
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3152

Tridiagonalization of a dense symmetric matrix on multiple GPUs
and its application to symmetric eigenvalue problems

Ichitaro Yamazaki 1,*,†, Tingxing Dong 1, Raffaele Solcà 2, Stanimire Tomov 1,
Jack Dongarra 1 and Thomas Schulthess 2

1Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, U.S.A.
2Institute for Theoretical Physics and Swiss National Supercomputer Center, Eidgenössische Technische Hochshule

(ETH), Zürich, Switzerland

SUMMARY

For software to fully exploit the computing power of emerging heterogeneous computers, not only must the
required computational kernels be optimized for the specific hardware architectures but also an effective
scheduling scheme is needed to utilize the available heterogeneous computational units and to hide the com-
munication between them. As a case study, we develop a static scheduling scheme for the tridiagonalization
of a symmetric dense matrix on multicore CPUs with multiple graphics processing units (GPUs) on a single
compute node. We then parallelize and optimize the Basic Linear Algebra Subroutines (BLAS)-2 symmetric
matrix-vector multiplication, and the BLAS-3 low rank symmetric matrix updates on the GPUs. We demon-
strate the good scalability of these multi-GPU BLAS kernels and the effectiveness of our scheduling scheme
on twelve Intel Xeon processors and three NVIDIA GPUs. We then integrate our hybrid CPU-GPU kernel
into computational kernels at higher-levels of software stacks, that is, a shared-memory dense eigensolver
and a distributed-memory sparse eigensolver. Our experimental results show that our kernels greatly improve
the performance of these higher-level kernels, not only reducing the solution time but also enabling the solu-
tion of larger-scale problems. Because such symmetric eigenvalue problems arise in many scientific and
engineering simulations, our kernels could potentially lead to new scientific discoveries. Furthermore, these
dense linear algebra algorithms present algorithmic characteristics that can be found in other algorithms.
Hence, they are not only important computational kernels on their own but also useful testbeds to study the
performance of the emerging computers and the effects of the various optimization techniques. Copyright
© 2013 John Wiley & Sons, Ltd.

Received 8 November 2012; Revised 3 September 2013; Accepted 4 September 2013

KEY WORDS: dense linear algebra; GPU accelerators; symmetric tridiagonal reduction; symmetric matrix-
vector multiplication; parallel eigensolver

1. INTRODUCTION

Emerging high-performance computers are based on heterogeneous multicore architectures, where
each compute node consists of multicore or manycore CPUs, and accelerators or coprocessors like
NVIDIA GPUs, Advanced Micro Devices, Inc. (AMD) Fusion accelerated processing unit, or
Intel Xeon Phi coprocessors. For example, the Keeneland Initial Delivery System [1] at the Geor-
gia Institute of Technology has 120 compute nodes, each of which consists of two six-core Intel
Xeon processors and three NVIDIA Fermi GPUs. For software to fully utilize the computing power
of such heterogeneous architectures, computational kernels running at the compute node level of
the software stack must be redesigned to utilize the computing power of the heterogeneous node
architecture.

*Correspondence to: Ichitaro Yamazaki, Electrical Engineering and Computer Science, University of Tennessee,
Knoxville, Tennessee, U.S.A.

†E-mail: ic.yamazaki@gmail.com

Copyright © 2013 John Wiley & Sons, Ltd.

I. YAMAZAKI ET AL.

Linear Algebra Package (LAPACK) [2] is a set of dense linear algebra routines on shared-memory
CPUs. These routines are used extensively as important building blocks in many scientific and engi-
neering simulations on shared-memory and distributed-memory computers. Matrix Algebra on GPU
and Multicore Architectures (MAGMA) [3] extends LAPACK to heterogeneous architectures, and
its performance is critical for these simulations to utilize the computing power of such architectures.
To exploit the heterogeneous architecture, MAGMA is based on a hybrid programming paradigm
and a static scheduling scheme; namely, an algorithm is first split into small computational tasks,
which are then statically scheduled either on the CPUs or GPUs to match the algorithmic require-
ments of different computational tasks to the architectural strengths of different computational
units. To obtain high performance of these individual computational tasks, MAGMA uses threaded
Basic Linear Algebra Subroutines (BLAS) [4] on the CPUs and MAGMA BLAS [5] on the GPUs,
which are optimized for a specific CPU and GPU architecture, respectively. By carefully scheduling
these tasks on the CPUs and GPUs, MAGMA obtains significant speedups over vendor-optimized
LAPACKs [6–8]. Moreover, because many dense linear algebra algorithms present algorithmic char-
acteristics that are found in other algorithms, MAGMA is not only an important practical package
on its own but it also provides a useful testbed to study the performance of emerging computers and
the effects of various optimization techniques. ‡

