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ABSTRACT
Soft errors pose a real challenge to applications running on modern
hardware as the feature size becomes smaller and the integration
density increases for both the modern processors and the memory
chips. Soft errors manifest themselves as bit-flips that alter the user
value, and numerical software is a category of software that is sen-
sitive to such data changes. In this paper, we present a design of
a bidiagonal reduction algorithm that is resilient to soft errors, and
we also describe its implementation on hybrid CPU-GPU archi-
tectures. Our fault-tolerant algorithm employs Algorithm Based
Fault Tolerance, combined with reverse computation, to detect, lo-
cate, and correct soft errors. The tests were performed on a Sandy
Bridge CPU coupled with an NVIDIA Kepler GPU. The included
experiments show that our resilient bidiagonal reduction algorithm
adds very little overhead compared to the error-prone code. At ma-
trix size 10110 × 10110, our algorithm only has a performance
overhead of 1.085% when one error occurs, and 0.354% when no
errors occur.
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1. INTRODUCTION
Bidiagonalization of a general M × N matrix A is prerequisite to
computing the singular value decomposition (SVD) of A. The ex-
ecution time of numerical bidiagonalization on modern computers
dominates the computation of SVD. Given an M × N real matrix
A, the SVD decomposition computes A = UΣV > where U is an
M ×M orthogonal matrix, Σ is an M × N diagonal matrix, and
V > is anN×N orthogonal matrix. The diagonal entries of matrix
Σ are called the singular values of A. The numerical SVD decom-
position of a matrix is usually performed in two steps. In the first
step, matrix A is reduced to bidiagonal form: A = QBP> where
Q is an M × M orthogonal matrix, P is an N × N orthogonal
matrix, and B is an M ×N bidiagonal matrix. In the second step,
matrixB is further reduced to diagonal form. The implementations
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of the steps are slow because they contain a lot of matrix-vector
multiplies (GEMV), which are Level 1 BLAS operations and have
a low computation intensity. As a result of the above reasons, it is
time consuming to calculate either of the two stages.

Advances in Integrated Circuits (IC) manufacturing technology, de-
scribed below, bring forward higher probability of soft errors in
computer systems due to decreased feature size and increased com-
plexity. A soft error is a temporary malfunction of a chip element
which causes a change in the program state without any notifica-
tion other than an incorrect result, but the chip element contin-
ues to function normally, and the change in program state is un-
noticed by either the hardware or the software. Moore’s Law states
that the number of transistors on integrated circuits doubles every
two years [12]. This increased transistor density on a unit sili-
con area provides every more prominent possibility for soft error.
Also, higher transistor density requires smaller transistor feature
size (the minimum size of a transistor or a wire on an IC), and
causes increased heat dissipation as the circuit consumes higher
power. Smaller transistors require lower voltage to operate at in-
creasing frequencies, which makes it easier to change the transistor
state unpredictably. High heat dissipation generates more thermal
neutrons, which in turn cause more soft errors in the chip [20].

The computation needs to be protected so that there is no need to
repeat the computation in the presence of soft errors. There are a
few challenges in tolerating soft errors. First, it is difficult to detect
them since a soft error changes the application state without the
hardware or software noticing it. There is no permanent physical
damage to the hardware, so the program proceeds normally in the
presence of a soft error (assuming that the soft error does not alter
the control logic). Second, it is difficult to pinpoint the error even
when given the knowledge of the existence of an error. There are
a large number of transistors involved in a single computation, so
locating the error is analogous to finding a needle in a haystack.
Third, suppose we know an error exists, and we know the exact
location of the error, it is still difficult to restore the data to the
correct value.

In this paper, we propose an effective and efficient algorithm to
detect, locate, and correct soft errors in the numerical bidiagonal
reduction of a real matrix. We employ the Algorithm Based Fault
Tolerance (ABFT) technique and reverse computation to achieve
fault tolerance. Our fault tolerant bidiagonal reduction algorithm is
very efficient in that it introduces very low performance overhead
compared with the non-fault tolerant counterpart. The overhead
tends asymptotically to 0 as the matrix size scales up. We show
the effectiveness and efficiency of our algorithm through an im-



plementation based on the MAGMA library [18, 19]. Experiments
show that our algorithm has a low overhead of 0.354% at matrix
size about 10000. The overhead exhibits a decreasing trend as the
matrix size increases.

