.

(d) Chasing it with left
and right tile transforma-
tions.

(e) Chasing it further
down.

(f) Reaching the bottom
right corner of the ma-
trix. The left transforma-
tion span over two tiles
while the right transfor-
mation involves only a
single tile.

(g) Final tile matrix af-
ter the first column an-
nihilation: the tile band
structure is restored.

Fig. 6. Execution breakdown of the bulge-chasing procedure on a band bidiagonal matrix of size N = 16 and
NB = 4 with tile data layout (TDL) after the first column annihilation (black elements). The red and green
rectangles show the left and right transformations, respectively. The dark grey elements represent the fill-in
elements, which eventually need to be chased down to the bottom right corner of the matrix. The dashed
elements are the final elements of the bidiagonal structure of the matrix.

Fig. 7. An access to a misaligned tile is broken down by DTL into four subtiles.

the first stage which allows the runtime to begin scheduling the second stage tasks as
soon as a sufficient portion of the first-stage work has finished. This is readily visible in
Figure 8 that shows a DAG for reduction of a 6-by-6 matrix with tile size 2. The second-
stage tasks (marked in shades of gray) may already be scheduled when less than half
of the first stage is done in step 5. The figure shows the tasks ordered in minimum
number of steps without violating intertask data dependencies—this represents an
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Fig. 8. Optimally scheduled DAG (19 steps) for bidiagonal reduction with the first-stage nodes marked with
white and the second with shades of gray (the clean1 and clean2 nodes introduce zeros in some tiles to ensure
correct result while using standard kernels). A number next to each node’s name represents the order of
submission of tasks to runtime scheduling.

optimal schedule that may not always be achieved at runtime due to the heuristic
scheduling algorithm.

The operation of DTL may be explained by Figure 7, where the algorithmic tile spans
four storage tiles. The flexibility of DTL allows specification of accesses to the matrix
by using column-based storage. DTL intercepts these accesses, but first it determines
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which tiles are affected. Depending on the number of tiles, DTL then selects either
the 1-tile kernel, 2-tile kernel, or a 4-tile kernel. Consequently, DTL may also be
regarded as a dispatch layer that selects the proper variant of the computational kernel.
Our formulation of bulge-chasing guarantees that there are only four possible kernel
choices. Once the kernel is selected, it is then submitted to the runtime scheduling
module for execution. To keep the data dependences satisfied, the submitted task
requests exclusive access to the appropriate number of tiles: 4 tiles in the case of the
scenario from Figure 7.

To summarize, the main purpose of DTL (or a “kernel variant selection layer”) is to
determine how the input and output data interact between the data layouts and then
to choose an appropriate variant of the computational kernel. The need for DTL arises
from the disparity of data access patterns between the column-oriented bulge-chasing
procedure and tile-oriented storage layout.

The next section gives a detailed overview of the high-performance computational
kernels.

6. HIGH-PERFORMANCE KERNEL DESCRIPTIONS

This section recalls the computational kernels involved in the first stage and presents
the newly developed kernels for the second stage in the context of the two-stage tile
BRD algorithm.

6.1. General Kernel Descriptions

All kernels are written in standard C and are composed of successive calls to BLAS
routines. The kernels from the first stage are mostly Level 3 BLAS and those from the
second stage are based on Level 1 and 2 BLAS. As implemented in LAPACK, these
kernels rely on orthogonal transformations using Householder reflectors. Orthogonal
transformations are an accepted technique that is commonly used for two-sided re-
ductions because they guarantee numerical stability, as opposed to less computation-
ally expensive elementary transformations, similar to that used in Gaussian elimina-
tion [Trefethen and Bau 1997]. Also, as explained in Section 4.1, the partitioning of the
panel engenders the orthogonal transformation to be incremental rather than direct,
as would happen with block algorithms.

6.2. Compute-Bound Kernels from the First Stage

The kernels described in this section have already been introduced and implemented
in Section III A of Ltaief et al. [2010]. Therefore, the purpose of this section is only
to make the article self-contained. This stage basically interleaves the QR and LQ
factorizations at each step. There are six compute-intensive kernels overall.

