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Abstract

The enormous gap between the high-performance ca-
pabilities of today’s CPUs and off-chip communication
poses extreme challenges to the development of numerical
software that is scalable and achieves high performance.

In this article, we describe a successful methodology to ad-
dress these challenges—starting with our algorithm design,
through kernel optimization and tuning, and finishing with
our programming model. All these lead to development of
a scalable high-performance Singular Value Decomposition
(SVD) solver. We developed a set of highly optimized
kernels and combined them with advanced optimization
techniques that feature fine-grain and cache-contained
kernels, a task based approach, and hybrid execution and
scheduling runtime, all of which significantly increase the
performance of our SVD solver.

Our results demonstrate a many-fold performance in-
crease compared to currently available software. In particu-
lar, our software is two times faster than Intel’s Math Kernel
Library (MKL), a highly optimized implementation from the
hardware vendor, when all the singular vectors are requested;
it achieves a 5-fold speed-up when only 20% of the vectors
are computed; and it is up to 10 times faster if only the singu-
lar values are required.

1 Introduction

Standard Singular Value Decomposition (SVD) prob-
lem [27] for a given matrix A ∈Rm×n (or A ∈Cm×n) finds a
diagonal matrix Σ∈Rm×n (or Σ∈Cm×n) and orthogonal (or
unitary) matrices U ∈Rm×m and V ∈Rn×n (or U ∈Cm×m and
V ∈ Cn×n) such that A = UΣV⊤ (or A = UΣV H). Matrices
U and V are unique up to the signs of respective columns
when m = n and the singular values are unique [58]. Also,
the decomposition is always possible [26, 28]. The diagonal
elements of Σ are singular values of A, the columns of U
are called its left singular vectors, and the columns of V are
called its right singular vectors.

The necessity of calculating SVDs emerges from various
computational science and engineering areas, e.g., in statis-
tics where it is directly related to the principal component
analysis method [40, 41], in signal processing and pattern
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recognition as an essential filtering tool, and in analysis of
control systems [57]. Also, the SVD plays a very important
role in linear algebra. It has applications in such areas
as least squares problems [26, 28, 51], in computing the
pseudoinverse [26], in computing the Jordan canonical
form [29]. In addition, SVD is used in solving integral equa-
tions [39], in digital image processing [4], in information
retrieval [45], in seismic reflection tomography [10, 23], and
in optimization [5].

SVD decomposition of a dense matrix is computed by
following the decompositional approach to matrix compu-
tation [59]. First, the dense matrix A is transformed to an
upper bidiagonal form B by applying successive distinct
orthogonal transformations [42] from the left (Q) as well
as from the right (P): B = Q⊤AP (or B = QHAP). This re-
duction step is called bidiagonal reduction (BRD for short),
and it has always been the most time-consuming phase
when computing the SVD. The next phase after BRD is the
process of obtaining the singular values using the divide-and-
conquer iteration. Finally, calculation of the corresponding
singular vectors from the reduced form is performed using
either the dqds algorithm [24] or using Cuppen’s divide-
and-conquer algorithm [32, 44] of divide-and-conquer
back-transformation. The BRD portion of the computation
can easily consume over 90% of the time needed to obtain
the singular values [53], and roughly 70% if singular vectors
are additionally calculated [53]. The QR iteration [17, 18] is
no longer a method of choice for singular vectors because it
takes roughly 50% longer than the methods mentioned ear-
lier. The optimization techniques we present here are only
applicable to sqaure matrices because a slightly different
approach is necessariy for the rectangular ones [54].

This article is organized as follows: Section 2 gives an
overview of the related work in the field; Section 3 summa-
rizes the main contributions of this work; Section 4 provides
sufficient background information for the techniques we
describe later on; Section 5 presents detail description of the
stages of our reduction algorithm and its implementation;
Section 5.4 details the computation of singular vectors;
Section 6 shows the results from our experiments. Finally,
Section 7 concludes the article and suggests potential future
directions.
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3 RESEARCH CONTRIBUTIONS

2 Related Work

A two-step reduction for the generalized symmetric eigen-
value problem was reported for the first time in the context
of an out-of-core solver [30, 31]. Later, the two-stage
approach [7, 49] was generalized to a multi-stage implemen-
tation [8] to reduce a matrix to tridiagonal, bidiagonal, and
Hessenberg forms. It has provided much needed increase in
the performance of the said routines. The actual number of
stages necessary to reduce the matrix to the corresponding
form is a tunable parameter, which depends on the underly-
ing hardware architecture. The general idea is to cast expen-
sive memory operations, occurring during the panel factor-
ization into fast compute intensive ones. This general frame-
work is called Successive Band Reductions (SBR) [8]. SBR
is used to reduce a symmetric dense matrix to tridiagonal
form, which is required to solve the symmetric eigenvalue
problem (SEVP). This toolbox applies two-sided orthogonal
transformations to the matrix based on Householder reflec-
tors and successively reduces the matrix bandwidth size until
a suitable one is reached. The off-diagonal elements are then
annihilated column-wise, which produces large fill-in blocks
or bulges to be chased down, and therefore, may result in
substantial extra flops. If eigenvectors are additionally
required, the transformations can be efficiently accumulated
using Level 3 BLAS operations to generate the orthogonal
matrix. It is also worth noting that the SBR package relies
heavily on multithreaded optimized BLAS to achieve
parallel performance[50]. We call this a fork-join paradigm
which is a variant of Bulk Synchronous Parallel (BSP) [61].

PIRO BAND toolbox [16] implemented a similar tech-
nique which only focusses on the last stage, i.e., the reduction
from band form to the condensed structures. This software
enables us to reduce, not only symmetric band matrices
to tridiagonal form but also non-symmetric band matrices
to bidiagonal form needed for the symmetric eigenvalue
problem and the singular value decomposition, respectively.
This sequential toolbox employs fine-grained computational
kernels, since it only operates on regions located around the
diagonal structure of the matrix. However, the off-diagonal
entries are annihilated element-wise and the number of
fill-in elements is drastically reduced compared to the SBR
implementation. As a consequence, the overall time to
solution has been improved compared to SBR package, even
though the PIRO BAND implementation is purely sequen-
tial. Finally, PIRO BAND relies on pipelined plane rotations
(i.e., Givens rotations) to annihilate the off-diagonal entries.