The rest of this paper is organized as follows: Section 2 reviews
related work. Section 3 introduces the block bidiagonal reduction
algorithm as implemented in the MAGMA project. Section 4 dis-
cusses the soft error propagation pattern. Section 5 explains our
fault tolerant algorithm. Section 6 reports the experimental results.
Finally, section 7 presents our conclusions.

2. RELATED WORK
Research and reports about the existence and impact of soft errors
on GPUs show that soft errors are a real problem for scientific ap-
plications [7,13,15,16]. There are efforts to tolerate these errors us-
ing both software-based approaches [3,10,11] and hardware-based
approaches [14, 17].

Du et al. [5] proposed a soft error resilient QR factorization algo-
rithm using a post processing approach. In their scheme, the input
matrix is encoded with two extra checksum columns. These two
extra columns are maintained as the regular QR factorization pro-
ceeds. After the factorization has finished, the two extra columns
are used to detect the existence of a soft error and locate the col-
umn index where the error occurred. The error is then projected to
a rank-1 perturbation of the original input matrix. Then the correct
factorization result is obtained using the QR update technique [6].
This post-processing scheme can successfully tolerate, at most, one
soft error, no matter what point in time the error has occurred.

Kim et al. [9] designed a general scheme for fault tolerant matrix
operations including matrix multiplication, Cholesky factorization,
LU factorization, QR factorization, and Hessenberg reduction. This
scheme tackles hard errors (process failures). The method uses a
checksum to encode the input matrix, and the checksum is gener-
ated at certain intervals and serves as a checkpoint of the applica-
tion state. In the case of a hard error, a roll back is performed to
bring the program data back to the state at which the last checksum
was generated.

The MAGMA project [19] is an effort to take advantage of the
latest development of GPU accelerators to boost the performance
of linear algebra operations. The project redesigned the block al-
gorithms in LAPACK [1] to better suit GPU-enabled hybrid plat-
forms. The methodology is called hybridization, by which compu-
tational tasks are split according to their characteristics and sched-
uled to the CPUs and GPUs accordingly. The magma_dgebrd
routine in MAGMA implements the hybrid block bidiagonal re-
duction algorithm.

3. BLOCK BIDIAGONAL REDUCTION IN
MAGMA

In order to understand our bidiagonal reduction algorithm with fault
tolerant features, it is essential to understand the non-fault tolerant
algorithm first. In this section, we describe the standard block bidi-
agonal reduction algorithm.

Suppose A is an M ×N matrix, the block algorithm logically par-
titionsA intoM ×nb block columns and nb×N block rows. The
reduction is an iterative process, whereby every iteration reduces
the leftmost nb matrix columns and the uppermost nb matrix rows

into the bidiagonal form. In every iteration, the following operation
is performed on the unreduced trailing matrix [2, 4]:

A(i+1) = A(i) − V Y > −XU>

where A(i) is the unreduced trailing matrix at the beginning of the
i-th iteration, andA(i+1) is the resulting matrix of the i-th iteration
(also the input for the (i+ 1)-th iteration). V is an M × nb matrix
which consists of the Householder vectors to annihilate columns of
A; this matrix is used to update the trailing matrix from the left. U
is the matrix used to transform the input matrix from the right; this
matrix contains the Householder vectors used to annihilate rows
of A. Y and X are intermediate matrices, and each of them is
generated through an iterative process. Denoting the k-th column
of Y as yk, the k-th column of X as xk, the calculation of Y and
X are given by [2, 4]:

yk+1 = τvk+1(A(i)>vk+1 − YkV
>
k vk+1 − UkX

>
k vk+1)

xk+1 = τuk+1(A(i)uk+1 −XkU
>
k uk+1 − Vk+1Y

>
k+1uk+1)

In MAGMA, the bidiagonal reduction routine for a double preci-
sion real matrix is magma_dgehrd. In every iteration, the algo-
rithm performs the following operations:

1. Call magma_dlahrd_gpu. This call reduces the i-th block
column and the i-th block row of A to bidiagonal form, and
generates V , U , X , and Y . The two largest tasks in this
routine (two GEMVs) are offloaded to the GPU.

2. Call magma_dgemm to compute A = A − V Y >. This
matrix-matrix multiply and the following one are offloaded
to the GPU.

3. Call magma_dgemm to compute A = A−XU>

Figure 1 shows one iteration of the magma_dgehrd routine.