As a case study, in this paper, we examine the tridiagonal reduction of a symmetric dense matrix,
which is implemented in the MAGMA routine xSYTRD and utilizes a single GPU (where x can
be either S, D, C, or Z denoting either single, double, single-complex, or double-complex precision
used for the reduction, respectively).§ This symmetric tridiagonal reduction is often the first step
of solving symmetric dense eigenvalue problems, and it dominates the solution time. Because such
eigenvalue problems arise in many scientific and engineering simulations, xSYTRD is an important
kernel to be optimized on the emerging computers. ¶ For example, to simulate O.102/ atoms for
electronic structures calculation [Chapter 12.1 , 9–11], Exciting [12] or Elk [13] simulation code
routinely solves complex generalized dense symmetric eigenvalue problems of dimension O.103/
on a compute node, but several projects are underway to enable a simulation of O.103/ atoms. In
addition, a dense eigensolver is often needed in a subspace projection method to solve large-scale
sparse eigenvalue problems; there, a projection subspace is first computed using multiple compute
nodes, and then a smaller projected system is solved on each node. For instance, TRLan [14] imple-
ments a thick restart Lanczos method [15] on a distributed-memory system and uses xSYTRD to
redundantly solve the projected system on each node at every restart. Similarly, a state-of-the-art
electronic structure calculation simulation [16, 17] uses a conjugate gradient method to generate a
projection subspace on multiple nodes and solves a projected system on each compute node. Hence,
in these methods, it is critical to have an efficient solver on a compute node for solving the projected
dense systems. Finally, there are methods like a matrix sign function [18], which may allow us to
split a matrix into smaller independent submatrices. Then, xSYTRD may be used to solve each of
the independent subproblems on one node.

In this paper, we extend xSYTRD to utilize the multiple GPUs on a compute node. This is an
important extension in two ways: (i) it allows us to exploit the aggregated computing power of
multiple GPUs to shorten the reduction time; and (ii) it utilizes the aggregated GPU memory to
solve larger-scale problems. The rest of the paper is organized as follows: in Sections 2 and 3, we
first describe xSYTRD of LAPACK and its hybrid extension to use multiple GPUs, respectively. In
the latter section, several techniques to enhance the performance of the hybrid xSYTRD are also
described. Then, in Section 4, we present our multi-GPU extension of a BLAS-2 dense symmetric
matrix-vector multiplication routine, xSYMV, that often dominates the reduction time of xSYTRD.
Finally, in Section 5, we present the performance of xSYMV and xSYTRD on the Keeneland sys-
tem. In this section, we also present three test cases for using our multi-GPU kernels: (i) a standard

‡For example, the LINPACK benchmark that solves a dense linear system of equations is still used to rank HPC computers
for the TOP500 list, http://www.top500.org.

§For complex double or single precision, the tridiagonalization routine that works on a Hermitian matrix is named
CHETRD or ZHETRD, respectively.

¶A list of applications requiring the solution of large dense symmetric eigenvalue problems can be found at http:
//elpa.rzg.mpg.de/goal.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

MULTI-GPU TRIDIAGONALIZATION AND ITS APPLICATION TO EIGENVALUE PROBLEMS

dense symmetric eigensolver on a single node with multiple GPUs and its performance comparison
with a distributed-memory dense eigensolver [19]; (ii) a generalized dense symmetric eigensolver,
a critical component in state-of-the-art electronic structure calculation simulations [12, 13, 20, 21],
which currently use MAGMA and can immediately exploit our multi-GPU extensions; and (iii) an
integration of our multi-GPU kernels into a distributed-memory sparse eigensolver TRLan. We
conclude with final remarks in Section 6.

The following notations are used throughout the rest of the paper: the .i , j /-th element of a
matrixA is denoted by ai ,j , while the j -th column and the i-th row ofA is aW,j and ai ,W, respectively.
Furthermore, the submatrix consisting of the i1-th through the i2-th rows and the j1-th through
the j2-th columns of A is denoted as Ai1Wi2,j1Wj2 . Our discussion in this paper assumes the lower-
triangular part of the symmetric matrix A is stored, but it can easily be extended to the case where
the upper-triangular part of A is stored. Unless otherwise stated, all the experiments in this paper
were conducted on the Keeneland system. All the dense test matrices are random matrices with the
uniform distribution between zero and one.