The two-stage approach was applied to the TRD (Triangu-
lar Reduction) [34] and to SVD [35, 53, 54] in combination
with tile algorithms and runtime scheduling based on data
dependences between tasks that operate on the tiles. This
resulted in very good performance but has never been
used to compute the singular vectors. Obtaining the eigen
vectors through the two-stage technique takes away some

of the performance gains when applied to the symmetric
eigenvalue problem [37], and in this article we investigate
whether this remains true for the SVD.

More recently, a new parallel, high-performance imple-
mentation of the tile BRD algorithm on homogeneous mul-
ticore architectures was introduced [53]. It used a two-stage
approach and it did away with the BSP paradigm in favor of
bringing the parallelism to the fore, but hid the problems of
concurrency with the use of a runtime scheduler that keeps
track of data dependences. The first stage reduces the matrix
to band tridiagonal form, and uses high compute intensive
kernels. In this article, we improve upon these kernels to
remove scheduler and cache-miss overheads. The second
stage follows the SBR principle of annihilating the extra en-
tries column-wise. The dynamic runtime system was used to
schedule the computational tasks in a fashion, that preserves
data dependence, and maximizes the benefits of parallel ex-
ecution. Here, we further the development and optimization
of this work by using a more efficient bulge-chasing stage
and adding the computation of singular vectors.

To the best of our knowledge, this technique has not been
applied in combination with the Multiple Relatively Robust
Representations (MRRR) algorithm, which still continues
to be work in progress [62].

An alternative approaches for SVD are based the Jacobi
method and have been used successfully in the parallel
setting for dense matrices [6, 56].

3 Research Contributions

Besides the software development efforts that we investigate
to accomplish an efficient implementation, we highlight
three main contributions related to the algorithm’s design:
• High performance fine grained memory aware and
computationally intense tasks. Our goal to efficient
hardware usage and parallelism relies on splitting the
computation into tasks that either increase computational
intensity or reduce data movement. Two main issues should
be taken into consideration here. First, the task splitting
and determination of granularity is essential for obtaining
high performance. Moreover, the data reuse among the
CPU-cores should also be taken into consideration to
minimize communication and achieve good performance.
For that, despite the use of new kernels that have been
developed by Luszczek et al. [55], for the first stage of the
reduction to bidiagonal, we also developed new fine-grained
and memory-aware BLAS kernels to be used for the second
stage of the BRD reduction (i.e., the bulge chasing pro-
cedure), and for the update of the singular vectors by the
transformation matrices. Sections 5.2 and 5.4 provide more
information about those new fine-grained and cache-friendly
numerical kernels.
• Mapping computation to hardware via hybrid schedul-
ing. We developed our algorithm in such a way to map
computational tasks to the strengths of the available
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hardware components, taking care of the data reuse. Our
algorithm also uses techniques to mix between dynamic and
static scheduling to extract efficiency and performance. The
impact of this technique is well observed during either the
bulge chasing stage or the singular vectors update. First, the
bulge chasing stage operates on a small amount of data of
the size b×n, where b and n are respectively the band width
and the size of the band matrix. Also, most of the operations
are memory bound and the parallelism is limited. Hence, it
is better sometimes to let this stage run on a small number
of cores while increasing data locality rather than to let all
the cores work while increasing the data movement. Second,
the application of the Householder reflectors generated by
the bulge chasing stage are very complicated and rely on
sequential overlaps between them. We combine the compu-
tation splitting (a technique based on the available number
of resources and on the size of the level 2 cache) with hybrid
task scheduling. This combination is the defining factor that
determines the block size required for data reuse, and the
way in which parallelism is extracted for high performance
when such bandwidth-bound operations are concerned. Sec-
tion 5.4 provides further information about these techniques.
• Examining the trade-off between performance and
extra computation. A proper use of this trade-off reduces
overall execution time, which we believe will become
increasingly important for the current and the up-coming
hardware designs. An advanced optimization strategy,
which consists of aggregating the applications of House-
holder reflectors occurring within a single data block,
while adding a small extra cost is employed to remove the
communications overhead as well as to enhance the memory
reuse for obtaining high performance algorithms.

4 Background

Tile algorithms are based on the idea of processing the matrix
by square tiles of relatively small size (between 100 × 100
and 200×200 elements). The rationale is that the one, two,
or three tiles, involved in a particular matrix operation fit
entirely in some level of the cache hierarchy, and capacity
cache misses are eliminated. Tiling is the principal optimiza-
tion technique in optimizing the performance of the basic
dense linear algebra operation of matrix multiplication, and
comes directly from the fundamental compiler optimization
of loop tiling. The motivation for deriving the class of
tile algorithms came from the desire to extend the same
performance benefits to dense matrix factorizations. At
the same time, tile algorithms allow to easy expression of
the algorithm in the form of a task graph or Direct Acyclic
Graph (DAG), suitable for dynamic runtime scheduling
using dataflow principles [12, 36, 48]. The algorithms are
extremely efficient when matched with a corresponding
matrix layout [33], as described in the following section.

The benefit of using tile algorithms on multicore
processors was initially demonstrated for the Cholesky

factorization [46], which did not require any algorithmic
modifications. The tile approach was then extended to the
LU and QR factorizations [13, 14, 47], by introducing the
idea of incremental panel factorization, where the panel
is factored by descending down the matrix tile by tile. In
the case of the LU factorization, numerical properties are
affected, because of the use of elemental transformation. In
the case of the QR factorization, numerical properties are
not significantly affected, due to the use of Householder
reflections, which are orthogonal transformations.

The idea of applying Householder transformations by tiles
can easily be extrapolated to the bi-diagonal and tri-diagonal
reductions, allowing for the construction of very efficient
algorithms for the solution of the singular value problem
and the symmetric eigenvalue problem. The caveat is that
the reductions can be done easily to a band form, instead of
the proper bi-diagonal matrix or a tri-diagonal matrix (with
a single subdiagonal). The solution is to reduce to the band
form first, and then produce the proper form through the
process of bulge chasing, i.e., successive elimination of the
subdiagonal entries by a series of Householder transforma-
tions [34, 35, 52–55]. Because both the reduction to the band
form and the bulge chasing process can be implemented in a
parallel and cache-efficient manner, the two-stage procedure
is an order of magnitude faster than the legacy approach of
LAPACK, which relies heavily on Level 2 BLAS operations,
is memory bound, and therefore inefficient.

