
Virtual Systolic Array for QR Decomposition

Jakub Kurzak, Piotr Luszczek,
Mark Gates, Ichitaro Yamazaki

University of Tennessee
Knoxville, TN 37996, USA

{kurzak, luszczek, mgates3, iyamazak}@eecs.utk.edu

Jack Dongarra

University of Tennessee, Knoxville, TN 37996, USA
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

University of Manchester, Manchester, M13 9PL, UK
dongarra@eecs.utk.edu

Abstract—Systolic arrays offer a very attractive, data-
centric, execution model as an alternative to the von Neumann
architecture. Hardware implementations of systolic arrays
turned out not to be viable solutions in the past. This article
shows how the systolic design principles can be applied to
a software solution to deliver an algorithm with unprece-
dented strong scaling capabilities. Systolic array for the QR
decomposition is developed and a virtualization layer is used
for mapping of the algorithm to a large distributed memory
system. Strong scaling properties are discovered, superior to
existing solutions.

Keywords-systolic array; QR decomposition; multi-core;
message passing; dataflow programming; roofline model;

I. INTRODUCTION

Systolic architectures targeting hardware implementations

were haunted by an array of problems. They were con-

structed for a specific problem size, which in linear algebra

meant the size of a dense matrix or the bandwidth of a band

matrix. This put the feasibility of manufacturing them in

silicon in question. They operated at the granularity of a

single floating-point number, i.e., a single matrix element,

which prevented them from achieving high efficiency. Fi-

nally, in many cases, they could offer high throughput, but

suffered from high latency, e.g., they could maintain high

utilization for a series of dense matrix factorizations, but

were affected by high load imbalance for a single one. A

software implementation of a systolic algorithm allows for

solving virtually all of these problems.

In dense linear algebra, the level of granularity can

easily be brought up by replacing operations on individual

matrix elements with operations on matrix tiles, i.e., square

submatrices of relatively small size compared to the size of

the matrix. This mitigates the communication overhead by

leveraging the surface to volume effect, i.e., the fact that a

tile operation involves O(n3) floating point operations on

O(n2) data.

Two simple mechanisms allow for resolving the problem

of load imbalance. A virtualization layer can be used for

flexible mapping of multiple systolic processing units to each

physical hardware core. A data bypass mechanism can be

used to speed up propagation of read-only data along one

of the systolic array dimensions.

The following sections start with the motivation for seek-

ing an algorithm with strong scaling properties, and move on

to general background on systolic arrays and the QR decom-

position. Then the systolic array for the QR decomposition

is presented and its software implementation is described.

Performance results are provided, along with comparisons

against state-of-the-art software, which are followed with

the discussion.

II. MOTIVATION FOR STRONG SCALING

Dense linear algebra software has traditionally been fo-

cused on asymptotic scaling or weak scaling. Asymptotic

scaling describes how the solution time varies with the

problem size for a fixed number of cores. Weak scaling

describes how the solution time varies with the number

of cores for a fixed problem size per core. Delivering

good asymptotic scaling or weak scaling has been the main

objective of legacy software packages, such as LAPACK [1]

and ScaLAPACK [2]. Meeting this objective relies on the

capability of growing the total problem size.

Current developments in microprocessor technology are

marked by the continuation of Moore’s law [3] and the

demise of Dennard’s scaling laws [4]. While the numbers

of transistors are still increasing, the clock rates have been

stagnant for almost a decade now. The result is an explosive

growth in the level of on-chip parallelism, manifested both

in the number of cores, i.e., Thread Level Parallelism (TLP),

and the number of floating point units per core, i.e., Instruc-
tion Level Parallelism (ILP).

Recent reports from the Defense Advanced Research
Projects Agency (DARPA) [5], [6] and the International
Exascale Software Project (IESP) [7] paint the landscape

of future High Performance Computing (HPC) systems.

Floating point capabilities are expected to rise rapidly with

increasing numbers of cores and floating point units. At

the same time, memory capacity is expected to grow at

a much slower pace, eventually falling behind arithmetic

performance by an order of magnitude. Exascale systems

are projected to have an order of magnitude lower ratio of

memory capacity to floating point performance.