2. TRIDIAGONAL-REDUCTION ON MULTICORES

In the tridiagonalization of a symmetric matrix, an n-by-n symmetric matrix A is reduced to a
tridiagonal matrix T by an orthogonal similarity transformation; that is, QTAQ D T , where
Q is an n-by-n orthogonal matrix. The LAPACK routine xSYTD2 computes this orthogonal
matrix Q as a product of n� 1 elementary Householder reflectors; i.e., Q DH1H2...Hn�1, where
Hj D I � �j vj vTj , �j is a scalar, and vj is an n-length vector. Another LAPACK routine xLARFG
computes this j -th Householder reflector vj that zeroes out the elements of the j -th column aW,j
below the subdiagonal; that is, .I .jC1/��j v.jC1/j v.jC1/

T

j /a.jC1/j D ka.jC1/j k2e.n�j /1 , where v.jC1/j

is the vector consisting of the .j C 1/-th through the n-th elements of vj , and e.n�j /1 is the first
column of an .n � j /-by-.n � j / identity matrix I .jC1/. Finally, the LAPACK routine xSY2RK
updates the trailing submatrix using the j -th Householder reflector; that is,

A.jC1/ WDH
.jC1/
j A.jC1/H

.jC1/
j

DA.jC1/ � v.jC1/j w.jC1/
T

j �w.jC1/j v.jC1/
T

j ,

where A.jC1/ is the trailing submatrix at the j -th step (i.e., A.jC1/ D AjC1Wn,jC1Wn), and w.jC1/j D

�j .I �
�j
2

v.jC1/j v.j /
T

j /A.jC1/v.jC1/j . Unfortunately, xSYTD2 often obtains only a fraction of the
peak performance on modern CPUs because most of the computation is performed using BLAS-1
or BLAS-2, which is bandwidth-limited.

To improve the data locality of xSYTD2, we can delay the application of b Householder transfor-
mations and use BLAS-3 to update the trailing submatrix with the accumulated transformations at

once; that is,A.JC1/ WD A.JC1/�V .JC1/J W
.JC1/T

J �W
.JC1/
J V

.JC1/T

J , where V .JC1/J is the .JC1/-
th through the N -th blocks of the J -th block column VJ of the matrix V D Œv1, v2, : : : , vn�; that is,
V
.JC1/
J D VJbC1Wn,.J�1/bC1WJb , and N D n

b
. || The resulting blocked algorithm is implemented in

xSYTRD of LAPACK, and its pseudocode is shown in Figure 1.
While xSYTRD requires about 4

3
n3 floating-point operations (flops) to tridiagonalize an

n-by-n matrix A, about 50% of these flops are performed using the BLAS-2 xSYMV to compute
the symmetric matrix-vector multiplication (Step 3.a of Figure 1(c)), while most of the remaining
flops are performed using the BLAS-3 xSYR2K to update the trailing submatrix (Step 2 of Fig-
ure 1(a)). Therefore, the tridiagonalization time of LAPACK is often dominated and limited by that
of the BLAS-2 xSYMV, and xSYTRD still obtains a fraction of the peak performance, especially
on a large number of CPUs.

||Our discussion here assumes that n is a multiple of b, but it can be easily extended for other cases.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

I. YAMAZAKI ET AL.

Figure 1. Tridiagonalization algorithm.

3. TRIDIAGONAL-REDUCTION USING MULTIPLE GPUS

On a heterogeneous compute node architecture, the computational units of a different type are
adapted for particular types of tasks. For instance, the GPUs are designed to maximize the through-
put of multiple tasks, and they are specifically adapted to handle tasks that exhibit high data or
thread-level parallelism. On the other hand, the CPUs are designed to minimize the latency of a
single task using deep memory-hierarchy and instruction-level parallelism. To exploit the architec-
tural strengths of these different computational units, MAGMA splits the algorithm into smaller
computational tasks and statically schedules their executions on the CPUs or GPU. As discussed in
Section 2, the reduction time of xSYTRD is often limited by the BLAS-2 xSYMV and the BLAS-
3 xSY2RK. Hence, MAGMA schedules these two computational kernels on the GPU. To effectively
use both CPUs and GPU, xSYMV on the GPU (Step 3.a of Figure 1(c)) is overlapped with xGEMV
to compute the auxiliary vectors f and g on the CPUs (Steps 3.d, 3.e, and 3.f). Furthermore, the
application of the 1-st through the .j � 2/-th reflectors to the j -th vector (Step 1.1) is scheduled
either on the CPUs or GPU, and it is overlapped with either xSYMV on the GPU (Step 3.a) or
the computation of wj on the CPUs (Steps 3.g and 3.h), respectively. The decision on whether to
schedule Step 1.1 on the CPUs or GPU can be made at run time by querying the GPU whether
xSYMV has completed after Step 3.f. Specifically, if xSYMV has not completed, then Step 1.1 is
scheduled on the CPUs. Otherwise, it is scheduled on the GPU. Figure 1(b) illustrates this algo-
rithmic flow. As soon as the auxiliary vector wj is computed, it is asynchronously sent to the GPU
(Steps 4.c and 4.d of Figure 1(c)), which is then used to update the trailing submatrix (Step 2 of
Figure 1(a)). All other computation and communication on the GPU is performed on a single GPU
stream to avoid explicit synchronizations.

