
Optimal Checkpointing Period:
Time vs. Energy

Guillaume Aupy1, Anne Benoit1, Thomas Hérault2, Yves Robert1,2, and Jack Dongarra2

1. LIP, École Normale Supérieure de Lyon, CNRS & INRIA, France
2. University of Tennessee Knoxville, USA

Abstract—This short paper deals with parallel scientific ap-
plications using non-blocking and periodic coordinated check-
pointing to enforce resilience. We provide a model and detailed
formulas for total execution time and consumed energy. We char-
acterize the optimal period for both objectives, and we assess the
range of time/energy trade-offs to be made by instantiating the
model with a set of realistic scenarios for Exascale systems. We
give a particular emphasis to I/O transfers, because the relative
cost of communication is expected to dramatically increase, both
in terms of latency and consumed energy, for future Exascale
platforms.

I. INTRODUCTION

A significant research effort is focusing on the characteris-
tics, features, and challenges of High Performance Computing
(HPC) systems capable of reaching the Exaflop performance
mark [1], [2]. The portrayed Exascale systems will neces-
sitate billion way parallelism, resulting not only in a mas-
sive increase in the number of processing units (cores), but
also in terms of computing nodes. Considering the relative
slopes describing the evolution of the reliability of individual
components on one side, and the evolution of the number
of components on the other side, the reliability of the en-
tire platform is expected to decrease, due to probabilistic
amplification. Even if each independent component is quite
reliable, the Mean Time Between Failures (MTBF) is expected
to drop drastically. Executions of large parallel applications
on these systems will have to tolerate a higher degree of
errors and failures than in current systems. The de-facto
general-purpose error recovery technique in high performance
computing is checkpoint and rollback recovery. Such protocols
employ checkpoints to periodically save the state of a parallel
application, so that when an error strikes some process, the
application can be restored into one of its former states. The
most widely used protocol is coordinated checkpointing, where
all processes periodically stop computing and synchronize to
write critical application data onto stable storage. Coordinated
checkpointing is well understood, at least in its blocking form
(when no computing activity takes place during checkpoints),
and good approximations of the optimal checkpoint interval
exist; they are known as Young’s and Daly’s formula [3], [4].

While reliability is a major concern for Exascale, another
key challenge is to minimize energy consumption, both for

This work was supported in part by the ANR RESCUE project. A. Benoit
and Y. Robert are with the Institut Universitaire de France.

economic and environmental reasons. One of the most power-
consuming component of today’s systems is the processor:
even when idle, it dissipates a significant fraction of the total
power. However, for future Exascale systems, the power dis-
sipated to execute I/O transfers is likely to play an even more
important role, because the relative cost of communication is
expected to dramatically increase, both in terms of latency and
consumed energy [5].

In this short paper, we investigate trade-offs between ex-
ecution time and energy consumption for the execution of
parallel applications on future Exascale systems. The optimal
period T opt

Time given by Young’s and Daly’s formula [3], [4]
will minimize (expected) execution time. But will it minimize
energy consumption? The answer is negative, mainly because
the fraction of power PCal spent when computing (by the
CPUs) is not the same as the fraction of power PI/O spent when
checkpointing. In particular, we revisit the work of Meneses,
Sarood and Kalé [6] for checkpoint/restart, where formulas
are given to compute the time-optimum and energy-optimum
periods. However, our model is more precise: (i) we carefully
assess the impact of the power consumption required for I/O
activity, which is likely to play a key role at the Exascale; (ii)
we consider non-blocking checkpointing that can be partially
overlapped with computations; (iii) we give a more accurate
analysis of the consumed energy.

Altogether, this short paper provides the following main
contributions:
• We provide a refined analytical model to compute both

the execution time and the consumed energy with a given
checkpoint period. The model handles the case where
checkpointing activity can be non-blocking, i.e., partially
overlapped with computations.

• We provide analytical formulas to approximate the opti-
mal period for time T opt

Time as well as the optimal period
for energy T opt

Energy, thereby refining and extending Daly [4]
and Meneses, Sarood and Kalé [6] results to non-blocking
checkpoints.

• We assess the range of time/energy trade-offs to be made
by instantiating the model with a set of realistic scenarios
for Exascale systems.

II. MODEL

In this section, we introduce all the model parameters.
We start with parameters related to resilience (checkpointing)
before moving to parameters related to energy consumption.