—DGEQRT/DGELQT perform, respectively, a QR and an LQ factorizations of a single
tile.

—DTSQRT/DTSLQT compute a QR and an LQ factorizations by combining a triangular
tile (upper if QR, lower if LQ) with a corresponding full square tile. DTSQRT and
DTSLQT are shown in Figure 5(a) and Figure 5(b), respectively.

—DORMQR/DORMLQ apply the orthogonal transformations computed from DGE-
QRT/DGELQT to the left/right sides, respectively, of the trailing submatrix.

—DTSMQR/DTSMLQ apply the orthogonal transformations computed from DT-
SQRT/DTSLQT to the left/right sides, respectively, of the trailing submatrix. The
left and right applications from DTSMQR/DTSMLQ are laid out, respectively, in
Figure 5(c) and Figure 5(d) (the black and dark grey data tiles).

Note that no extra storage is needed to save the Householder reflectors generated from
the QR and LQ factorizations. Extra storage is only required to save the triangular

ACM Transactions on Mathematical Software, Vol. 39, No. 3, Article 16, Publication date: April 2013.



High-Performance Bidiagonal Reduction using Tile Algorithms 16:13

Fig. 9. Second stage: graphical representation of portions of the matrix accessed by the consecutive tasks.
The yellow lines represent division of the matrix into individual entries, and the long black lines delineate
matrix tiles in the first stage of the tridiagonal reduction and submatrices accessed in the second stage. The
red tasks represent the DTSQR2 kernel; the brown tasks identify the DTSLQ3 kernel; the green tasks show
the DTSQR3 kernels; and finally, the blue tasks are the DLARFX kernels.

factor T of the block reflectors computed from both factorizations, in order to apply
them at once in the trailing submatrix.

6.3. Memory-Bound Kernels from the Second Stage

This second stage is clearly memory-bound, and the new kernels need to take this
delicate property into account. There are four kernels overall. Figure 9 shows the
execution breakdown of the bulge-chasing procedure for four complete sweeps on a
4-by-4 tile matrix. The figure represents the name of the consecutive tasks along with
the reduction step (from 0 to 3) and the corresponding portions of the accessed matrix.
Moreover, there are different cases to consider, depending on the region characteristic
of the tile matrix being updated (more precisely, the region can span over one, two, or
four tiles), and for each case, a particular instance of one of the three general kernels
is required. In other words, the higher-level kernel needs to handle the diverse case in
a comprehensive manner. Following are some details about the new kernels.

—DTSQR2 (red in Figure 9) is used to annihilate a single column that can only fit on
one or two tiles.

—DTSLQ3 (brown in Figure 9) applies the reflectors computed in DTSQR2 to a di-
agonal block from the left. Then, it reduces the first row of the introduced bulge
and immediately applies the corresponding reflectors on the right of the rest of the
diagonal tile. The block being affected can span over one, two, or four neighboring
tiles, as shown in the execution breakdown in Figure 9.

—DTSQR3 (green in Figure 9) applies the reflectors calculated in DTSLQ3 from the
right. It then annihilates the first column of the created bulge and applies those
freshly created reflectors to the left within the block. Here, the block being affected
can span over one, two, or four neighbored tiles.

—DLARFX (cyan in Figure 9) applies the reflectors computed from DTSLQ3 to the
right, and it always spans across two tiles.
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The bulge-chasing procedure necessitates extra storage to save the generated House-
holder reflectors from the different bulges, especially if the calculation of the singular
vectors is required. Furthermore, since those kernels are called extensively, the whole
performance of the second stage relies heavily on an efficient implementation of those
routines. All the functions called within the kernels have been inlined up to the level
of the BLAS routines. Thus, being memory-bound gives a certain flexibility to reorder
and to reorganize the successive computational steps within those kernels in order to
optimize for cache reuse and data locality. Last but not least, the tile bulge-chasing
procedure increases the DAG’s critical path and makes it much more complex with
lots of data dependencies spanning both stages and a number of nodes/tasks growing
quadratically with the matrix size.