It is clear then that emphasis has to be shifted from

asymptotic scaling and weak scaling to strong scaling, which

2013 IEEE 27th International Symposium on Parallel & Distributed Processing

1530-2075/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPS.2013.119

251

describes how the solution time varies with the number of

cores for a fixed total problem size. Simply put, algorithms

with no strong scaling properties are bound to run out

of memory before reaching good performance levels on

future large-scale systems. The solution presented in this

article shows unprecedented strong scaling properties, i.e.,

the capability of utilizing very high numbers of cores to

solve very small problems by today’s dense linear algebra

standards.

III. BACKGROUND

A. Systolic Arrays

Systolic arrays are descendants of array-like architectures

such as iterative arrays, cellular automata and processor

arrays. A systolic array is a network of processors that

rhythmically compute and pass data through the system. The

seminal paper by Kung and Leiserson [8] defines systolic

arrays as devices with “simple and regular geometries and

data paths” with “pipelining as a general method for using

these structures.”

The systolic array paradigm is the counterpart of the von

Neumann paradigm. While the von Neumann architecture

is instruction-stream-driven by an instruction counter, the

systolic array architecture is data-stream-driven by data

counters. A systolic array is composed of matrix-like rows

of processing units, each one connected to a small number

of nearest neighbors in a mesh-like topology. The operation

is transport-triggered, i.e., triggered by the arrival of a data

object.

The term “systolic array” was coined in the paper by

Kung and Leiserson [8], where they introduced basic systolic

topologies and applied them to problems in dense linear

algebra. Applications in signal processing were pointed out:

convolution, Finite Impulse Response (FIR) filter, and the

Discrete Fourier Transform (DFT). General discussion and

motivation for systolic arrays is given in another publication

by Kung [9] and also Fortes and Wah [10]. Systematic

treatment of the topic is provided in books by Robert [11],

[12] and Evans [13].

B. Tile QR Decomposition

The essence of the tile QR algorithm is the idea of apply-

ing Householder reflectors incrementally. Unlike the block

algorithm of LAPACK and ScaLAPACK, which eliminate a

full panel of the matrix at a time, the tile algorithm descends

down the panel tile by tile, eliminating only one tile at a

time. Such operation is much more cache friendly and much

more suitable for pipelining, since elimination of each panel

tile can be immediately followed by application of updates

to the right.

The algorithm is derived from methods of modifying the

factors of a matrix, following an update of a small rank.

Gill et al. describe algorithms for modifying Cholesky and

QR factors following a rank-one update, in their article from

1974 [14]. In 1994, Berry et al. combined Householder re-

flectors and Givens rotations to produce an algorithm which

can be considered a precursor of the tile algorithms [15].

It combines Householder reflectors and Givens rotations to

reduce the matrix to the block-Hessenberg form.

This approach was rediscovered a few years ago by Buttari

et al. [16], [17] and was subsequently used to produce high

performance codes for multicore processors [16], [17], the

Cell processor [18], and systems with GPU accelerators [19].

The idea of incrementally applying Householder reflectors

goes beyond the QR decomposition, though. It has also

been successfully applied to block-bidiagonal reduction and

block-tridiagonal reduction, leading to very fast singular

value solvers and symmetric eigenvalue solvers.

for k = 0 to N − 1 do
dgeqrt(inoutAkk)

for n = k + 1 to N do
dormqr(inAkk, inoutAkn)

end for
for m = k + 1 to N do

dtsqrt(inoutAkk, inoutAmk)

for n = k + 1 to N do
dtsmqr(inAmk, inoutAkn, inoutAmn)

end for
end for

end for

Figure 1. Tile QR serial definition.

Figure 1 shows the serial definition of the tile QR al-

gorithm. Parameters are matrix tiles, prefix indicates the

direction, postfix indicates the position in the matrix. Fig-

ure 2 shows the tiles affected by each kernel in a 3 × 3
factorization. The kernels perform the following operations:

dgeqrt
Performs QR factorization of a diagonal tile. Places

the R factor in the upper triangle and Householder

reflectors in the lower triangle.

dormqr
Applies Householder reflectors computed by the

dgeqrt kernel to one tile of the trailing submatrix.

dtsqrt
Performs incremental QR factorization of a subdi-

agonal tile. Updates the R factor in the diagonal

tile and places Householder reflector coefficients

in the subdiagonal tile.

dtsmqr
Applies Householder reflectors computed by the

dtsqrt kernel to two tiles of the trailing submatrix.