A. Checkpointing
We model coordinated checkpointing [7] where checkpoints

are taken at regular intervals, after some fixed amount of
work units have been performed. This corresponds to an
execution partitioned into periods of duration T . Every period,
a checkpoint of length C is taken.

An important question is whether checkpoints are blocking
or not. On some architectures, we may have to stop executing
the application before writing to the stable storage where
the checkpoint data is saved; in that case checkpoint is fully
blocking. On other architectures, checkpoint data can be saved
on the fly into a local memory before the checkpoint is
sent to the stable storage, while computation can resume
progress; in that case, checkpoints can be fully overlapped with
computations. To deal with all situations, we introduce a slow-
down factor ω: during a checkpoint of duration C, the work
that is performed is ωC work units. In other words, (1−ω)C
work units are wasted due to checkpoint jitter disrupting the
progress of computation. Here, 0 ≤ ω ≤ 1 is an arbitrary
parameter. The case ω = 0 corresponds to a fully blocking
checkpoint, while ω = 1 corresponds to a checkpoint totally
overlapped with computations. All intermediate situations can
be represented.

Next we have to account for failures. During t time units
of execution, the expectation of the number of failures is t

µ ,
where µ is the MTBF (Mean Time Between Failures) of the
platform. Note that if the platform if made of N identical
resources whose individual mean time between failures is µind,
then µ = µind

N . This relation is agnostic of the granularity of
the resources, which can be anything from a single CPU to a
complex multi-core socket. When a failure strikes, there is a
downtime of length D (time to reboot the resource or set up
a spare), and then a recovery of length R (time to read the
last stored checkpoint). The work executed by the application
since the last checkpoint and before the failure needs to be re-
executed. Clearly, the shorter the period T , the less work to
re-execute, but also the more overhead due to frequent check-
points in a failure-free execution. The best trade-off when
ω = 0 (blocking checkpoint) is achieved for T =

√
2Cµ+C

(Young’s formula [3]) or T =
√
2C(µ+D +R)+C (Daly’s

formula [4]). Both formulas are first-order approximations and
valid only if all checkpoint parameters C, D and R are small
in front of µ (and these formulas collapse if they become
negligible). In Section III, we show how to extend these
formulas to the case of non-blocking checkpoints (see also [8]
for more details).

B. Energy
To compute the energy consumption of the application,

we need to consider the energy consumption of the different
phases, and hence the power consumption at each time-step.
To this purpose, we define:
• PStatic: this is the base power consumed when the plat-

form is switched on.
• PCal: when the platform is active, we have to consider

the CPU overhead in addition to the static power PStatic.

• PI/O: similarly, this is the power overhead due to file
I/O. This supplementary power consumption is induced
by checkpointing, or when recovering from a failure.

• PDown: for coordinated checkpointing, when one proces-
sor fails, the rest of the machine stays idle. PDown is
the power consumption overhead when one machine is
down, that may be incurred for instance by rebooting the
machine. In general, we let PDown = 0.

Meneses, Sarood and Kalé [6] have a simpler model with
two parameters, namely L, the base power (corresponding
to PStatic with our notations), and H , the maximum power
(corresponding to PStatic +PCal with our notations). They use
PI/O = PDown = 0.

In Section III, we show how to compute the optimal period
that minimizes the energy consumption. In Section IV, we
instantiate the model with expected values for power consump-
tion of Exascale platforms.

III. OPTIMAL CHECKPOINTING PERIOD

We consider a parallel application whose execution time is
Tbase without any overhead due to the resilience method or
the occurrence of failures. We compute the expectation Tfinal
of the total execution time (accounting both for checkpointing
and for failures) in Section III-A, and the expectation Efinal
of the total energy consumed during this execution of length
Tfinal in Section III-B. We will compute the optimal period T
that minimizes the objective, either Tfinal or Efinal.

A. Execution time

The total execution time Tfinal of the application depends
on two sources of overhead. We first compute Tff, the time
taken by a fault-free execution, thereby accounting only for
the overhead due to periodic checkpointing. Then we compute
Tfails, the time lost due to failures. Finally, Tfinal = Tff + Tfails.
We detail here both computations:
• The reasoning to derive Tff is simple. We need to

execute a total amount of work equal to Tbase. During
each period of length T , there is an amount of time
T − C where only computations take place, and an
amount of time C of checkpointing, where only a
work ωC is done. Therefore, the total number of
work units executed during a period of length T is
T − C + ωC = T − (1− ω)C, and

Tff = Tbase
T

T − (1− ω)C
.