To utilize the multiple GPUs, the matrix A is distributed among the GPUs in a 1D block-column
cyclic layout, using the same block size b on the CPUs and GPUs. On the other hand, the two n-by-b
block-columns VJ and WJ are duplicated on the GPUs, which are then used to update the trailing
submatrix by our multi-GPU extensions of xSYR2K. Currently, our multi-GPU xSYR2K is imple-
mented using a sequence of MAGMA BLAS calls. Specifically, a GPU updates each of the local
diagonal blocks and the off-diagonal blocks of each block column through single calls to xSYR2K

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

MULTI-GPU TRIDIAGONALIZATION AND ITS APPLICATION TO EIGENVALUE PROBLEMS

and xGEMM, respectively. Multiple GPU streams are used cyclically on these block columns to
potentially execute small kernels in parallel on each GPU. This allows us to exploit the high data
parallelism of the BLAS-3 kernel on the GPUs. On the other hand, xSYMV is bandwidth-limited.
Even though the GPU has a greater memory bandwidth than the CPU does, it requires a careful
implementation to obtain the high performance of xSYMV on the GPU, which will be discussed in
the next section.

4. SYMMETRIC-MATRIX VECTOR MULTIPLICATION USING MULTIPLE GPUS

The reduction time of MAGMA xSYTRD is often dominated by the BLAS-2 xSYMV on a GPU.
This is mainly because xSYMV is not only a bandwidth-limited operation but it also exhibits irreg-
ular data access patterns that are difficult to optimize on a GPU. In this section, we extend xSYMV
to utilize the multiple GPUs. We acknowledge that many parallel xSYMV and xSYTRD algorithms
have been proposed and implemented on CPUs (e.g., PBLAS [22] and PLAPACK [23]). However,
our contributions are their efficient implementations and their performance studies on GPUs. Our
experimental results will demonstrate that significant speedups can be obtained by carefully tuning
the codes on GPUs and effectively utilizing both CPUs and GPUs. Furthermore, the performance
of xSYMV on multiple GPUs can be used to infer the performance of other computational kernels
with irregular data accesses. In fact, many researchers have recognized xSYMV as an important ker-
nel and have optimized it on a single GPU [24–27]. In this section, we first outline our multi-GPU
xSYMV algorithm (Section 4.1). We then discuss an optimization parameter and techniques (Sec-
tions 4.2 and 4.3). Finally, we present a couple of algorithm extensions of xSYMV to obtain high
performance of xSYTRD (Sections 4.4 and 4.5).

4.1. Algorithm

To compute the matrix-vector multiplication y WD ˛AxCˇy on multiple GPUs, the symmetric matrix
A is distributed in a 1D block-column cyclic layout, while the vector x is duplicated on each GPU.
Then, each GPU computes the partial result of xSYMV using its local matrix. Figure 2(a) shows
the pseudocode of our multi-GPU xSYMV, where G.k/ is the set of the block-column indices
belonging to the k-th GPU. Our I -th thread block on the k-th GPU accesses the I -th block row

Figure 2. Pseudocode of multi-GPU xSYMV (b D 64).

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

I. YAMAZAKI ET AL.

of the local matrix and computes its contributions to y<k>. To avoid the synchronizations among
the thread blocks, the I -th thread block writes its contribution to its own workspace y<k,I>. Once
all the contributions y<k,I> are computed, another kernel is launched to sum these partial results
on the GPU; that is, y<k> D

PN
ID1 y<k,I>. Finally, the partial sums y<k> are sent to the CPUs,

and the CPUs compute the final results y by accumulating the contributions from all the GPUs; that
is, y D

P
k y<k>. We note that even though we use the 1D block-column distribution of A among

GPUs, the block rows of the local matrix are distributed among the thread-blocks on each GPU.
Hence, A is distributed in a 2D block layout among the thread-blocks.

If the upper-triangular part of the matrix A is stored, then A is again distributed among GPUs in a
1D block-column cyclic layout, and each thread block on a GPU processes a block row of the local
matrix. Our experiments have shown that the performance of xSYMV is comparable when either
the lower or upper triangular part of A is stored. Our discussion in the rest of this paper assumes the
lower-triangular part of A is stored.