It is always beneficial for performance to couple the
algorithm with a data layout that matches the processing
pattern. For tile algorithms, the corresponding layout is the
tile layout, developed by Gustavson et al. [33] and shown
in Figure 1. The matrix is arranged in square submatrices,
called tiles, where each tile occupies a contiguous region of
memory. The particular type of layout used here is referred
to as Column-Column Rectangular Block (CCRB). In this
flavor of the tile layout, tiles follow the column-major order
and elements within tiles follow the column-major order.
The same applies to the blocks A11, A21, A12, and A22.

Because the entire matrix occupies a contiguous region of
memory, translation between the tile layout and the legacy
FORTRAN 77 layout can be done in place, without chang-
ing the memory footprint. Gustavson et al. [33] devised
a collection of routines for performing this translation in
a parallel and cache efficient manner. It is important to
observe that the layout translation routines have a broader
impact in forming the basis for a fast transposition operation.
The codes are distributed as part of the PLASMA library.

Form the standpoint of serial execution, tile layout mini-
mizes conflict cache misses, because two different memory
locations within the same tile cannot be mapped to the
same set of a set-associative cache. The same applies to the
Translation Lookaside Buffer (TLB) misses. In the context
of parallel execution, tile layout minimizes the probability
of false sharing, which is only possible at the beginning
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A11

A21

A12

A22

Figure 1: The Column-Column Rectangular Block (CCRB)
matrix layout.

and end of the contiguous memory region occupied by each
tile, and can easily be eliminated altogether, if the matrix is
aligned with cache lines and tiles are divisible by the cache
line size. Tile layout is also beneficial for prefetching, which
in the case of strided memory access is likely to generate
useless memory traffic.

The tile algorithms dramatically increase the opportu-
nities for scheduling by exposing a much higher level of
parallelism and facilitating pipelining of operations. In order
to exploit the fine-grained parallelism to its fullest, efficient
schedules have to be designed, while data dependencies are
preserved, i.e., data hazards are prevented. This has been
done for both the simpler single-sided factorizations, such
as Cholesky, LU and QR [1, 2, 13, 14, 19–21, 36, 48], as
well as the more complicated two-sided factorizations, such
as the reductions to band bi-diagonal and band tri-diagonal
form [34, 35, 52–55]. The process of constructing such
schedules through manipulation of loop indexes and en-
forcing them by progress tables is tedious and error-prone.
Using a runtime dataflow scheduler is a good alternative.
Here, a superscalar scheduler is used.

Superscalar schedulers exploit multithreaded parallelism
in a similar way as superscalar processors exploit Instruction
Level Parallelism (ILP). Scheduling proceeds under the
constraints of data hazards: Read after Write (RaW), Write
after Read (WaR) and Write after Write (WaW). In the
context of multithreading, superscalar scheduling is a way
of automatically parallelizing serial code. The programmer
is responsible for encapsulating the work in side-effect-free
functions (parallel tasks) and providing directionality of
their parameters (input, output, input-and-output), and the
scheduling is left to the runtime. Scheduling is done by
conceptually exploring the Directed Acyclic Graph (DAG),
or task graph, of the problem. In practice the DAG is never
built entirely, and instead explored in a sliding window
fashion. The superscalar scheduler used here is the QUeuing
And Runtime for Kernels (QUARK) [63] system, developed
at the University of Tennessee.
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Figure 2: The percentage of the time spent in each kernel of
the DGESDD solver using the standard one stage approach
to compute the bidiagonal form.

5 Multi-Stage Asynchronous Algorithm for BRD

Due to its high computational complexity of O(8
3 n3) (for

square matrices) and interdependent data access patterns,
the bidiagonal reduction phase is the most challenging stage
to develop and optimize: both algorithmically and from the
implementation standpoint. There are two main approaches
targeting the problem: the standard one-stage approach from
LAPACK [3], whereby the Householder transformations
are grouped and applied in a blocked fashion to directly
reduce the dense matrix to bidiagonal form. A more
recent approach, the two-stage one [34], applies blocked
Householder transformations to, first, reduce the matrix to a
band form, and, second, uses the bulge chasing technique to
reduce the band matrix to the canonical bidiagonal form.

The one-stage reduction to bidiagonal form, as it is
implemented in LAPACK, suffers from lack of efficiency.
To understand it better, one has to focus on the two compu-
tational steps that are repeated until the matrix is reduced:
the panel factorization and the update of the trailing subma-
trix. First, the panel factorization computes the similarity
transformations (Householder reflectors) to introduce zeros
to the entries below the subdiagonal within a single block
of columns. This step is memory-bound because each
reflector relies on two matrix-vector multiplications with
the trailing submatrix. The step is thus critical as the entire
trailing submatrix needs to be loaded into memory and
very few floating-point operations are executed on all the
transfered data. As the memory bandwidth becomes more
limited and does not scale with the number of cores, the
panel factorization step will not scale for large matrices that
do not fit in cache. Consequently, any implementation is
bound to generate a tremendous amount of cache and TLB
misses. The trailing submatrix update applies the blocked
reflectors using a compute-bound operations that utilize
Level 3 BLAS, which have high data reuse ratio allowing for
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5.1 First Stage: Compute-Intensive and Efficient Kernels5 MULTI-STAGE ASYNCHRONOUS ALGORITHM FOR BRD

highly tuned implementations. In addition, Level 3 BLAS
lend themselves to parallelization due to their inherent data
locality properties that can be exploited to achieve high per-
formance rates for large amounts of operations with most of
it completely independent and thus perfectly suited for mul-
ticore processors. Simply put, this is the computational step
of the reduction rich in parallelism and high-performance
computations. Unfortunately, each panel factorization
must be synchronized with the corresponding update of the
trailing submatrix, which prevents asynchronous execution
and overlap of memory-bound and compute-bound steps
that could potentially alleviate the effects of the former.
Figure 2, shows the percentage of the total time for each of
the four components of the SVD solver using the standard
one-stage reduction approach when all the singular vectors
are computed. The figure makes it clear that the reduction
to the bidiagonal form requires more than about 70% of the
total time for the case when all the singular vectors are com-
puted. In addition, when only singular values are needed, the
reduction requires about 90% of the total computing time.
This was the main motivation for our work, which is to ana-
lyze and develop a new algorithm that computes the singular
value decomposition that is based on the two-stage approach.
We focus on modern multicore architectures and use the
technologies available through the PLASMA project [60].