• The reasoning to compute Tfails is the following. Since the
mean time between two failures is µ, the average number
of failures during execution is Tfinal

µ . For each failure, the
time lost is expressed as:

– D +R for downtime and recovery;
– a time ωC for the work that was done during

the previous checkpoint and that has to be redone
because it was not checkpointed (because of the
failure);



– with probability T−C
T , the failure happens while

we are not checkpointing, and the time lost is on
average A = T−C

2 ;
– otherwise, with probability C

T , the failure happens
while we are checkpointing, and the time lost is on
average B = T − C + C

2 = T − C
2 .

The time lost for each failure is

D +R+ ωC +
T − C
T

A+
C

T
B = D +R+ ωC +

T

2
.

Finally,
Tfails =

Tfinal

µ

(
D +R+ ωC +

T

2

)
.

We are now ready to express the total execution time:

Tfinal = Tff + Tfails

= Tbase
T

T − (1− ω)C
+
Tfinal

µ

(
D +R+ ωC +

T

2

)
=

T

(T − (1− ω)C)
(
1− D+R+ωC+T/2

µ

)Tbase

=
T

(T − a)
(
b− T

2µ

)Tbase,

where a = (1− ω)C and b = 1− D+R+ωC
µ .

This equation is minimized for

T opt
Time =

√
2(1− ω)C(µ− (D +R+ ωC)). (1)

When ω = 0, we obtain an expression close to that of
Young and Daly, but slightly different because they have
less accurately approximated the total execution time. In the
following, we let ALGOT be the checkpointing strategy that
checkpoints with period T opt

Time.

B. Energy consumption

In order to compute the total energy consumption of the
execution, we consider the different phases during which the
different powers introduced in Section II-B are used:
• First, we consume PStatic during each time-step of the ex-

ecution. Indeed, even when a node fails and is shutdown,
we still pay for the power of all the other nodes, for
the cooling system, etc. The corresponding energy cost
is TfinalPStatic.

• Next, let TCal be the time during which the CPU is used,
inducing a power overhead PCal. TCal includes the base
work Tbase, and Tre-exec, the work that must be re-executed
after each failure (which we multiply by the number of
failures Tfinal/µ):

– with probability T−C
T , the failure does not happen

during a checkpoint, and the work to re-execute is
A = ωC + T−C

2 ;
– with probability C

T , the failure happens during the
execution of a checkpoint, and the work to re-execute
is B = ωC + T − C + ωC

2 .

We derive Tre-exec =
T−C
T A+ C

T B, hence

Tre-exec = ωC +
T 2 − C2

2T
+
ωC2

2T
.

Finally, we have:

TCal = Tbase +
Tfinal

µ

(
ωC +

T 2 − C2

2T
+
ωC2

2T

)
.

The corresponding energy consumption is TCalPCal.

• Let TI/O be the time during which the I/O system is used,
inducing a power overhead PI/O. This time corresponds
to checkpointing and recovery from failures.

– The total number of checkpoints that are taken in a
fault-free execution is equal to the number of periods,
Tbase

T−(1−ω)C , and the time taken by checkpoints is
therefore TbaseC

T−(1−ω)C .

– For each failure, there is an additional overhead:
1) the system needs to recover, which lasts R time-

steps;
2) with probability T−C

T , the failure does not hap-
pen during a checkpoint, and there is no addi-
tional I/O overhead;

3) however, with probability C
T , the failure happens

during a checkpoint, and the I/O time wasted is
(in average) C

2 .
Altogether, we obtain

TI/O =
TbaseC

T − (1− ω)C
+
Tfinal

µ

(
R+

C2

2T

)
.

The corresponding energy consumption is TI/OPI/O.

• Finally, let TDown be the total down time, incurring a
power overhead PDown. We have

TDown =
Tfinal

µ
D,

and the corresponding energy cost is TDownPDown. This
term is only included for full generality, as we expect to
have PDown = 0 in most scenarios.

The final expression for the total energy consumed is

Efinal = TCalPCal + TI/OPI/O + TDownPDown + TfinalPStatic

=

(
Tbase +

Tfinal

µ

(
ωC +

T 2 − C2

2T
+
ωC2

2T

))
PCal

+

(
Tfinal

µ

(
R+

C2

2T

)
+ C

Tbase

T − (1− ω)C

)
PI/O

+
Tfinal

µ
DPDown + TfinalPStatic.