6.4. Algorithmic Complexity

Considering the original dense matrix square, the algorithmic complexity of the stan-
dard BRD is 8/3N3 with N the matrix size. The number of first-stage flops in our tile
two-stage BRD is 8/3 N × (N − NB) × (N − NB), since the reduction is only achieved
up to the band form. The second stage chases the fill-in elements created by the an-
nihilation of the extra entries during the N sweeps. Each sweep calls the kernels at
most 2 × N/NB times, and 2 × NB2 flops are performed for each kernel. After removing
the lower order terms, the number of flops during the bulge-chasing procedure is then
∼ N × 2 × N/NB × 2 × NB2 = 4 × N2 × NB. Therefore, the overall algorithmic complexity
of our tile two-stage BRD is roughly the same as the standard BRD.

The next section presents some performance results of the overall two-stage tile
BRD algorithm using the high-performance kernels described above. The DTL frame
works in association with the dynamic runtime system called SMPSs that is capable
of scheduling tasks from both stages simultaneously across the cores of homogeneous
multicore architectures as long as data dependences are not violated.

7. PERFORMANCE ANALYSIS AND EXPERIMENTS

This section highlights the parallel performance results achieved by the two-stage tile
BRD algorithm. A detailed analysis on the impact of the tile size NB on the overall
framework is also discussed.

7.1. Experimental Environment

The experiments were conducted on a 16-core machine based on an Intel Xeon EMT64
E7340 processor operating at 2.4 GHz. The theoretical peak is equal to 9.6 Gflop/s per
core or 153.2 Gflop/s for the whole quad-core quad-socket board. There are two levels of
cache. The Level 1 cache, local to each core, is divided into 32 KiB of instruction cache
and 32 KiB of data cache. Each quad-core processor is composed of two dual-core Core2
architectures, the Level 2 cache has 2 × 4 MB per socket (each dual-core shares 4 MB).
The effective bus speed is 1066 MHz per socket leading to a bandwidth of 8.5 GB/s
(per socket). The machine is running Linux 2.6.25 and provides Intel Compilers 11.0
together with the Intel MKL 10.2 vendor library. All the experiments presented below
focus on asymptotic performance and were conducted on the maximum amount of
cores available on the machine, that is, 16 cores. The two-stage tile BRD algorithm is
compared against the equivalent BRD function from the state-of-the-art open-source
and commercial numerical libraries that is, LAPACK 3.2 linked with optimized MKL
BLAS and Intel MKL V10.2, respectively.

7.2. The Dynamic Runtime System

SMP Superscalar (SMPSs) [Perez et al. 2008; SMPSs Team 2008] is a parallel program-
ming framework developed at the Barcelona Supercomputer Center (Centro Nacional
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de Supercomputación). SMPSs is aimed at “standard” (x86 and like) multicore pro-
cessors and symmetric multiprocessor systems. The programmer is responsible for
identifying parallel tasks, which have to be side-effect-free (atomic) functions. Addi-
tionally, the programmer needs to specify the directionality of each parameter (input,
output, inout). However, the programmer is not responsible for exposing the structure
of the task graph. The task graph is built automatically, based on the information in
task parameters and their directionality. The programming environment consists of a
source-to-source compiler and a supporting runtime library. The compiler translates C
code with pragma annotations to standard C99 code with calls to the supporting run-
time library and compiles it using the platform native compiler (Fortran codes are also
supported). At runtime the main thread creates worker threads, as many as necessary
to fully utilize the system, and starts constructing the task graph (populating its ready
list). Furthermore, the SMPSs scheduler attempts to exploit locality by scheduling
dependent tasks to the same thread, such that output data is reused immediately.