4. ERROR PROPAGATION
In this work we target soft errors specifically (as opposed to hard
errors). A single bit flip is sufficient to completely invalidate the
factorization result. Figure 2 shows the impact of a soft error in the
course of the factorization. This example uses a 158× 158 matrix
with the block size nb = 32. The soft error occurs in the second
iteration at location (72, 79), which is marked by a cross in Fig-
ure 2(a). Figure 2(b) shows the heat map of the difference matrix
between the correct factorization result and the factorization result
affected by one soft error. Black color indicates that the difference
is 0, and any other color indicates a difference of a magnitude pro-
portionate to the color. We can observe that the rectangular matrix
at the bottom right corner contains wrong values.

5. FAULT TOLERANT DGEBRD
In this section, we describe the fault tolerant bidiagonal reduction
algorithm. The algorithm is inspired by the ABFT concept [8].
The basic idea is to add redundant information to the original data.
A soft error means that some information in the original matrix is
corrupted. After the detection of the soft error, the algorithm uses
the redundancy to recover the corrupted information. The redun-
dant information of the input matrix is provided by a checksum
column and a checksum row. Algorithm 1 shows the details of our
approach.



(a) Beginning of itera-
tion

DLABRD

(b) Factorize the panel

DGEMM

(c) A = A− V Y >

DGEMM

(d) A = A−XU>

(e) End of iteration

Figure 1: One iteration of magma_dgebrd

Algorithm 1 Fault Tolerant Hybrid Bidiagonal Reduction
1: Transfer matrix: A on the host→ d_A on the GPU
2: Encode the input matrix, expand it with a checksum column

and a checksum row.
3: for i from 1 to d N

nb
e do

4: Transfer the leftmost nb columns and uppermost nb rows of
the trailing matrix to the host.

5: FT_MAGMA_DLABRD_GPU, return V,U,X and Y
6: Compute Xce, Yce, Vce, Uce

7: DGEMM: Afe = Afe − VceY
>

ce
8: DGEMM: Afe = Afe −XceU

>
ce

9: Compute Sre =
∑
Are(i) and Sce =

∑
Ace(i)

10: if |Sre − Sce| > threshold then
11: Reverse the last left update and right update.

Afe = Afe + VceY
>

ce
Afe = Afe +XceU

>
ce

12: Correct the error
13: end if
14: end for

Algorithm 2 Locate(i, j, k)

1: DGEMV: Âchk_r = Atrail · e
2: IF
3: DGEMV: Âchk_r = Atrail · e>
4: IF

5.1 Data Redundancy
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Figure 2: Propagation pattern of an error.

Algorithm 3 Recover(i, j, k)
1: Set A(i, j) to 0.
2: Compute Snew =

∑M
i=k+1A(i, j)

3: Â(i, j) = Ace(j)− Snew

The algorithm first encodes the input matrix with both row check-
sums and column checksums. The row checksums form a column
vector which is appended to the right of the matrix, the column
checksums form a row vector which is appended to the bottom of
the input matrix. This task is accomplished in line 2. The algorithm
enters the main loop in line 3. In every iteration, the next panel is
transferred to the CPU to be factorized there (in Line 5). The orig-
inal magma_dlabrd_gpu routine only computes part of X and
part of Y . Assuming the trailing matrix is of size m × n, we only
need the lower n × nb part of Y and the lower m × nb part of X
are needed to update the trailing matrix. In our fault tolerant algo-
rithm, we need the entireX and Y to calculate their respective col-
umn checksums, so we modified the magma_dlabrd_gpu rou-
tine to compute the complete X and Y . The new routine is named
ft_magma_dlabrd_gpu. Line 7 and line 8 update the trailing
matrix. The row checksums and column checksums are also up-
dated together with the trailing matrix. After the update, the row
checksums remain to be the row checksums of their corresponding
rows. The column checksums remain to be the column checksums
of their corresponding columns. In other words, the checksum re-
lationship is preserved throughout the algorithm.

5.2 Error Detection
Line 9 and line 10 carry out error detection. Error detection is
achieved by comparing the sum of the row checksums of the trail-



ing matrix and the sum of the column checksums of the trailing
matrix. Because both checksum vectors protect the same matrix
data (the trailing matrix), their sums should be equal to each other.
If the difference is higher than a certain threshold, we consider an
error has occurred. The comparison of the two sums is performed
in line 10.