It is important to understand that Tfinal 6= TCal+TI/O+TDown,
unless ω = 0. Indeed, CPU and I/O activities are overlapped
(and both consumed) when checkpointing. To ease the deriva-
tion of the optimal period that minimizes Efinal, we introduce
some notations and let PCal = αPStatic, PI/O = βPStatic, and
PDown = γPStatic. Re-using parameters a = (1 − ω)C and
b = 1− D+R+ωC

µ from Section III-A, we obtain:



T ′final

Tbase
=

−ab+ T2

2µ

(T − a)2
(
b− T

2µ

)2
, and

E′final
PStatic

=
T ′

final
µ

(
αωC+βR+γD+ αT

2
− α(1−ω)C2

2T
+ βC2

2T
+µ

)
+Tfinal

2µ

(
α+

α(1−ω)C2

T2 − βC2

T2

)
− βCTbase

(T−(1−ω)C)2
.

Then, letting K =
(T−a)2(b− T

2µ )
2

PStaticTbase
, we have:

KE ′final =
−ab+T

2

2µ

µ

(
(αωC+βR+γD+µ)+ αT

2
+
α(1−ω)C2

2T
+ βC2

2T

)
+

(T−a)(b−T
2µ

)

2µ

(
α+

α(1−ω)C2−βC2

T

)
−βC

(
b− T

2µ

)2

= T 3
(

1
4µ
− 1

4µ

)
+T 2

(
αωC+βR+γD

2µ2 +
b+ a

2µ

2µ
− βC

4µ2 +
1
2µ

)
+T

(
−ab

2µ
− ab

2µ
+ βCb

µ
−2 (α(1−ω)−β)C2

4µ2

)
−βCb2

−ab(αωC+βR+γD+µ)
µ

−
(
b
2µ
− a

4µ2

)
(α(1− ω)−β)C2

+ 1
T

(
(α(1− ω)−β) C

2µ
−(α(1− ω)−β) C

2µ

)
= T 2

(
αωC+βR+γD

2µ2 + b
2µ

+ a−βC
4µ2 + 1

2µ

)
+T

(
(βC−a)b

µ
−2 (α(1−ω)−β)C2

4µ2

)
−ab(αωC+βR+γD+µ)

µ
−βCb2

+
(
b
2µ

+ a
4µ2

)
(α(1− ω)−β)C2 .

Let T opt
Energy be the only positive root of this quadratic

polynomial in T : T opt
Energy is the value that minimizes Efinal. In

the following, we let ALGOE be the checkpointing strategy
that checkpoints with period T opt

Energy.
As a side note, let us emphasize the differences with the

approach of Meneses, Sarood and Kalé [6] when restricting
to the case ω = 0 (because they only consider the blocking
variant). For each failure, they consider that:
• energy lost due to re-execution is T−2C

2 PCal, while we
have

(
T−C
T

(
T−C

2

)
+ C

T (T − C)
)
PCal =

T 2−C2

2T PCal ;
• energy lost due to I/O is CPI/O, while we have C2

2T PI/O.
Theses differences come from our more detailed analysis of
the impact of the failure location, which can strike either
during the computation phase, or during the checkpointing
phase, of the whole period.

IV. EXPERIMENTS

In this section, we instantiate the previous model with
scenarios taken from current projections for Exascale plat-
forms [1], [2], [5], [9]. We choose realistic values for all model
parameters: this includes all types of power consumption
(PStatic, PCal, PI/O and PDown), all checkpoint parameters (C,
R, D and ω), and the platform MTBF µ. We start with a word
of caution: our choices for these parameters may be somewhat
arbitrary, and do not cover the whole range of scenarios that
can be investigated. However, a key feature of our model is
its robustness: as long as µ is reasonably large in front of
checkpoint times, the model is able to accurately predict the
best period for execution time and for energy consumption.