The two-stage reduction is designed to overcome the
limitations of the one-stage approach that relies heavily
on memory-bound operations. It also increases the use of
compute-intensive operations that benefit from the increase
in CPU core count. Many algorithms have been extensively
studied in the context of the symmetric eigenvalue prob-
lem [8, 9] and, more recently, tile algorithms have achieved
good performance [34, 55]. The idea behind them is to split
the original one-stage approach into a compute-intensive
phase (first stage) and a memory-bound phase (second or
bulge-chasing stage). The first stage reduces the original
general dense matrix to a band form (either upper or
lower), and the second stage reduces the band form to the
canonical bidiagonal form (again, either upper or lower).
The two-stage approach that is used in our implementation
and exhibits some similarities to what has been developed
for the symmetric eigenvalue problem [34]. To put our work
in a proper perspective, we start by briefly describing the
first stage (reduction from full dense to band), and then
we explain in more detail the reduction from band to the
bidiagonal form. We will also talk about the scheduling
techniques that our implementation relies on.

5.1 First Stage: Compute-Intensive and Efficient
Kernels

The first stage applies a sequence of blocked Householder
transformations to reduce the general dense matrix to ei-
ther an upper or a lower band matrix. This stage uses
compute-intensive matrix-multiply kernels, that eliminate

  0   5  10  15  20  25 

  0 

  5 

 10 

 15 

 20 

 25 

 

QR	


(a) QR factorization of tile A2,2

  0   5  10  15  20  25 

  0 

  5 

 10 

 15 

 20 

 25 

 

LQ	


(b) LQ factorization of tile A2,3

Figure 3: Kernel execution of the BRD algorithm during the
first stage.

the memory-bound matrix-vector product from the one-
stage panel factorization. It also illustrates a beneficial data
access patterns through the use of compute-intensive opera-
tions based on Level 3 BLAS for large portions of the code [8,
22, 25, 38]. Additionally, this stage is made highly parallel
because of the tile algorithm formulation [2] that brings the
parallelism to the fore. Conceptually and physically, the ma-
trix is split into nt×nt tiles (nt=n/nb, nb is the size of the tile
and the resulting matrix bandwidth). The data within a tile
is stored contiguously in memory. The algorithm then pro-
ceeds as a collection of interdependent tasks that operate on
the tile data layout. Figure 3 highlights the execution break-
down during the second step of the first stage of the reduction.
A QR factorization is computed for the tile A2,2 (the red tile).
After this QR is finished, a set of independent tasks is re-
leased and they all can be executed in parallel. All tiles A2,•
(the black tiles of Figure 3(a)) can be updated by applying the
Householder transformations that are generated by the QR
factorization of A2,2. Also, all the tiles A•,2 (the magenta tiles
of Figure 3(a)) can also be independently annihilated one af-
ter another with the R factor of A2,2. After each tile Ai,2 is an-
nihilated (for example the dark magenta tile of Figure 3(a)), a
set of parallel tasks may be launched to update all the tiles of
the block row i (the dark yellow tiles of Figure 3(a)). More-
over, when A2,3 is updated, then an LQ factorization is per-
formed for this tile (the blue tile of Figure 3(b)). Similarly to
the QR process, after LQ, all the tiles in the third column of
tiles: A3:nt,3 (the grey tiles of Figure 3(b)): can now be inde-
pendently updated by the Householder vectors from the LQ
factorization, provided that they have been updated with the
transformation from the QR factorization. Similarly, all the
tiles A2,4:nt (the cyan tiles of Figure 3(b)) can also be annihi-
lated. Likewise, each annihilation of A1,i (the dark cyan tile
of Figure 3(b)) enables a set of tasks to update the block col-
umn i (the dark yellow tiles of Figure 3(b)). We note, that this
requires implementations of new computational kernels to be
able to operate on the new data structures. The details of the
implementation of this stage are provided elsewhere [34, 55].
This process of interleaving the QR and the LQ factorizations
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at each step repeats until the end, and, as result, we obtain a
band matrix with a bandwidth of size nb. As we mentioned
above, the tile formulation of the algorithm resulted in cre-
ation of a large number of parallel tasks. These tasks are orga-
nized into a directed acyclic graph (DAG) [11, 15], with the
nodes representing the computational tasks and the edges—
the data dependencies between them. Thus, restructuring of
the linear algebra algorithms as a sequence of tasks that oper-
ate on tiles of data removes the fork-join bottleneck that be-
fits the LAPACK-style implementations. It also avoids idle
time for individual cores, while, at the same time, increasing
the data locality for each core. Moreover, in order to increase
the efficiency of our algorithm, we improved our dynamic
scheduler by developing two main features that played an
important role in to targetting high-performance execution
rates. Two auxiliary options were added to the scheduler that
allow to label some of the tasksPRIORITY andLOCALITY.
For example, when the QR factorization of A1,1 and a se-
quence of QR updates ensues, it is better to increase the prior-
ity of all the tasks that modify the tile A1,2, in such a way that
the LQ process of A1,2 start as soon as possible. As a result,
this technique will increase the number of parallel tasks and
will aid the interleaving of the tasks from both the QR and
the LQ update sequences. As described below, this has a big
impact on data locality. The second task label that we devel-
oped is the LOCALITY flag. It is used for the update of any
tile of A2:n,2:n. It makes it possible for A2,2 to be updated by
the QR’s Householder process and by the LQ Householder
process. Hence, our scheduler has an opportunity to let the
same core update A2,2 by the two transformations one after
the other. This will result in the tile data being loaded from
the main memory only once.