Routines dtsqrt and dtsmqr might be considered precursors

of dtpmqrt that was recently introduced in LAPACK.

Same as the canonical QR, the tile QR is numerically

252

������ ���	�� ���	��

��
��� ��
	�� ��
	��

��
��� ��
	�� ��
	��

Figure 2. Kernel invocations in a 3× 3 tile QR.

stable, because of the use of orthogonal transformations. The

elements of the R factor are the same in absolute values, but

different Householder reflectors are produced and a different

procedure is required for their application to the right-hand

side when solving a system of equations.

IV. SOLUTION

The solution is built in three steps. First, a systolic array

for the tile QR algorithm is developed and an extension of

the systolic processing model is presented, referred to as

data bypass. Then virtualization is applied, i.e., mapping

of systolic array elements to physical cores. Finally, an

abstraction layer is introduced for handling communication

among cores through either intra-node (shared memory) or

inter-node (message passing) mechanisms.

A. Systolic QR Algorithm

Canonical dense matrix factorizations, such as Gaussian

elimination, Cholesky decomposition, or QR decomposition

can be described with a set of nested loops with three levels

of nesting, which is synonymous with O(n3) computational

complexity. At the same time, systolic arrays traditionally

target planar layouts, suitable for integrated circuits. There-

fore, systolic arrays are built by applying a projection to

the execution space of the algorithm. Usually, the projection

is done along one of the dimensions, resulting in a square

or triangular shape of the array. Projection can also be

applied at an angle, producing a hexagonal array. The former

approach is popular for dense matrices, the latter is popular

for band matrices.

Here, projection along the m dimension (Figure 1) is

applied, producing a traditionally shaped triangular systolic

array (Figure 3). Each row of the array is responsible for one

step of the factorization. Each diagonal processing unit is

responsible for factoring one panel, by applying one dgeqrt
operation and a sequence of dtsqrt operations. At each step a

diagonal unit consumes one tile of the matrix and produces

one tile of Householder coefficients, while retaining the

R factor and updating it accordingly. The transformations

are forwarded to the right, to the off-diagonal units. Each

off-diagonal unit applies the transformations by invoking

one dormqr operation and a sequence of dtsmqr operations.

Householder reflections are received from the left and for-

warded to the right. Matrix tiles are received from above

and updated tiles are forwarded down. The matrix enters

the array from the top, and the Householder reflections

coefficients exit at the bottom. At the time of completion,

the systolic units contain the final R factor.

A31

A21

A11

A32

A22

A12

A33

A23

A13

A34

A24

A14

V31

V21

V11

V32

V22

V12
V33

V23

V13

V34

V24

V14

Figure 3. Systolic array for tile QR.

B. Data Bypass Extension

Traditionally, the systolic unit follows the cycle: receive
data, perform computation, send data. As a result, the matrix

enters the array at an angle, and propagates one step at a time

in both the vertical and horizontal direction. This leads to

high load imbalance, as many units are idle before the data

reaches them. The slow propagation can easily be improved

by introducing a simple data bypass mechanism, which

allows for overlapping of communication and computation.

The data traveling in the vertical dimension is modified

at every step, and processing has to follow the receive, com-
pute, send cycle. At the same time, the data traveling in the

horizontal dimension is only read at each step, and therefore

253

the original receive, use, send cycle can be replaced with

a receive, forward, compute cycle. That is, upon reception

from the left, the data is immediately forwarded to the right

(Figure 4). This allows for overlapping communication and

computation in the horizontal dimension and accelerating the

feeding of the matrix into the array. It is natural to introduce

such an extension if the target system is a distributed

memory machine with dedicated communication hardware.

����

���

���

����

���

���

����

���

���

����

���

���

Figure 4. Data bypass in QR systolic array.

C. Virtualization Layer

The size of the systolic array is problem specific, i.e.,

the number of systolic units in the top row of the array

equals the number of tiles in a row of the matrix. On top

of that, the array has a triangular shape. Therefore, a one-

to-one mapping of systolic units to physical cores would

result in a rather odd number of cores being used. Plus,

with the number of cores equal to the number of units, the

load imbalance would be very high, due to the time required

for the data to propagate to the units at the bottom of the

array. In the general case, a much more flexible solution is

desired.