The power consumption of an Exascale machine is capped
to 20 Mega-watts. With 106 nodes, this represents a nominal
power of 20 milli-watts per node. Let us express all power

values in milli-watts. A reasonable scenario is to assume that
half this power is used for operating the platform, hence to let
PStatic = 10. The overhead due to computing would represent
the other half, hence PCal = 10. As for communications and
I/Os, which are expected to cost an order of magnitude more
than computing [5], we take an overhead of 100, hence PI/O =
100. A key parameter for the experimental study is the ratio

ρ =
PStatic + PI/O

PStatic + PCal
=

1 + β

1 + α
. (2)

With our values, we get ρ = 5.5. Note that if we used
PStatic = 5 and kept the same overheads 10 and 100 for
computing and I/O respectively, we would get PCal = 10,
PI/O = 100, and ρ = 7. These two representative values of ρ
(ρ = 5.5 and ρ = 7) are emphasized by vertical arrows in
the plots below on Figure 1. As for PDown, the power during
downtime, we use PDown = 0, meaning that during downtime
we only account for the static power PStatic of the processors
that are idle.

The Jaguar platform, with N = 45, 208 processors, is
reported to have experienced about one fault per day [10],
which leads to an individual (processor) MTBF µind equal
to 45,208

365 ≈ 125 years. Therefore, we set the individual
(processor) MTBF to µind = 125 years. Letting the total
number of processors N vary from N = 219, 150 to N =
2, 191, 500 (future exascale platforms), the platform MTBF µ
varies from µ = 300 min (5 hours) down to µ = 30 min. The
experiments use resilience parameters that are representative
of current and forthcoming large-scale platforms [9], [11]. We
take C = R = 10 min, D = 1 min, and ω = 1/2.

On Figures 1 and 2, we evaluate the impact of the ratio ρ
(see Equation (2)) on the gain in energy and loss in time of
ALGOE with respect to ALGOT. The general trend is that
using ALGOE can lead to significant gains in energy at the
price of a small increase in execution time.

We then study in Figure 3 the scalability of the approach

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

 1.45

 1  2  3  4  5  6  7  8  9  10

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

ρ

(µ=300)
(µ=120)
(µ=30)

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18

 1  2  3  4  5  6  7  8  9  10

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

ρ

Figure 1: Time and energy ratios as a function of ρ, with
C = R = 10 min, D = 1 min, γ = 0, ω = 1/2, and various
values for µ.



 50  100  150  200  250  300

µ

 1

 10

ρ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

(a) Energy ratio of ALGOT over ALGOE

 50  100  150  200  250  300

µ

 1

 10

ρ

 1

 1.05

 1.1

 1.15

 1.2

 1.25

(b) Execution time ratio of ALGOE over ALGOT

Figure 2: Ratios of the different strategies with C = R = 10
min, D = 1 min, γ = 0, ω = 1/2 as a function of µ and ρ.

on forthcoming platforms. We set the duration of the complete
checkpoint and rollback (C and R, respectively) to 1 minute,
independently of the number of processors, and we let the
downtime D equal to 0.1 minutes. It is reasonable to consider
that checkpoint storage time will not increase with the number
of nodes in the future, but on the contrary will remain constant.
Indeed, system designers are studying a couple of alternative
approaches. One consists in featuring each computing node
with local storage capability, ensuring through the hardware
that this storage will remain available during a failure of
the node. Another approach consists in using the memory of
the other processors to store the checkpoint, pairing nodes
as “buddies”, thus allowing to take advantage of the high
bandwidth capability of the high speed network to design a
scalable checkpoint storage mechanism [12], [13], [14], [15].

The MTBF for 106 nodes is set to 2 hours, and this value
scales linearly with the number of components. Given these
parameters, Figures 3a and 3b shows (i) the execution time
ratio of ALGOE over ALGOT, and (ii) the energy consumption
ratio of ALGOT over ALGOE, both as a function of the number
of nodes. Figures 3a and 3b confirm the important gain in
energy that can be achieved, namely up to 30% for a time
overhead of only 12%. When the number of nodes gets very
high (up to 108), then we observe that both energy and time
ratios converge to 1. Indeed, when C becomes of the order of
magnitude of the MTBF, then both periods T opt

Time and T opt
Energy

become close to C to account for the higher failure rate.

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35

10
5

10
6

10
7

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

Number of nodes

(ρ=5.5)

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14

10
5

10
6

10
7

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

Number of nodes

(ρ=5.5)

(a) Time and energy ratios, as a function of the number of nodes,
when ρ = 5.5

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35

10
5

10
6

10
7

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

Number of nodes

(ρ=7)

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14

10
5

10
6

10
7

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

Number of nodes

(ρ=7)

(b) Time and energy ratios, as a function of the number of
nodes, when ρ = 7

Figure 3: Ratios of total energy and time for the two period
strategies, as a function of the number of nodes, with µ = 120
min for 106 nodes, C = R = 1 min, D = 0.1 min, γ = 0,
ω = 1/2.