7.3. Modeling Performance with Respect to Tile Size

In order to better understand the behavior of our implementation and how it changes
with various matrix and tile sizes, we created a performance model without taking into
account intertask dependences, as we assume, for simplicity, perfect scalability of the
first stage and bounded scalability for the second one. There are two components in the
model:

(1) computation time (tx), which encompasses the floating-point operations performed
within each task inside the computation kernel routines; and

(2) communication time (tc), which covers the combined latency of fetching the first
cache line of a matrix tile and the runtime scheduler overhead, in addition to the
time it takes to communicate the rest of the tile from the main memory to the cache
memory close to the computing core.

For a N by N matrix with a tile size NB, time to completion t(N, NB) for both stages of
the reduction is

t(N, NB) = tx(N, NB) + tc(N, NB).

Assuming that α represents the execution rate of floating-point operations, β—
bandwidth to the main memory, and γ —latency to the main memory, in the first stage,
the individual components of running time are (lower-order terms are omitted for the
sake of simplicity of exposition):

tx(N, NB) = 1
α

×
(

N
NB

)3

︸ ︷︷ ︸
number of tasks

×
number of flops per task︷︸︸︷

NB3 = 1
α

× N3

and

tc(N, NB) =

number of tasks︷ ︸︸ ︷(
N

NB

)3

×
⎛
⎝ 1

β
× NB2︸︷︷︸

items to transfer

+
latency︷︸︸︷

γ

⎞
⎠

= N3 ×
(

1
β × NB

+ γ

NB3

)
.
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Similarly for the second stage:

tx(N, NB) = 1
α

× N︸︷︷︸
No. of columns

×

number of bulges︷︸︸︷
N

NB
× NB2︸︷︷︸

number of flops

= 1
α

× N2 × NB

and

tc(N, NB) = N︸︷︷︸
columns

×

number of bulges︷︸︸︷
N

NB
×

⎛
⎝ 1

β
× NB2︸︷︷︸

items to transfer

+
latency︷︸︸︷

γ

⎞
⎠

= N2 ×
(

NB
β

+ γ

NB

)
.

The model clearly indicates that we should expect a drastically different behavior
for the first and second stages of the reduction. The first stage benefits from larger tile
sizes because the total time decreases for increasing tile size NB. The second stage, on
the other hand, needs a particular tile size to achieve an optimal behavior because the
communication component of the second stage is a rational function of the form NB/β +
γ/NB with a local minimum at

√
βγ . In other words, the bandwidth demand increases

with the increase in width of the matrix band NB, but the effect of latency diminishes
with the width because fewer kernels are invoked that need to bear the main memory
latency and the scheduler overhead. To apply the model in a more concrete setting, we
could assume the memory bandwidth β to be approximately 40 GB/s (a common value
for both AMD and Intel chipsets) [Hennessy and Patterson 2012, p. 96] and the latency
for most DRAM modules is about 500 cycles with 3 GHz clock frequency [Hennessy

and Patterson 2012, p. 112]. This yields NBoptimal =
√

40 × 109 ∗ 500
3×109 ≈ 80. In the next

section, we turn to experiment to investigate this phenomenon further and obtain a
similar optimal NB value from actual runs.

7.4. Tuning the Tile Size Experimentally

Out of the many tunable parameters available for tuning in the BRD code, the tile size
NB stands out as the most critical for achieving optimal performance. It determines
both the number of tasks and their granularity, and is difficult to tune optimally even for
one-sided matrix factorizations [Agullo et al. 2009]. In BRD, a two-sided factorization,
with the two-stage approach that we employ, there exists a natural tension between the
stages which affects the choice of NB. The computational kernels from the first stage
benefit greatly from coarse task granularity, which allows them to run closer to their
sequential kernel peak performance. This follows from the compute-intensive nature of
the kernels. On the contrary, the kernels of the second stage are mostly memory-bound
and rely on data locality to achieve acceptable performance. Therefore, these kernels
depend on data reuse and minimization of data being loaded from memory. This is most
commonly achieved by a proper arrangement of data access patterns, which in our case
can be achieved by memory-friendly scheduling (the runtime scheduler attempts to
retain tasks on a single core as long as it helps with data locality) of tasks and having
a small NB so that all of the tile data can be retained at the highest level of cache.