To address this problem, a virtualization layer is intro-

duced that allows for mapping of multiple systolic units to

each physical core in the system. One simple assignment

is a zigzag pattern, where consecutive cores are assigned

along the rows of the array and “spill over” from row to

row (Figure 5). If N is the dimension of the array, r is the

row number, c is the column number, and P is the number

of cores, then the unit in row r and column c belongs to the

core (Nr + c− r(r + 1)/2) mod P .

Because the data shifts through the array from top to

bottom and from left to right, such a mapping allows for

quick propagation of work to cores. Many assignments are

possible, e.g., block-cyclic or assignments relying on space
filling curves, such as Morton and Hilbert curves. Different

assignments will expose different tradeoffs between the load

balance, the locality and the volume of communication.

These alternative mappings are not investigated here.

� � � �� � � � � �

� � �� � � �

� � � �� � � � � �� � � �� � � � � �

�� � �

�� � �

�
� � �� �

�

�

�

Figure 5. Mapping of systolic units to cores.

D. Communication Layer

In principle, communication proceeds through channels

between pairs of systolic units. However, multiple units

can be mapped to each core, and multiple cores reside in

each node of the distributed memory system. Therefore,

two levels of indirection are involved. Each core handles

communication requests for its systolic units, and each node

handles communication requests for all its cores.

The implementation relies on launching one software

thread per hardware core in the system, and dedicating one

thread (one core) to serve as a communication proxy to

handle all inter-node (message passing) communication. The

actual system of choice, the Kraken supercomputer at the

National Institute for Computational Sciences, has 12 cores

per node (two six-core sockets).

From the standpoint of a core, the communication model

is flat (core to core). However, all communication requests

are “hijacked” by the communication proxy. (A rudimentary

protocol connects the worker cores to the proxy core). The

proxy core uses shared memory mechanisms to handle local,

intra-node communication, and message passing to handle

non-local, inter-node communication. Intra-node communi-

cation is handled through memory aliasing and involves no

copies.

E. Data Distribution

Unlike in traditional systolic arrays, here data has an

initial and final location within the system. It is important

to mention that the matrix is laid out in the memory of each

node by tiles, where each tile is stored in a continuous mem-

ory region, which is beneficial both for kernel performance

and the performance of communication.

254

At the beginning, the tiles of the matrix are assigned to

the entry points of the systolic array, i.e., the cores where the

top row of the array is placed. This means that initially the

matrix follows a 1D block-cyclic distribution. If the number

of cores is smaller than the number of units in the top

row, then the matrix is spread across all cores. Otherwise

it is spread across a subset of cores. Core placement is

synonymous with node placement, so there is only one copy

of a given tile in a node.

When processing is finished, the R factor is distributed

across all the cores, and the Householder reflectors’ coeffi-

cients are distributed across the cores where the diagonal of

the array resides. If desired, the final distribution can easily

be reshuffled to the initial distribution. The cost would be

negligible, considering the overall volume of communication

in the course of the factorization. The reshuffling is not done

here.

V. EXPERIMENTAL SETUP

A. Target Hardware

All runs were done on the Kraken supercomputer at the

National Institute for Computational Sciences. The Kraken

machine is a Cray system operated by the University of

Tennessee and located in Oak Ridge, Tennessee. The entire

system consists of 9408 compute nodes. The experiments

presented here used up to 1984 nodes, which is about one

fifth of the machine. Each node contains two 2.6 GHz six-

core AMD Opteron (Istanbul) processors, 16 GB of memory

and the Cray SeaStar2+ connection.

B. Software Stack

The code was compiled with the default compiler on the

Kraken system, which is The Portland Group, Inc. (PGI)

compiler. The core blas kernels from the PLASMA pack-

age [20] were used as the serial building blocks. The

code was linked against the Basic Linear Algebra Sub-
programs (BLAS) provided by Cray (LibSci) and Cray’s

Message Passing Interface (MPI).