5.2 Second Stage: Cache-Friendly Computational
Kernels

The band form is further reduced to the final condensed form
using the bulge chasing technique. This procedure annihi-
lates the extra off-diagonal elements by chasing the created
fill-in elements down to the bottom right side of the matrix
using successive orthogonal transformations at each sweep.
This stage involves memory-bound operations and requires
the band matrix to be accessed from multiple disjoint loca-
tions. In other words, there is an accumulation of substantial
latency overhead each time different portions of the matrix
are loaded into cache memory, which is not compensated
for by the low execution rate of the actual computations
(the so-called surface-to-volume effect). To overcome these
critical limitations, we developed a bulge chasing algorithm,
very similar to the novel bulge chasing techniques for
symmetric eigenvalue problems (reduction from band to
bidiagonal) developed in [34], but we differ from it in
using a column-wise elimination instead of an element-wise
elimination. In addition, we also differ by developing our
kernels to deal with general matrices instead of symmetric
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Figure 4: Kernel execution of the BRD algorithm during the
second stage.

matrices. When the singular vectors need to be computed,
the most problematic aspect of the standard procedure is
the element-wise elimination [34]. Such an implementation
is very suitable when only singular value is required, but
is limited when singular vectors are required. In particular,
it generates element-wise Householder reflectors, and
thus, the update of the singular vectors by these reflectors
becomes the bottleneck as it is based on BLAS 1 operations.
Our modification adds a small amount of extra work but it
allows the use of the Level 3 BLAS kernels to compute the
transformations or to apply them in the form of the orthogo-
nal matrixU2 andV2 – the result of computation in this phase.
Moreover, we designed our algorithm to extensively use
cache friendly kernels combined with fine grained, memory
aware tasks in an out-of-order scheduling technique which
considerably enhances data locality. The purpose of this
section is only to make the paper self-contained. Therefore,
we only briefly describe our column-wise bulge chasing
approach for general band matrices as well as the technique
used for task scheduling and increasing data locality [35].

The bulge chasing algorithm consists of a succession of
three new kernels. These kernels have been designed to
increase cache reuse. The idea is to load a block of data
in the actual cache memory and to apply all the possible
computation to it before unloading it. The first kernel called
xGBCW1 illustrated in Figure 4(a), manipulate the green
block of data. It triggers the beginning of each sweep by
annihilating the extra non-zero entries within a single row,
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then applies the computed elementary Householder reflector
from the right within this block. Hence, it subsequently gen-
erates triangular bulges as shown in Figure 4(a) (the black
block). Note that this triangular bulge must be annihilated in
order to eventually avoid the excessive growth of the fill-in
structure. A classical implementation will eliminate the
whole triangular bulge. However, for an appropriate study of
the bulge chasing procedure, let us remark that the elimina-
tion of the row i+1 (the sweep i+1), at the next step, creates
a triangular bulge which will overlap this one by one column
shift to the right and one row to the bottom, as shown in
Figure 4(d) where the reader can see that the lower triangular
portion of the blue block (the bulge created in sweep i+ 1)
overlaps with the lower triangular portion of the green block
(corresponding to the bulges created by the previous sweep
i). As a result, we can reduce the computational cost and
instead of eliminating the whole triangular bulge created for
sweep i, we only eliminate the non-overlapped region of it:
its first column. The remaining columns can be delayed to
the upcoming annihilation sweeps. In this way, we can avoid
the growth of the bulges and reduce the extra cost accrued
when the whole bulge is eliminated. Moreover, we designed
a cache friendly kernel that takes advantage of the fact that
the created bulge (the green block) remains in the cache and
therefore it directly eliminates its first column and applies
the corresponding left update to the remaining column of
the green block. The second kernel, xGBCW2, loads the
next block and it applies the necessary left updates derived
from the previous kernel. Eventually this will generates
triangular bulges as shown in Figure 4(b). Hence, this kernel
will also annihilate the first row of the created bulge and
update its red block from the right. Finally, the third kernel,
xGBCW3, loads the next block (the third green block of
Figure 4(c)) and it continues applying, from the right, the
transformations of the previous kernel 2. Like kernel 1, it
also creates a bulge which is removed and the green block is
updated correspondingly from the left similar to the process
undertaken by kernel 1. Accordingly, the annihilation of
each sweep can be described as a single call to kernel 1
followed by repetitive calls to a cycle of the kernels 2 and 3.

The implementation of this stage is done by using either a
dynamic or a static runtime environment that we developed.
This stage is, in our opinion, one of the main challenges for
algorithms as it is difficult to track the data dependencies.
The annihilation of the subsequent sweeps will generate
computational tasks, which will partially overlap within
the data used by the tasks of the previous sweeps (see Fig-
ure 4(d)) – the main challenge of dependence tracking. We
have used our data translation layer (DTL) and functional
dependencies [34, 55] to handle the dependencies and to
provide crucial information to the runtime to achieve the
correct scheduling. As mentioned above, the amount of
data involved by each task is of size nb×nb but are handled
efficiently because our kernels increase cache reuse. We also

developed our scheduling technique to minimize the memory
traffic and increase the efficiency of our algorithm in such a
way that the subsequent tasks that involve the same region of
data will be executed by the same thread. As an example, the
first task T (2)

1 of the annihilation of sweep 2, which operates
on the magenta block of Figure 4(d), overlaps the region of
the data that has been used by the first task T (1)

1 of the sweep 1
(green block). Yet, it is obvious to execute task T (2)

1 by the
same thread that executed T (1)

1 . To ensure the maximum
reuse, we force the scheduler to distribute the tasks accord-
ing to their data location. The main goal of our data-based
scheduling is to define fine-grain local tasks that increase
cache reuse and minimize communication. For small matrix
sizes, we rather prefer the use of a subsequent set of threads
(the number of threads that fit the matrix into its fast memory)
while leaving the other threads working on different portions
of the code rather than using all the available resources. The
implementation of this phase has been well optimized. It has
been observed that it takes between 5% to 10% of the global
time of the reduction from dense to bidiagonal.

5.3 The Effects of the Bandwidth Size
From the foregoing, it is clear that the tile/band size is the
paramount parameter for achieving high performance. As
opposed to the first stage kernels, the kernels of the second
stage are clearly memory-bound and rely on Level 2 BLAS
operations. Their performance depends on how much data
can fit in the fast memory. Thus, if the tile size chosen during
the first stage is too large, the second stage may encounter
significant difficulties coping with the memory bus latency.
Figure 5 illustrates the effect of this parameter on the first
stage (reduction to general band) blue curve with “+”, and
on the second stage (the bulge chasing) green curve with
“diamond”. As expected, on the one hand, the tile size needs
to be large (120 < nb < 300) to extract high performance
from the first stage but not extremely large. Evidently, for
nb>360, we lose the gain obtained from the locality and the
cache reuse as the data does not fit into the L2 cache level
and also we lose a degree of the parallelism as the number
of tiles nt = n/nb decreases. On the other hand, the tile size
has to be small enough to extract high performance (thanks
to the cache speed up) from the bulge chasing stage. Thus
a trade-off between them is one of the best choices. In our
experiment we found that 120 < nb < 200 looks to be the
best compromise.