Figure 10 shows the impact of NB on the overall performance of the two-stage BRD
with various matrix sizes. For small matrix sizes, that is, 4000 and 6000, the elapsed
time increases with the tile size NB. However, for larger matrix sizes, that is, 8000 and
10000, the results are not so straightforward. The elapsed time of the second stage is
substantially shorter for tile size NB = 50 than for NB = 100, and even for NB = 200
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(b) N = 6000.
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(c) N = 8000.
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Fig. 10. Impact of NB on the elapsed time (in seconds) of the two-stage BRD for different matrix sizes.

when the matrix size is 10000. Therefore, our simple assumption made above that a
small tile size will benefit the second stage is incorrect, and has to be closely examined
for a given matrix size. Intuitively, a large matrix size N and a small tile size NB
result in an increased number of data requests to the main memory. On the other
hand, performance of the first stage deteriorates as expected for small tile size NB = 50
and is virtually constant for NB = 100 and NB = 200. These simple analyses and
experiments lead us to believe that a good default value for a tile size is 100, and this
is what we chose for the large-scale experiments. We also backed this choice with a
series of performance analysis experiments, as shown below.

Figure 11 shows a detailed study of how the tile size influences the time to run the
first and second stages of BRD as well as both stages simultaneously. The matrix size
was set to 5040 because this allows us to have over 30 different NB values smaller
than 200 (number 5040 has over 30 divisors due to its set of prime factors). The figure
clearly indicates the predicted behavior for the first stage as the performance depends
proportionally on the tile size. The larger the tile size, the better the performance of
the computational kernel. However, the performance of the second stage exhibits a
less obvious trend, that is, having a local minimum at 60. Departure from this value
causes deterioration in performance. Accordingly, the cumulative performance of both
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Fig. 11. Running time for first, second, and both stages for various tile sizes NB for matrix size 5040.

Table I. Time Breakdown Among Reduction Stages for Various Matrix
Sizes and Potential Improvement if the Tile Size was Chosen

Independently

Shortest running time
N 1st stage 2nd stage Sum Actual Improvement

[seconds] [seconds] [%]
2520 0.9 2.3 3.2 3.6 10.8%
4000 2.6 5.7 8.3 10.0 16.9%
5040 4.4 8.8 13.2 15.2 12.8%
7560 13.7 21.4 35.0 38.0 7.7%
9240 23.6 32.9 56.5 61.3 8.0%

stages has a similar property. To investigate this further, we chose additional matrix
sizes that allow for a wide range of tile sizes and noted the combined performance for
both stages. Figure 12 summarizes the results. Two observations are in order. First,
for all matrix sizes there exists a locally optimal tile size. Second, an optimal tile size
for one matrix size is not optimal for a different matrix size. The former observation
makes a case for an autotunig method to be used to choose the optimal tile size [Agullo
et al. 2010]. The latter observation raises a question of whether choosing an optimal
tile size for each stage independently would benefit performance. Table I attempts to
answer this question. The tabulated data shows stage-independent minimums (in the
column marked “Sum”) and the minimum of the total time. The stage-independent
numbers are purely theoretical, as both stages have to share the same tile size. But
in our opinion, it is still instructive to perform this “what-if” experiment. The column
labeled “Improvement” shows the potential improvement in running time. It turns out
that the improvement is not large (at most 17%) and decreases with the matrix size. In
other words, choosing the minimum time from both stages is at most 17% faster than
choosing the minimum sum.

7.5. Analysis of Algorithmic Variants

The two most common renditions for numerical linear algebra kernels are right- and
left-looking [Anderson and Dongarra 1990; Dackland et al. 1992; Yi et al. 2004]. The
former is a preferred option when the amount of available parallelism is the limiting
factor [Blackford et al. 1997; Choi et al. 1996]. The latter, on the other hand, has
much better locality characteristics, especially with respect to write operations, and
is the preferred option for out-of-core codes [D’Azevedo and Luszczek 2003]. One of
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the consequences of using dynamic DAG scheduling is the loss of fine-grain control
in the exact ordering of computations [Haidar et al. 2011]. Despite this loss, we still
attempted to investigate the influence of the algorithmic formulation by changing the
order in which tasks are submitted to the runtime DAG scheduler. This is a crude
approximation of either of the two popular variants, but the performance results still
gave us an indication of which is the more important trait in our code: parallelism or
locality. It turns out that the former is more desirable, as the right-looking variant
consistently outperformed the latter, albeit by a small margin.