V. CONCLUSION

In this short paper, we have provided a detailed analy-
sis to compute the optimal checkpointing period, when the
checkpointing activity can be partially overlapped with com-
putations. We have considered two distinct objectives: either
the goal is to minimize the total execution time, or it is
to minimize the total energy consumption. Because of the
different power consumption overheads due to computations
and I/Os, we obtain different optimal periods.

We have instantiated the formulas with values derived from
current and future Exascale platforms, and we have studied the
impact of the power overhead due to I/O activity on the gains
in time and energy. With current values, we can save more
than 20% of energy with an MTBF of 300 min, at the price
of an increase of 10% in the execution time. The maximum
gains are expected for a platform with between 106 and 107

processors (up to 30% energy savings).
Our analytical model is quite flexible and can easily be

instantiated to investigate scenarios that involve a variety of
resilience and power consumption parameters.



REFERENCES

[1] J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert, S. Matsuoka,
P. Messina, T. Moore, R. Stevens, A. Trefethen, and M. Valero, “The
international exascale software project: a call to cooperative action by the
global high-performance community,” Int. Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 309–322, 2009.

[2] V. Sarkar et al., “Exascale software study: Software challenges
in extreme scale systems,” 2009, white paper available at:
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/
ECSS%20report%20101909.pdf.

[3] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Comm. of the ACM, vol. 17, no. 9, pp. 530–531, 1974.

[4] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” FGCS, vol. 22, no. 3, pp. 303–312, 2004.

[5] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in VECPAR’10, the 9th Int. Conf. High Performance Com-
puting for Computational Science, ser. LNCS 6449. Springer-Verlag,
2011, pp. 1–25.

[6] E. Meneses, O. Sarood, and L. V. Kalé, “Assessing Energy Efficiency of
Fault Tolerance Protocols for HPC Systems,” in Proceedings of the 2012
IEEE 24th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD 2012), New York, USA, October
2012.

[7] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” in Transactions on Computer
Systems, vol. 3(1). ACM, February 1985, pp. 63–75.

[8] G. Bosilca, A. Bouteiller, E. Brunet, F. Cappello, J. Dongarra, A. Guer-
mouche, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni, “Unified
model for assessing checkpointing protocols at extreme-scale,” Con-
currency and Computation: Practice and Experience, October 2013,
to be published. Also available as INRIA research report 7950 at
graal.ens-lyon.fr/∼yrobert.

[9] K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold, “Evaluating
the Viability of Process Replication Reliability for Exascale Systems,”
in Proc. of the ACM/IEEE SC Conf., 2011.

[10] G. Zheng, X. Ni, and L. V. Kalé, “A scalable double in-memory
checkpoint and restart scheme towards exascale,” in Dependable Systems
and Networks Workshops (DSN-W), 2012.

[11] F. Cappello, H. Casanova, and Y. Robert, “Preventive migration vs.
preventive checkpointing for extreme scale supercomputers,” Parallel
Processing Letters, vol. 21, no. 2, pp. 111–132, 2011.

[12] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: an in-memory
checkpoint-based fault tolerant runtime for Charm++ and MPI,” in Proc.
2004 IEEE Int. Conf. Cluster Computing. IEEE Computer Society,
2004.

[13] X. Ni, E. Meneses, and L. V. Kalé, “Hiding checkpoint overhead in
HPC applications with a semi-blocking algorithm,” in Proc. 2012 IEEE
Int. Conf. Cluster Computing. IEEE Computer Society, 2012.

[14] J. Dongarra, T. Hérault, and Y. Robert, “Revisiting the double check-
pointing algorithm,” in 15th Workshop on Advances in Parallel and
Distributed Computational Models APDCM 2013. IEEE Computer
Society Press, 2013.

[15] R. Rajachandrasekar, A. Moody, K. Mohror, and D. K. D. Panda, “A 1
PB/s file system to checkpoint three million MPI tasks,” in Proceedings
of the 22nd international symposium on High-performance parallel and
distributed computing, ser. HPDC ’13. New York, NY, USA: ACM,
2013, pp. 143–154.

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
graal.ens-lyon.fr/~yrobert

	Introduction
	Model
	Checkpointing
	Energy

	Optimal checkpointing period
	Execution time
	Energy consumption

	Experiments
	Conclusion
	References