4.2. Optimization parameter, block size

Because xSYMV is a bandwidth-limited operation, its main optimization parameter is the block size
to utilize the shared memory on the GPU. Our single-GPU xSYMV [26] uses the block size of 64
dividing the matrix A into 64-by-64 blocks. Then, each thread block consisting of 64-by-4 threads
further subdivides each off-diagonal block AI ,J into 64-by-16 sub-blocks. Each sub-block is then
loaded into the shared memory and multiplied with the corresponding part of xJ , and its transpose
is multiplied with xI . This recursive-blocking is also used on a diagonal block, where the 64-by-64
block is subdivided into 32-by-32 sub-blocks, and the GPU threads are mapped into a 32-by-8 grid.
The lower-triangular part of a diagonal sub-block of AI ,I is expanded into the full square matrix in
the shared memory before being multiplied with the corresponding part of xI . Once the off-diagonal
sub-block of the diagonal block is loaded into shared memory, we multiply the sub-block and its
transpose with the corresponding parts of xI before moving on to another sub-block. Hence, the
matrix A is loaded into the shared memory only once. Figure 2(b) shows the pseudocode of this
algorithm executed by a GPU thread-block, where B is in the shared memory and .AI ,J /W,i1Wi2 is the
sub-block consisting of the i1-th through the i2-th columns of AI ,J .

The optimal performance of xSYMV may be obtained using a different block size for a differ-
ent matrix dimension, in a different precision, or on a different GPU architecture. Furthermore,
xSYMV may have to use the same block size as that of a higher-level routine because the matrix
is statically distributed among the GPUs, and the optimal performance of the higher-level routine
may be obtained using a block size different from the optimal block size of xSYMV. For exam-
ple, Figure 3 shows the performance of DSYMV and DSYTRD on two six-core 2.1GHz AMD
Opteron 6172 processors and up to four NVIDIA C2050 Tesla GPUs. We used MKL 2011.1.069
and CUDA 4.0. We clearly see that especially for a small-scale matrix on multiple GPUs, xSYTRD

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

G
flo

p/
s

Matrix size, n

4 GPU (b=64)
4 GPU (b=32)
3 GPUs (b=64)
3 GPUs (b=32)
2 GPUs (b=64)
2 GPUs (b=32)
1 GPUs (b=64)
1 GPUs (b=32)

(a) DSYMV

0 0.5 1 1.5 2 2.5 3
x 104

0

20

40

60

80

100

120

G
flo

p/
s

Matrix size, n

4 GPU (b=64)
4 GPU (b=32)
3 GPUs (b=64)
3 GPUs (b=32)
2 GPUs (b=64)
2 GPUs (b=32)
1 GPUs (b=64)
1 GPUs (b=32)
CPU

(b) DSYTRD

Figure 3. Performance of DSYMV and DSYTRD on AMD Opteron and NDIVIA Tesla C2050 GPUs.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

MULTI-GPU TRIDIAGONALIZATION AND ITS APPLICATION TO EIGENVALUE PROBLEMS

performed better using the block size of 32 rather than using the block size of 64, which was opti-
mal for xSYMV. This is mainly because when the CPU has a low computing power, the BLAS-2
xGEMV required by xLATRD becomes expensive for a larger block size on the CPUs. As a result,
using the block size of 64, the time spent on the CPUs became a bottleneck, and the reduction time
did not scale as well as that using the block size of 32. In this paper, we study the performance of
xSYMV using the block sizes of 16, 32, and 64.

On a Fermi GPU, each streaming multiprocessor (SM) has 48KB of the shared memory, which is
large enough to store the 32-by-32 numerical values in all of the four precisions. Hence, when the
block size is less than or equal to 32, our xSYMV has an option of not using the recursive-blocking,
which allows us to simplify the data access of each thread block and remove some synchronizations.
Using the block size of 32 without the recursive-blocking, our xSYMV uses the same amount of the
shared memory as that using the block size of 64 with the recursive-blocking. Furthermore, without
recursive-blocking, we use the 32-by-8 thread block on both diagonal and off-diagonal blocks.

4.3. Optimization techniques

Our multi-GPU xSYMV uses all the optimization techniques in the original single-GPU xSYMV
[26]. For instance, reducing the number of shared memory bank conflicts is vital to obtain high per-
formance. Because the shared memory on a Fermi GPU has 32 memory banks, when the 32-by-8
thread block is used, every 8-th thread with the same thread index tx accesses the same memory bank
at each clock cycle, where each GPU thread is identified by a 2D thread index of .tx , ty/. Hence,
when accessing the shared memory, these threads with the same tx must cooperate with each other.
To avoid these bank conflicts, we shift the memory location that each thread accesses so that the
threads with the same tx do not access the same memory bank at the same time. Since data in the
shared memory is heavily used, this technique improved the performance of xSYMV by a factor of
more than two (Figure 4(a)).