VI. PERFORMANCE RESULTS

A. Systolic QR

Three fixed problem sizes of approximately 10K, 20K,

and 40K (exactly N = 10, 368, N = 20, 736, and

N = 41, 472) were tested for a varying number of cores,

as shown in Figures 6, 7, and 8. For each test, two tile

sizes of nb = 192 and nb = 256 were tested. The smaller

nb = 192 tile size achieved higher peak performance, and

is shown here. For the largest problem size, N = 40K,

the larger nb = 256 block size had better performance for

a smaller number of cores, less than 7500 cores, but for

a larger number of cores, achieved a peak performance of

18.2 Gflop/s, compared to 22.9 Gflop/s peak for nb = 192.

In all three instances, the performance initially increases as

more cores are used, and then eventually plateaus as the

�
�
�
�
�
�

��	
�

� ���
�� ���� ���� ����

�

���

���

���

��

����

����

����

����

�
��

����
����������	

��������	

����������

����������

Figure 6. Systolic QR performance for a problem of size 10K × 10K.

�
�
�
�
�
�

��	
�

� ���� ���� ���� ����

�

����

����

����

����

����

����

	���

����

�
�
�����	

��������	

�������� �

�������� �

Figure 7. Systolic QR performance for a problem of size 20K × 20K.

maximum amount of parallelism, determined by the critical

path, is exploited. For all three problem sizes, systolic QR

achieved a significantly higher peak performance than the

Cray LibSci QR and HPL tests.

Figure 9 shows an execution trace for a problem of size

10K × 10K running on 240 cores. The critical path of the

algorithm is clearly visible at the end of the factorization

but is well hidden throughout the earlier stages of execution

by the updates performed by the dtsmqr function.

B. Cray Scientific Libraries (LibSci) package

Performance results were compared against the Cray

LibSci package, which includes an implementation of the

QR factorization from ScaLAPACK. LibSci distributes the

matrix in a 2D block-cyclic fashion, with a p× q processor

grid. The performance is sensitive to the ratio of p to q,

255

Figure 9. Execution trace for systolic QR tile factorization for a problem of size 10K × 10K on 240 cores.

� ���� ����� ����� �����

�

����

����

�����

�����

�����

�����

�
�
�
�

�
�

�����

�	�
��
����

�
���
���

����������

����������

Figure 8. Systolic QR performance for a problem of size 40K × 40K.

and to the block size nb. For LibSci, we found that on a

large number of cores, a wide processor grid with a small

block size is preferred. We ran LibSci with the block sizes

of nb = 8, 16, 32, 64, 128, 256 on the processor grids with

p = 2, 3, 4, 6, . . . for p < q. Figures 6, 7, and 8 show the best

performance of LibSci from test runs on different numbers

of cores.

C. High Performance Linpack (HPL)

The LU factorization using the High Performance Linpack

(HPL) benchmark is also compared. LU is a different

algorithm, with O(23N
3) flops compared to the O(43N

3)
flops for QR. Results here plot both the raw performance

result, based on 2
3N

3 flops, and for better comparison with

QR, a virtual Gflop/s rate using 4
3N

3 flops. This provides

a more meaningful comparison of problems per second

or time-to-solution. That is, which algorithm can solve a

system of linear equations fastest, regardless of theoretical

operation count. Similar size problems over the same range

of cores were tested, with the problem size set to be a

multiple of the block sizes. HPL also uses a 2D block-

cyclic distribution, with performance sensitive to the ratio

of p to q, and to the block size nb. For each number of

cores, several different processor grids were tried. Nearly

square processor grids, with p ≈ q, performed poorly. Wide

processor grids, with p ≤ 1
2q, achieved good performance.

The best performing grid size tested for each number of

cores is shown in Figures 6, 7, and 8. Different block sizes

256

were also tested for each grid size. Generally, a moderate

block size of nb = 120 achieved the best performance. A

larger block size of nb = 220 achieved best performance for

larger numbers of cores, over 2500 cores for n = 21120,

and over 9900 cores for n = 42240. Smaller block sizes of

nb = 20 and nb = 40 were tested on some grids and found

to have worse performance.