5.3 Error Location and Correction
If an error is detected at line 10, the algorithm initiates the proce-
dure to locate and correct the error. To achieve this, the algorithm
first performs a reverse update on the trailing matrix. This is ac-
complished in line 11. The reverse update brings the trailing ma-
trix back to the state at the beginning of the erroneous iteration.
At this point, the error only exists in one matrix entry, the contam-
ination to other matrix entries is reversed, and now we have the
correct row checksums and column checksums. The error location
works as follows. We compute the new row checksums and column
checksums of the actual trailing matrix, and these new checksums
will encode the erroneous value. Moreover, there will be exactly
one row checksum which differs from its corresponding old row
checksum, and there will be exactly one column checksum which
differs from its corresponding column checksum. The row index
and column index of the error can be identified by comparing the
new checksums and the old checksums.

Once the error location (i, j) has been determined, we can use the
row checksums and the column checksums as devices to recover
the lost matrix element. First we set A(i, j) to zero, then we com-
pute the checksum chkr for the i-th row. The lost matrix element
can be recovered by A(i, j) = chkr − old_chkr . old_chkr is the
row checksum of the i-th row which the algorithm maintains since
the beginning of the factorization. The algorithm resumes its nor-
mal operations after the recovery. It continues to detect, locate, and
correct errors in subsequent iteration until the factorization com-
pletes.

5.4 Multiple Concurrent Errors
In previous subsections, we only considered the case in which only
one soft error happens in an iteration. In fact the fault tolerant al-
gorithm can deal with more than one soft errors in one iteration.
When more than one soft error occurs, the entire trailing matrix
will be contaminated as in the one-error case, so the existence of
errors can always be detected. Similar to the analysis by Huang et
al. [8], when the faulty elements form a rectangle, these four errors
cannot be located. Other than such a situation, multiple errors can
be located and then corrected.

5.5 Range of Application
The fault tolerant algorithm stated above is for bit-flips in the data
matrix. The fault tolerant algorithm does not deal with soft errors
in the control logic. It does not consider persistent errors either.
Persistent errors are usually caused by malfunctioning hardware,
this type of errors are outside of the range range covered by this
work.

6. EXPERIMENT RESULTS
In this section, we present performance results of our fault tolerant
bidiagonal reduction algorithm.

The test platform we use is a machine at the University of Ten-
nessee. This machine has an Intel Xeon E5-2670 processor with
a clock frequency of 2.6 GHz. It features an NVIDIA Tesla K20c

GPU (known also as Kepler) with the clock frequency of the GPU
at 705.5 MHz and the on-board memory of the GPU of 4799.6 MB.
Te machine has 62 GB of main memory. The operating system is
Red Hat 4.4.6-4 and the compiler is GCC 4.4.6 and NVCC 5.0
V0.2.1221.

Figure 3 shows the comparison of the performance of the fault tol-
erant bidiagonal reduction and the performance of the MAGMA
bidiagonal reduction. Figure 3(a) shows the performance compar-
ison when the fault tolerant bidiagonal reduction suffers from one
soft error. The error is injected in the third iteration in the panel
area. This is nearly the worst case scenario. The earlier the error
occurs, the higher the cost of locating and correcting the error. The
reason is that if the error occurs in the early iterations of the fac-
torization, we need to reverse the update of the trailing matrix once
we detect an error, and the trailing matrix is large in early iterations.
To locate the error, we need two DGEMV operations on the trail-
ing matrix. In early iterations the large trailing matrix also incurs
higher costs in these two DGEMVs.

Figure 3(b) shows the performance comparison when the FT bidi-
agonal reduction does not experience any errors. We can see that
the performance overhead also drops when the matrix size increases.
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Figure 3: Performance of the FT-BRD

7. CONCLUSION
In this paper, we showed a design, implementation, and a perfor-
mance evaluation of a hybrid bidiagonal reduction algorithm based
on the MAGMA framework equipped with fault tolerant features.
Our fault tolerant bidiagonal reduction algorithm employs reverse
computation and algorithm-based fault tolerance to detect, locate,
and correct soft errors in the bidiagonal reduction on CPU-GPU hy-
brid architectures. Experimental results show that the performance
overhead of our fault tolerant algorithm is very low when the ma-
trix size is small, and the performance overhead as fraction of the
overall computation time continues to drop as the matrix size in-
creases. At matrix sizes of about 10000, the overhead decreases to



1.085% when one soft error occurs, and to 0.354% when no errors
occur.
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