In addition, we have reduced the number of branches and synchronizations in our implementa-
tions. For instance, while processing off-diagonal blocks, once a thread block computes a multi-
plication with a sub-block in shared memory, a warp of 32 threads with ty D 1 accumulate the
results, while other warps prefetch the next sub-block into shared memory. In the original code, the
same shared memory were used to store the sub-block and then the partial sum, and hence, this
prefetching of the next sub-block was not possible. Another optimization is specific to the multi-
GPU kernels, where some thread blocks do not own diagonal blocks. To compute the multiplication
with the diagonal blocks, each thread block performs the multiplication with the last block in its
block row. However, only the thread blocks owning diagonal blocks accumulate the results, while
other thread blocks simply discard them. We found that this optimization avoids an expensive con-
ditional statement and can lead to up to 20% increase in the Gflop/s for single precision on a single

Figure 4. Effects of DSYMV optimizations on a Tesla M2090 (Left) and C2050 (Right) GPU.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

I. YAMAZAKI ET AL.

GPU (Figure 4(b)). However, this introduces additional computation, which could limit the parallel
scaling of our xSYMV.

4.4. Multiplying with a submatrix

At the j -th step of xSYTRD, xSYMV is called on the .n � j /-by-.n � j / trailing submatrix. On
a single GPU, xSYMV can take a pointer to the starting point of the submatrix and use the pointer
redirection [26] to improve the data access during the multiplication with the submatrix of a general
size. On the other hand, to specify the submatrix, our multi-GPU xSYMV uses an global offset into
the submatrix in addition to an array of pointers, each of which points to the beginning of the local
matrix stored on a GPU; that is, if the offset is set to be j C 1, then it computes A.jC1/x.jC1/.
Furthermore, to align the memory access during the multiplication with the submatrix A.jC1/, each

GPU first identifies the leading diagonal block AJ ,J of the submatrix (i.e., J D
l
jC1
b

m
). Then, the

matrix-vector multiplication A.J /x.J / is computed. With our block size of 32 or 64, we always meet
the alignment requirements when a set of 32 memory banks are read. To eliminate the contribution
from the 1-st through the j -th elements of x, when the first block xJ is copied into shared memory,
the corresponding elements of xJ are set to be zero; that is, x.J�1/bC1Wj D 0. This avoids conditional
statements, which are not suited for GPU computing. When the block size is 32, the multiplication
with these padded zeros does not add any overhead because all of the 32 threads in the same warp
executes one common instruction [28]. There is an overhead of loading extra data when the block
size is 64. However, because this overhead is needed only for the first block xJ , it is negligible,
especially when the matrix size is large.

4.5. Exploiting fine-grained parallelism in a small-scale matrix

Because xSYTRD calls xSYMV on the trailing submatrices of dimensions n � 1 through 1, it is
critical that xSYMV is optimized over the range of the submatrix dimensions. We observed that
our block-row algorithm in Section 4.1 (each thread block accesses a block row) performs well
for a large-scale submatrix, but for a small-scale submatrix, its performance is lower than what is
expected. This is because each thread block computes the contributions from one block row, and the
total number of thread blocks is only N (i.e., N D n

b
). For example, when the submatrix dimen-

sion is 1024 and the block size is 32, there are only 32 thread blocks, each of which requires about
16KB of the shared memory. This leads to only two or three thread blocks per SM on a Tesla C2050,
which has 14 SMs and 48KB of the shared memory per SM. Hence, the occupancy of this block-row
algorithm could be too low to obtain high performance.

The low occupancy of the algorithm could also lead to load imbalance. Because of the symmetric
matrix storage, when a single GPU is used, the workload of the I -th thread block is4C .I � 1/5,
where4 and5 are the workload required to process a diagonal and an off-diagonal blocks, respec-
tively. Hence, the load imbalance between the two adjacent thread blocks is 5. If the number of
block rows is much greater than the number of SMs, then multiple thread blocks are assigned to an
SM, and the workloads are likely balanced among SMs [26]. For instance, if the thread blocks are
cyclically assigned to SMs in an increasing order of their thread block IDs, I , then the maximum
load imbalance between SMs is given by4C 13dN

14
e5 on a Fermi GPU, which has 14 SMs. For a

large-scale matrix, this imbalance is relatively small in comparison to the total workload, which is
N.4C .N�1/

2
5/. However, for a small N , this block-row algorithm may not provide enough tasks

to balance the workloads among SMs, and the workload imbalance may be significant relative to
the total workload.