VII. DISCUSSION

A. Analysis of Scalability Bounds with Amdahl’s Law

for k = 0 to N − 1 do
dgeqrt(inoutAkk)

dormqr(inAkk, inoutAk,k+1)

dtsqrt(inoutAkk, inoutAk+1,k)

dtsmqr(inAk+1,k, inoutAk,k+1, inoutAk+1,k+1)

end for

Figure 10. Operations on critical path of the tile QR.

The attention is next shifted to application of Amdahl’s

Law [21] because it allows analysis of strong scaling prop-

erties of the systolic QR factorization.

The serial portion of the QR factorization is the computa-

tion performed on the diagonal of the matrix because the off-

diagonal updates may be performed in a parallel and scalable

fashion [22], [23], [2]. In fact, the diagonal computation

constitutes the critical section of the algorithm. Figure 10

shows the four essential operations that are performed on

the critical path, but the dormqr and dtsqrt may proceed

in parallel with each other. Based on this observation, the

sequential computation time may be formulated as follows:

tcomp = 3
N
B

4
3B

3

α
= 3N B2/α. (1)

where B is the tile size and α is the average Gflop/s

rate of the four tile operations from Figure 10. Trivially,

N/B yields the number of tiles in a single column or row,

while 4
3B

3 is the total number of floating point operations

performed for the standard QR algorithm. tcomp has been

obtained experimentally by performing a sequential run and

measuring time spent in execution of the critical path. Based

on this experiment, the execution rate α was determined

to be 3.2 Gflop/s and 3.3 Gflop/s for tile sizes B of 192
and 256, respectively. Not surprisingly, this is much lower

than the measured execution rate of dtsmqr which was

barely below 7.5 Gflop/s. In addition to computation, there

is a need to account for communication time that has data

transmission and latency components. The transmission of

data occurs by utilizing bandwidth β for 4N/B tiles (overlap

of dormqr and dtsqrt is not possible because there is only

a single network interface shared between all cores) of B2

elements total after λ latency delay, and the communication

happens only for every Cth tile because there are C cores

per node:

tcomm = 4

(
N

B
B2 1

β
+

N

B
λ

)
1

C
. (2)

Parameters β and λ (bandwidth and latency) are usually

provided by a vendor and are often measured with micro-

benchmarks [24]. Just as it was the case with computation

time, the experimental method of measuring these parame-

ters was chosen.

� ��� ��� ��� ��� ���� ���� ���� ����

�

���

����

����

����

����

	

�
�

�

�����

Figure 11. Systolic QR performance for a problem of size 10K × 10K
for tile size 192 and its theoretical performance bounds.

� ���� ���� ���� ���� ���� ���� ����

�

����

����

����

	���

�����

�
�

�
�

�
���

Figure 12. Systolic QR performance for a problem of size 20K × 20K
for tile size 192 and its theoretical performance bounds.

The constructed model may be used to estimate how

close the presented implementation reaches the theoretical

scalability limits. In Figures 11, 12, 13, 14, 15, and 16 the

solid line indicates a model based on computation only, and

the dashed line represents a model based on computation and

257

� ���� ����� ����� ����� �����

�

����

�����

�����

�����

�����

�����

�����

�����

�
�
	

�
�

���

Figure 13. Systolic QR performance for a problem of size 40K × 40K
for tile size 192 and its theoretical performance bounds.

� ��� ��� ��� ��� ���� ���� ���� ����

�

���

���

���

���

����

����

����

����

�
�
	

�
�

���

Figure 14. Systolic QR performance for a problem of size 10K × 10K
for tile size 256 and its theoretical performance bounds.

communication. On average, the latter model is within 13%
of the theoretical limit for B = 192 and 5% for B = 256.

The model can also be used to obtain the sensitivity of

scalability with respect to computational speed, bandwidth,

and latency. Table I shows this sensitivity as improvement

factors one can obtain by using both computation and

communication times in our model. Using computation-

only time for the critical path reduces accuracy of the

model by mostly a single digit factor. Only for N = 10K
and B = 256 do we see 33× improvement, but for this

configuration, the modeling error is already low: below 1%.

On the other hand, using communication-only time is very

inaccurate, orders of magnitude in fact, and hence should be

avoided. It is then possible to conclude that the presented

implementation is still computation-bound and improving

performance of a single core would benefit the scalability

� ���� ���� ���� ���� ���� ���� ����

�

����

����

����

����

����

����

�
�
�
�
�
�

��	
�

Figure 15. Systolic QR performance for a problem of size 20K × 20K
for tile size 256 and its theoretical performance bounds.