7.6. Experimental Results

This section presents the performance results of the overall two-stage BRD algorithm.
Figure 13 compares our algorithm (labeled PLASMA with SMPSs scheduler) with
the state-of-the-art open-source and commercial numerical libraries that is, multi-
threaded LAPACK compiled with optimized MKL BLAS and Intel MKL version 10.2,
respectively. It is surprising to see the same curve behaviors for both packages. The
performance of both libraries goes up for small matrix sizes but then it just dies off
considerably and does not scale while the matrix size increases. Our two-stage BRD
approach starts to go beyond both numerical packages at the crossover point N = 1500
and outperforms them by far for large matrix sizes reaching up to a 30-fold speed-up
on a 12000 × 12000 matrix size.

8. SUMMARY

This article focuses on a new high-performance two-stage tile bidiagonal reduc-
tion (BRD) on homogeneous multicore architectures. Using a two-stage approach
on top of tile data layout, the original matrix is first reduced to band form using
high-performance compute-intensive kernels and then further reduced to the final con-
densed form with efficient memory-optimized kernels. A data-dependence translation
layer allows us to merge the directed acyclic graphs of tasks from both stages and re-
moves the unnecessary in-between synchronization step. The dynamic runtime system,
SMPSs, can then safely schedule the different computational tasks across the process-
ing units and ensure that the data dependences are not violated. In the end, tuning the
tile size is important to get the best performance from the two-stage BRD. A brute-force
mechanism allows the retrieval of an optimal tile size NB depending on the problem
size N. We achieved performance results that exceed those available from any alterna-
tive implementation we know. The new high-performance two-stage tile BRD achieves
up to 30-fold speed-up on a 16 core Intel Xeon machine with a 12000 × 12000 matrix
size against the state-of-the-art open source and commercial numerical softwares that
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Fig. 13. Performance comparison of the tile two-stage BRD algorithm against Intel MKL version 10.2 and
LAPACK 3.2 xGEBRD.

is, multithreaded LAPACK compiled with optimized MKL BLAS and Intel MKL V10.2
(2.5 Gflop/s for both), respectively. Last but not least, it is noteworthy that the overall
performance of the two-stage tile BRD algorithm is 40 Gflop/s, and it represents only a
small portion of the theoretical peak of the machine, roughly 25%. This level of overall
performance exceeds with memory-bound codes (exemplified here by both LAPACK
and MKL), even though the second stage of our implementation is memory-bound.

One of the future projects in this direction will be the calculation of the singular vec-
tors. For that, the orthogonal transformations from both stages need to be accumulated
into U (left transformations) and V (right transformations). While the accumulation
of the reflectors from the first stage is straightforward and can be implemented very
efficiently, the second stage is far from being trivial. Indeed, the reflectors created in
the first stage can be efficiently accumulated because they are created within a tile
all at once. In the second stage, each sweep generates many single reflectors which
most of the time span across two tiles, and therefore need to be broken into two subre-
flectors. Similarly to the first stage, the order of their generations has to be respected
during the accumulation step (if singular vectors are required) for numerical correct-
ness purposes. All in all, the exercise of aggregating the multiple short subreflectors
during the second stage appears to be challenging compared to the first stage, besides
the actual extra flops involved in this procedure compared to the one-stage approach
(adding an O(n3) term in the overall complexity of the algorithm). This is still an open
research problem, and the authors are currently looking into removing this bottleneck.
Finally, the authors are also investigating how this work can be extended to distributed
environment systems within the DPLASMA framework [Bosilca et al. 2011].
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