To enhance the performance of xSYMV on a small-scale matrix, we developed another algorithm,
where each thread block computes a contribution from a single block. In comparison to the block-
row algorithm, this block-wise algorithm increases the number of thread blocks to be N2CN

2
and

exploits a finer-grained parallelism. Furthermore, this block-wise algorithm typically has enough
thread blocks to improve the load balance among SMs, even for a small-scale matrix. For instance,
if the thread blocks are cyclically assigned to SMs in an increasing order of their thread block IDs,

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

MULTI-GPU TRIDIAGONALIZATION AND ITS APPLICATION TO EIGENVALUE PROBLEMS

Figure 5. Performance of ZHEMV on a Tesla M2090 (Left) and Illustration of per-GPU workspace (Right).

then the maximum difference in the workload per SM is reduced to be4C5. As a result, this block-
wise algorithm improved the performance of the block-row algorithm by up to 30% for a small-scale
matrix (Figure 5(a)). On the other hand, for a large-scale matrix, the performance of the block-wise
algorithm was lower than that of the block-row algorithm. This is because the overhead of schedul-
ing a thread block can be relatively large for the small task generated by our block-wise algorithm.
Furthermore, when the block-wise algorithm is used, the threads working on the blocks in the same
block row write into the same workspace. Hence, there is an extra shared memory reduction among
these threads working on the same block row. In our experiments, we used the block-wise algorithm
for the matrix dimension less than 1400, while the block-row algorithm is used for a larger matrix.

4.6. Memory overhead

Figure 5(b) illustrates the workspace requirement of our multi-GPU xSYMV kernel. Each GPU
requires the workspace to store about n C n.N�1/

2ng
numerical values, where ng is the number of

GPUs. On a single GPU with b D 32 or 64, this is about 1.56% or 0.78% overhead in comparison to
that required to store the matrix A. When xSYMV is used in xSYTRD, the workspace needs to be
allocated only once, and the memory allocation overhead is amortized over n� 1 calls to xSYMV.

5. PERFORMANCE EVALUATION

We now study the performance of our multi-GPU xSYMV and xSYTRD on a single compute node
of the Keeneland system, which consists of twelve 2.8GHz Intel Xeon processors and three NVIDIA
Tesla M2090 GPUs. The total size of the page-caches available on the CPU is 18GB, while each
GPU is equipped with 6GB of memory, but 12% of the GPU memory is used by Error Correction
Code (ECC). The dimension of the largest matrix in double precision, which can be stored in the
CPU memory, is about 45, 000. For all the experiments, we used MKL 2011.3.174 and CUDA 4.1,
and all 12 cores of the CPUs.

5.1. Performance of xSYMV

Figure 6 shows the Gflop/s obtained using our SSYMV and ZHEMV on one GPU. We see that in
most cases, the best performance was obtained using the block size of 64 and 32 for SSYMV and
ZHEMV, respectively. The Tesla M2090 GPU has a memory bandwidth of 177GB/s, but according
to the bandwidth utility of NVIDIA SDK, with ECC on, the practical bandwidth is about 120GB/s.
Hence, the respective theoretical peak performances of SSYMV, DSYMV, CHEMV, and ZHEMV
on one GPU are about 120, 60, 240, and 120Gflop/s. In comparison to SSYMV, the performance

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

I. YAMAZAKI ET AL.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

10

20

30

40

50

60

70

80

90

Matrix size, n

G
flo

p/
s

b=64, with recursive−blocking
b=64, without recursive−blocking
b=32, with recursive−blocking
b=32, without recursive−blocking
CUBLAS

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

90

Matrix size, n

G
flo

p/
s

b=64, with recursive−blocking
b=32, with recursive−blocking
b=32, without recursive−blocking
b=16, without recursive−blocking
CUBLAS

Figure 6. Performance of xSYMV on a single Tesla M2090 GPU.

Figure 7. Performance of xSYMV on multiple Tesla M2090 GPUs (b D 32 without recursive-blocking).

of ZHEMV was lower than expected. An auto-tuning technique like [29] may help improve the
performance of ZHEMV.