5.4 Application of Matrices for the Orthogonal
Transformation

The standard one-stage approach reduces the dense matrix A
to bidiagonal B and computes its singular values and vectors
as mentioned earlier in Section 1. The singular vectors of
A: U and V H ; are computed by updating of the singular
vectors of B from the left by Q and from the right by PH ,
respectively. In the case of the two-stage approach, the first
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Figure 5: The effect of the tile size on the performance of
both stages for a matrix of size 16000 using 48 cores of
system A.

stage reduces the original general dense matrix A to a general
band matrix by applying a two-sided transformations to
A such that QH

1 AP1=B. Similarly, the second stage—the
bulge-chasing—reduces the band matrix B to the bidiagonal
form by applying the transformation from both the left and
the right side to B such that QH

2 BP2=bi. Let’s now denote the
SVD of A by A=UΣV H , where U and V H are, respectively,
the left and the right singular vectors of A, and the diagonal
entries of Σ hold the singular values. These singular vectors
must be updated by both of Q∗ and P∗, according to (1)

U =Q1Q2Ls =(I−V1T1V H
1 )(I−V2T2V H

2 )Ls,
and,
V H =RsPH

2 PH
1 =Rs(I−W2TrH

2 W H
2 )(I−W1TrH

1 W H
1 )

(1)
where (V1,T1 and W1,Tr1) and (V2,T2 and W2,Tr2) represent
the left and the right Householder reflectors generated during
the first and the second stages of the reduction to the bidiag-
onal form. L and R are the left and the right singular vectors
of the bidiagonal matrix bi = LsΣRs. It is clear that the
two-stage approach introduces non-trivial amount of extra
computation: the application of Q2 and PH

2 ; for the case when
the singular vectors are needed. Thus, one of the crucial pro-
cedures of the two-stage algorithm, when optimizing for per-
formance, is the update of the singular vectors by the House-
holder transformations. The transformations that were gener-
ated during the two stages of the reduction to the bidiagonal
form. Obviously, the implementation of this scheme is not as
straightforward as simply parallelizing a loop. In particular,
because of complications of the bulge-chasing mechanism,
the order of generated task dependencies is quite intricate.

5.5 The Effects of Blocking

The application of the Householder reflectors V2,W2 is very
challenging and is usually the most time consuming opera-
tion when applied in the standard fashion. We present the
structure of V2 in Figure 6(a)—the structure of W2 is similar.
Note that these reflectors represent the annihilation of the

band matrix, and thus each is of length nb – the bandwidth
size. Let’s assume that we want to applyV2 to the left singular
vectors Ls: (I−V2T2V H

2 )Ls. The standard procedure does not
offer parallelism and is memory-bound because it relies on
updating Ls from the left by each of the v2 in sequence. The
parallelism here is expressed by the number of v2 within a col-
umn, which is n/nb. All the operations are based on Level
2 BLAS and require the corresponding row of the matrix Ls
to be loaded into memory for each reflector v2. One may
conclude that such an approach produces poor results. In
Figure 7, we depict the execution time in seconds to performs
the Q2Ls update using this approach. As expected, the perfor-
mance shown in Figure 7 is very poor and is shown only as a
baseline. A better procedure is to update with calls to Level 3
BLAS, which achieves both: very good scalability and per-
formance. The priority is to create compute intensive oper-
ations to take advantage of the efficiency of Level 3 BLAS.
We proposed and implemented accumulation and combina-
tion of the Householder reflectors. This is not always easy,
and to achieve this goal we must pay attention to the over-
lap between them as well as the fact that their application
must follow the specific dependency order of the bulge chas-
ing procedure in which they have been created. To stress on
these issues, let’s clarify it more by giving this example. For
sweep i (e.g., the column at position B(i,i):B(i+nb,i)), its an-
nihilation generates a set of k Householder reflectors (vk

i , wk
i ),

each of length nb, the vk
i are represented in column i of the ma-

trix V2 depicted in Figure 6(a). Likewise, the ones related to
the annihilation of sweep i+1, are those presented in column
i+1, where they are shifted one element down compared to
those of sweep i. We believe there is a way to implement a
blocked version for applying the V’s while adhering the con-
straints defined above. It is accomplished by combining of
the reflectors vk

i from sweep i with those from sweep i+ 1,
i+2,..., i+u that follow the diamond shape region as defined
in Figure 6(a). While each of those diamonds is considered as
one block, their application needs to follow the dependency
order. For example, applying the green block 4 and the red
block 5 of the V2’s in Figure 6(a) modifies the green block
row 4 and the red block row 5, respectively, of the singular
vector matrix Ls drawn in Figure 6(b) where one can easily
observe the overlapped region. Referring to the chasing or-
der, block 4 needs to be applied before block 5. We generate
a portion of the dependency graph (DAG) that expresses the
connections between the successive tasks involved in the ap-
plication of the V’s, and illustrate it in Figure 6(c).

For simplicity, we also draw a sample of those dependen-
cies by the arrows in Figure 6(a). The parallel computation
that can be obtained corresponds to the separated leaf node
of the tree of Figure 6(c). This process leads to a very limited
number of parallel and pipelined tasks. However, if we
take advantage of the left application of the Householder
reflectors Q2Ls being completely independent in respect
to the column of Ls, then we can express a large number
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Figure 6: (a) Tiling of V1, (b) Blocking technique to apply
V2, (c) Distribution of the singular vectors matrix that creates
independent fashion of applying V2 which increase locality
per core, (d) Portion of the DAG showing the dependency of
the V’s of V2.

of independent parallel tasks by splitting Ls by a block of
columns over the number of threads as shown in Figure 6(b),
where each diamond block can be applied independently to
each portion of Ls. This two-way of parallelism can be con-
sidered adequate for the development of high performance
algorithms. Moreover, this method does not require any data
communication between cores. The overlap between each
application of V ’s as described above increases the cache
reuse. We also define the size of each block of Ls in a way to
fit more than one region of it in the L2 cache to increase data
locality. We implemented a new kernel that deals with these
diamond shapes in a way that increases the cache reuse. We
report the improvements obtained by the blocking technique
that is combined with the two-way parallelism in Figure 7.
The results show the attractive improvement achieved here.
More details will be discussed in the experimental section.