� ���� ����� �����
����
����

�

����

�����

�����

����

����

�
�
�
�
�
�

�����

Figure 16. Systolic QR performance for a problem of size 40K × 40K
for tile size 256 and its theoretical performance bounds.

the most.

B. Further Observations

The systolic approach allowed for testing the scalability of

the algorithms under extreme conditions, meaning extremely

large number of cores for relatively small matrix sizes.

Notably, the performance charts include a run where 1,488

cores were used to factor a matrix consisting of 1,600 tiles

(number of cores approaching the number of tiles in the

matrix). They also include a run where 23,808 cores were

used to factor a matrix of size 41,472 (number of cores

approaching the size of the matrix).

Another interesting observation can be made. The largest

run involved a matrix of size 41,472, which occupies

41,4722×8 bytes < 13 GB of memory. The code main-

tained parallel efficiency of 57% when ran on 192 nodes.

258

N B Improvement Improvement
over over
comp.-only comm.-only

10K 192 2× 106×
20K 192 2× 87×
40K 192 1× 32×
10K 256 33× 14383×
20K 256 2× 439×
40K 256 1× 197×

Table I
IMPROVEMENT FACTORS FOR ESTIMATING ACHIEVED PERFORMANCE

BASED ON THE COMPLETE MODEL VERSUS COMPUTATION-ONLY

MODEL AND COMMUNICATION-ONLY MODEL.

Interestingly, this matrix can still fit entirely in the memory

of one node, which is 16 GB. In other words, nearly 200

nodes were used efficiently to solve a problem which fits in

the memory of a single node.

VIII. CONCLUSION

This article showed how systolic design principles can

be applied to a software solution to deliver an algorithm

with strong scaling capabilities never seen before. In fact,

the observed scaling closely approaches the limit dictated by

the Amdahl’s law. The achieved capabilities outperform, by a

many-fold margin, current state-of-the-art software packages

and vendor-tuned libraries, neither of which have been

designed with a systolic architecture in mind, but whose

design blueprints are aimed at high performance levels and

good scalability properties. It is posited that virtual systolic

architecture offers a simple, yet effective, computational

model which makes conceptualization of large scale dense

linear algebra algorithms possible, and in addition, makes

extreme cases of strong scaling feasible at thousand core-

count regimes.

ACKNOWLEDGMENT

This work is supported by grant #SHF-1117062: “Parallel

Unified Linear algebra with Systolic ARrays (PULSAR)”

from the National Science Foundation (NSF).
The authors would like to thank the National Institute

for Computational Sciences (NICS) for a generous time

allocation on the Kraken supercomputer.
The authors would also like to thank Yves Robert for

sharing his expertise on systolic arrays in many stimulating

conversations.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. W. Dem-
mel, J. J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide.
Philadelphia, PA: SIAM, 1992, http://www.netlib.org/lapack/lug/.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLA-
PACK Users’ Guide. Philadelphia, PA: SIAM, 1997, http:
//www.netlib.org/scalapack/slug/.

[3] G. E. Moore, “Cramming more components onto integrated
circuits,” Electronics, vol. 38, no. 8, 1965.

[4] S. Borkar, “Design challenges of technology scaling,” IEEE
Micro, vol. 19, no. 4, pp. 23–29, 1999, DOI:10.1109/40.782564.

[5] P. Kogge (Editor & Study Lead), “Exascale computing
study: Technology challenges in achieving exascale sys-
tems,” DARPA Information Processing Techniques Office,
Tech. Rep. 278, 2008, http://www.er.doe.gov/ascr/Research/CS/
DARPAexascale-hardware(2008).pdf.

[6] V. Sarkar (Editor & Study Lead), “Exascale software
study: Software challenges in extreme scale systems,”
DARPA Information Processing Techniques Office,
Tech. Rep. 159, 2008, http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSSreport101909.pdf.

[7] J. Dongarra, P. Beckman et al., “The international exascale
software roadmap,” Int. J. High Perf. Comput. Applic., vol. 25,
no. 1, 2011, ISSN:1094-3420 (to appear).