The application of the first stage reflectors V1 to the re-
sulting matrix G=(I−V2T2V H

2 )Ls proceeds as follows. The
V1’s reflectors are stored in a tile storage fashion to increase
the data locality. and we illustrate its structure in Figure 6(d).
The parallelism of this step can be expressed in the two
following descriptions. On the one hand, thanks to the tile
algorithm, this procedure inherits parallelism and it is well

adapted for parallel computing. Here each tile represents a
block of V1’s where its application invokes different areas of
the matrix G, and so can be applied independently, e.g., any
tile of the magenta column of Figure 6(d) modifies different
areas of G and can proceed in parallel. The only constraint
to satisfy is to keep the left order update, meaning that as
soon as the v4,3 (black tile(4,3)) updates the matrix G, the
latter could be updated by the v4,2 and then by the blue v4,1.

On the other hand, similarly the singular vectors matrix G
can also by partitioned into a set of independent blocks/tiles
to be updated. As a result, the design of the tile algorithm
using the two-way parallelism generates a large number of
independent tasks that can be applied in an asynchronous
manner using either a static or dynamic scheduler. Finally,
since all v tiles of a block-row of V1 update the same blocks
of G, then the data-locality of all these tasks is forced to be
executed on the same thread.
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Figure 7: The effect of a blocked v.s., non-blocked version
of the application of Householder reflectors V2 using 48
cores of system A.

5.6 Trading Extra Computation for Higher Perfor-
mance Rate

The implementation that is discussed here is more related
to the hardware architecture based on hierarchical memory.
The blocking technique described for the application of the
Householder reflectors generated during the bulge chasing
stage (V2,W2) requires more sophistication since it might
increase the performance of this procedure. As described
above, the size of each block of the reflectors V (k)

2 is
(nb+u)×u where u is the blocking factor used. Because of
the diamond shape of the V (k)

2 blocks, each multiplication by
a block of reflectors V (k)

2 proceeds as three operations: 1) a
TRMM multiplication by the top lower triangular portion of
V (k)

2 of size u×u; 2) a GEMM with the middle portion of size
(nb − 2u)× u, and 3) another TRMM by the bottom upper
triangular portion of V (k)

2 of size u×u. We believe that, for
computational efficiency, we might replace all the TRMM by
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GEMM and thus, it performs only a one GEMM with V (k)
2 of

size (nb+u)×u, especially that GEMM’s operation are more
advantageous when dealing with small sizes. To illustrate
this, we perform experiments with both version and plot re-
sults on Figure 8. The improvement that is obtained is more
than 10% especially for large size where a large number of
multiplication by these small diamond blocks is performed.
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Figure 8: The effect of trading one Level 3 BLAS operation
for another Level 3 BLAS with different computational
complexity.

6 Experimental Results

This Section presents the performance comparisons of our
tile algorithm for two-stage SVD against the state-of-the-art
numerical linear algebra libraries.

6.1 Experimental Environment

Our experiments have been performed on two shared mem-
ory systems. They are representative servers-grade machines
as well as workstations commonly used for computationally
intensive workloads. The first system named system A is
composed of a four-socket AMD Opteron(tm) 6180 SE: 12
cores each (48 cores total), running at 2.5 GHz with 128 GiB
of main memory; the total number of cores is evenly spread
among two physical mother boards. The level 2 cache size
per core is 512 KiB. These computations are done in dou-
ble precision arithmetic. The theoretical peak for this archi-
tecture in double precision is 480 Gflop/s (10.1 Gflop/s per
core). Our second system named system B is an Intel mul-
ticore system with dual-socket, 8 core Intel Xeon E5-2670
(Sandy Bridge) processors, each running at 2.6 GHz. Each
socket has a 24 MB shared L3 cache, and each core has a pri-
vate 256 KB L2 and 64 KB L1. The system is equipped with
52 Gbytes of memory. The theoretical peak for this architec-
ture in double precision is 20.8 Gflop/s per core. There are a
number of software packages that include a singular value de-
composition solver. For comparison, we used the latest MKL
(Math Kernel Library) [43] version 13.1, which is a commer-
cial library from Intel that is highly optimized for Intel pro-

cessors and performs competes favorably with alternatives
on AMD processors. It includes a comprehensive set of math-
ematical routines implemented to run well on most x86 mul-
ticore processors. In particular, MKL includes LAPACK-
equivalent1 routines to compute the bidiagonal reduction
DGEBRD, and routines to find the singular value decompo-
sition such as DGESDD (the divide and conquer D&C algo-
rithm) and DGESVD (the implicit zero-shift QR algorithm).

6.2 Performance results

The following experiments illustrate the superior efficiency
and the scalability of our proposed SVD solver with respect
to the state-of-the-art optimized vendors numerical linear
algebra libraries. Each of every graph below presents many
comparison curves that we will describe. We performed an
extensive study with a large number of experimental tests
on two different machines (one with large number of cores
system A and another with small number of cores system B)
in order to give the reader as much information as possible.
We computed the SVD decomposition, where we either
compute only the singular values, or both singular values
and vectors, with two different algorithms (DGESVD,
DGESDD), varying the size of matrices from 2000 to 26000
using our two system (the 48 AMD cores of system A
and the 16 Sandy Bridge cores of system B). As many
applications need only a portion of the singular vectors,
we also present results using the DGESDD (the divide and
conquer SVD solver) to compute a 20% of the singular
vectors. In addition, in order to make our experiments
self-contained, we report the result of the improvements that
our two-stage implementation brought to the reduction to
bidiagonal form compared against the one-stage approach
from the state-of-the-art numerical linear algebra libraries.

In particular, Figure 9 and Figure 10, displays speedups
and efficiencies for computing the SVD using the divide and
conquer technique. For each speedup curve (representing
a routine), we depict the ratio of the running time between
the routine from the Intel’s MKL library and its counterpart
from our implementation within the same computing
environment. These results show four types of behavior.

Let’s first comment on the reduction to bidiagonal form
(DGEBRD: the red curve) and on the SVD decomposition
when only the singular values are computed (DGESDD NO
Vectors: the blue curve). The speedups shown are remark-
able, our implementation asymptotically achieves more than
8× speedup on the 48 cores of system A and more than 4×
speedup on the 16 cores of system B. We had expected such
improvement. The results obtained here confirm the impor-
tance of the considerations discussed in our study, when
designing high performance libraries. The gain is due to the
tile algorithm that we developed and to its efficient imple-

1We consider a routine to be LAPACK-equivalent if it provides the
same behavior in terms of numerical error bounds and can handle the
same input parameters.
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Figure 9: The speedup obtained by our implementation of
DGESDD versus its counterpart from the Intel MKL library
on 48 AMD cores of system A.
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Figure 10: The speedup obtained by our implementation of
DGESDD versus its counterpart from the Intel MKL library
on 16 Sandy Bridge cores of system B.

mentation of the first stage (reduction to band) which is the
compute intensive stage, and from the design of both the sec-
ond stage (bulge chasing) and the orthogonal transformation
update, that maps both the algorithm and the data to the hard-
ware using cache friendly kernels and scheduling based on in-
creasing data locality. Our new algorithm scales as the matrix
sizes increase and asymptoticly achieves a perfect speedup,
despite the side effects of running on a NUMA system.

In contrast to the standard approach where the reduction
to bidiagonal dominates the overall time (as described above
in Figure 2), the two-stages reduction to bidiagonal consists
of less than 20% of the overall time. Thus, when only
singular values or small portion of the vectors are needed,
our approach is particularly favorable. One of the most
fruitful advantage of our two-stages SVD algorithm is the
attractive speedup shown when a portion of the singular
vectors is computed. The results obtained by the DGESDD

when 20% of the singular vectors are required are more than
4× faster when using the 48 cores of system A (magenta
curve of Figure 9) and can get more than 2× speedup when
using the 16 cores of system B (magenta curve of Figure 10).
The underlying results are straightforward. Computing
portion of the singular vectors significantly minimizes the
overhead of the extra cost (applying Q2 and P2) introduced
by the two-stages approach, and therefore the speedup
observed here is relatively high.

Moreover, we also evaluated the performance and the
speedup of our algorithm when all the singular vectors are
computed (green curve with diamond of Figure 9 and 10).
We can observe that our algorithm performs consistently
better than the state-of-the-art optimized MKL routine
DGESDD with the exception of small matrices. Our im-
plementation is around three times faster when using large
number of cores (48 cores of system A) and get around 1.5
speedup on small number of cores (16 cores of system B).

Our fourth observation is related to the scalability of our
implementation. To explain it briefly, we have performed
experiments with 12 cores on system A, and compare it with
the presented results on the 48 cores. Our solver accom-
plished very good scalability, the execution time on 48 cores
is about 3.5 times faster than the one obtained on 12 cores. It
also appears from the speedup illustrated in our figures that
the scalability increases with respect to the number of cores,
and for that we believe that this implementation is suitable
to exploit distributed and large shared machines.

Since we prefer to cover all the available SVD-solver and
not be limited by the divide and conquer, we also performed
the same set of experiments using the implicit zero-shift
QR algorithm (DGESVD) as another solver variant. The
speedup results obtained on both of our machines system A
and system B, are presented in Figure 11 and Figure 12,
respectively. We note that, here we couldn’t compute a set of
the singular vectors because the routine which computes the
SVD decomposition of the bidiagonal matrix (DBDSQR)
does not provide this option and requires that the transfor-
mation matrices Q and PH be explicitly provided as input.
However, experiments with either all the singular vectors
or none of the singular vectors were reported. The speedup
of the DGEBRD routine has been reported in Figure 11 and
Figure 12, for the completeness of our graphs.

The performance shown in Figure 11 and Figure 12, is very
close to the ones using the divide and conquer solver. It drops
slightly compared to Figure 9 and Figure 10, because the
DBDSQR solver used here requires the matrix Q and P ex-
plicitly computed in input, and so it update the singular vec-
tors Ls and Rs internally. Thus it does not benefit from all the
optimizations we implemented. However, the explicit gener-
ation of the matrices Q and P take advantage of all the tech-
niques described in this paper. As a consequence, the trend
of the speedup curve of Figure 11 and Figure 12 is slightly de-
creases compared to the one of Figure 9 and Figure 10. There-
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Figure 11: The speedup obtained by our implementation of
DGESVD versus its counterpart from the Intel MKL library
on 48 AMD cores of system A.

2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Matrix size

S
pe

ed
up

 

 
2−stages / MKL  (DGEBRD)
2−stages / MKL  (DGESVD  NO Vectors)
2−stages / MKL  (DGESVD  ALL Vectors)

Figure 12: The speedup obtained by our implementation of
DGESVD versus its counterpart from the Intel MKL library
on 16 Sandy Bridge cores of system B.

fore, reaching a two-fold speedup (Figure 11) is worthy effort
and can be considered speed-up by more than a factor of 2.

Finally, we demonstrate that our algorithm is very effi-
cient and can achieve more than two-fold speedup over the
well know state-of-the-art optimized libraries. It is also well
suitable especially when only the singular values or when a
portion of the singular vectors is needed – the results show
4× to 10× speedup. We believe that this achievement makes
our algorithm a very good candidate for the current and next
generation of machines.

7 Conclusions and Future Work

In this paper, we have presented a novel implementation of
an algorithm that computes singular values and vectors of
a dense matrix. Our algorithm is based on the two-stage
approach and thus performs twice as many floating oper-
ations to obtain the singular vectors when compared with

the classic approach that is currently in common use. Such
drastic increase in operation count might have been consid-
ered a hindrance a few years back, but on modern hardware
it is not the case. We attribute this to the formulation of the
algorithm in terms much more efficient kernel routines, and
we show how the benefit both theoretically as well as through
practical experiments. Instead of a two-fold slow-down that
would have been expected from the two-fold increase in the
operation count, we were able to achieve more than two-fold
speed-up over the current breed of state-of-the-art software
packages that were considered the fastest at the time of this
writing. The performance obtained is very encouraging. We
believe that these techniques will only increase in relevance
for up-coming architectures. Additionally, because of good
scalability properties of our algorithm, we believe that our
approach lends itself well to distributed memory implemen-
tations and we plan to pursue this direction in the future.
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