[8] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),”
in Sparse Matrix Proceedings. Society for Industrial and
Applied Mathematics, 1978, pp. 256–282, ISBN:0898711606.

[9] H. T. Kung, “Why systolic architectures?” Computer, vol. 15,
no. 1, pp. 37–46, 1982, DOI:10.1109/MC.1982.1653825.

[10] J. A. B. Fortes and B. W. Wah, “Systolic arrays-from concept
to implementation,” Computer, vol. 20, no. 7, pp. 12–17,
1987, DOI:10.1109/MC.1987.1663616.

[11] Y. Robert, Impact of Vector and Parallel Architectures on
the Gaussian Elimination Algorithm. Manchester University
Press, 1991, ISBN:0470217030.

[12] P. Quinton and Y. Robert, Systolic Algorithms & Architec-
tures. Prentice Hall, 1991, ISBN:0138807906.

[13] D. J. Evans, Systolic Algorithms (Topics in Computer Math-
ematics). Routledge, 1991, ISBN:2881248047.

[14] P. E. Gill, G. H. Golub, W. A. Murray, and M. A. Saunders,
“Methods for modifying matrix factorizations,” Mathematics
of Computation, vol. 28, no. 126, pp. 505–535, 1974.

[15] M. W. Berry, J. J. Dongarra, and Y. Kim, “LAPACK working
note 68: A highly parallel algorithm for the reduction of a
nonsymmetric matrix to block upper-Hessenberg form,” Com-
puter Science Department, University of Tennessee, Tech.
Rep. UT-CS-94-221, 1994, http://www.netlib.org/lapack/lawnspdf/
lawn68.pdf.

[16] A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “Parallel
tiled QR factorization for multicore architectures,” Concur-
rency Computat.: Pract. Exper., vol. 20, no. 13, pp. 1573–
1590, 2008, DOI:10.1002/cpe.1301.

[17] ——, “A class of parallel tiled linear algebra algorithms for
multicore architectures,” Parallel Comput. Syst. Appl., vol. 35,
pp. 38–53, 2009, DOI:10.1016/j.parco.2008.10.002.

[18] J. Kurzak and J. J. Dongarra, “QR factorization for the Cell
Broadband Engine,” Scientific Programming, vol. 17, no. 1-2,
pp. 31–42, 2009, DOI:10.3233/SPR-2009-0268.

259

[19] J. Kurzak, R. Nath, P. Du, and J. J. Dongarra, “An implemen-
tation of the tile QR factorization for a GPU and multiple
CPUs,” in Proceedings of the State of the Art in Scientific
and Parallel Computing Conference, PARA’10. Reykjavı́k:
Lecture Notes in Computer Science 7134, June 6-9 2010, pp.
248–257, DOI:10.1007/978-3-642-28145-7.

[20] E. Agullo, A. Buttari, J. Dongarra, M. Faverge, B. Hadri,
A. Haidar, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and
A. YarKhan, “PLASMA users’ guide,” Electrical Engineering
and Computer Science Department, University of Tennessee,
Tech. Rep., http://icl.cs.utk.edu/projectsfiles/plasma/pdf/users guide.
pdf.

[21] G. Amdahl, “Validity of the single processor approach to
achieving large-scale computing capabilities,” in Proceedings
of the AFIPS Conference. Atlantic City, NJ: Academic Press,
April 18-20 1967, pp. 483–485.

[22] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrou-
chov, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley,
“ScaLAPACK: a portable linear algebra library for distributed
memory computers design issues and performance,” Comp.
Phys. Comm, vol. 97, no. 1-2, p. 1996, 1-15, DOI:10.1016/
0010-4655(96)00017-3.

[23] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker,
and R. C. Whaley, “Design and implementation of the
ScaLAPACK LU, QR, and Cholesky factorization routines,”
Scientific Programming, vol. 5, no. 3, pp. 173–184, 1996.

[24] P. Luszczek, J. Dongarra, and J. Kepner, “Design and
implementation of the HPC Challenge benchmark
suite,” CT Watch Quarterly, vol. 2, no. 4A,
2006, http://www.ctwatch.org/quarterly/articles/2006/11/
design-and-implementation-of-the-hpc-challenge-benchmark-suite/
index.html.

260