Next, in Figure 7, we show the Gflop/s obtained using our xSYMV on multiple GPUs. The block
size was fixed at b D 32, which provided good performances in all the four precisions. We see that
the Gflop/s of SSYMV was about twice as much as DSYMV because the performance of xSYMV
is limited by the memory bandwidth. These figures also demonstrate the excellent scaling of our
algorithm on multiple GPUs, especially when the matrix size is large enough.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

MULTI-GPU TRIDIAGONALIZATION AND ITS APPLICATION TO EIGENVALUE PROBLEMS

Figure 8. Trace of DSYTRD (n D 10, 000). The top trace is on the Intel Xeon CPUs, and the following
three pairs of the traces are for the three Telsa M2090 GPUs, each of which uses two streams. The blue,
cyan, and brown traces on the CPU represent DGEMV, DAXPY, and DLARFG, respectively, while the

green, red, and orange on the GPUs represent DSYMV, DGEMV, and DSYR2K, respectively.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
x 104

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Matrix size, n

T
im

e
/ T

ot
al

dsytrd
dsymv+dsyr2k+dlarfg
dsymv+dsyr2k
dsymv

0 0.5 1 1.5 2 2.5
x 104

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Matrix size, n
A

gg
re

ga
te

d
sp

ee
du

ps

3 GPUs
2 GPUs

Figure 9. Performance profile of DSYTRD on Intel Xeon and Tesla M2090 (b D 64with recursive-blocking).

5.2. Performance of xSYTRD

We now examine the performance of xSYTRD. Figure 8 shows the trace of DSYTRD with
n D 10, 000. We clearly see that the total reduction time is dominated by DLATRD. Figure 9(a)
shows the breakdown of the reduction time on one GPU, and shows that even with b D 64, up to
80% of the reduction time was spent on DSYMV. Figure 9(b) shows the speedups of the aggregated
time spent by DSYMV for the submatrix sizes of n� 1 through 1 within DSYTRD. In many cases,
xSYMV does not scale on a smaller-scale submatrix as well as it does on a larger-scale submatrix,
and hence, on a larger number of GPUs, a larger portion of the reduction time is spent in xSYMV on
the small-scale submatrices. As a result, the scalability of xSYTRD could depend on the scalability
of xSYMV on these small to medium sized submatrices.

Our xSYTRD distributes the matrix A from the CPU to the GPUs only at the beginning, and
each panel of A is copied back to the CPU only before the panel factorization. Then, at each step, a
vector is asynchronously copied between the CPU and the GPUs, overlapping some of the PCI-data
transfer with the BLAS calls on the CPU. As a result, xSYTRD is typically not bounded by the
PCI-data transfer for a large enough matrix. Figure 9(a) shows that more than 90% of the reduction
time was spent in the BLAS calls, which do not include this data-transfer time, and the data-transfer
time was less than 10% on one GPU. This ratio was about the same on the three GPUs when the
matrix size is large enough. On the other hand, our xSYMV reads the local matrix from the GPU
memory and could be limited by the GPU memory bandwidth. As shown in Sections 4 and 5.1, our
xSYMV is designed to minimize this data transfer.

Finally, Figure 10 shows the Gflop/s of DSYTRD and ZHETRD, where we used recursive-
blocking with b D 64 but did not use it with b D 32. On Keeneland, we see that xSYTRD obtained
higher performance using the block size of 64 than using the block size of 32, while on the AMD
machine in Figure 3, a higher performance was obtained using the block size of 32. A reason for
this could be that the CPUs on Keeneland have a much greater computing power. As a result, on
Keeneland, the reduction time was dominated more by the GPU kernels like xSYMV and xSYR2K,
and the time spent by the CPU kernel like xGEMV was completely hidden behind the time spent
on the GPUs. In the end, the performance of xSYTRD was higher using the block size of 64 on
Keeneland because the improvement obtained by xSYMV using the block size of 32 was lost in

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

I. YAMAZAKI ET AL.

0 0.5 1 1.5 2 2.5 3 3.5
x 104

25

50

75

100

125

150

175

Matrix size, n

G
flo

p/
s

3 GPUs (b=64)
3 GPUs (b=32)
2 GPUs (b=64)
2 GPUs (b=32)
1 GPU (b=64)
1 GPU (b=32)
CPU

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0

50

100

150

200

250

Matrix size, n

G
flo

p/
s

3 GPUs (b=64)
3 GPUs (b=32)
2 GPUs (b=64)
2 GPUs (b=32)
1 GPU (b=64)
1 GPU (b=32)
CPU

Figure 10. Performance of xSYTRD on Intel Xeon and Tesla M2090.

0 1 2 3
0

100

200

300

400

500

600

700

800

Number of GPUs

T
im

e
(s

)

DORMTR
DSTEDC
DSYTRD

1 2 4 8 16 24
0

50

100

150

200

250

300

350

400

450

500

Number of nodes

T
im

e
(s

)

Back−transform from band
Back−transform from tridiag
Solve tridiagonal
Reduction to tridiagonal
Reduction to band
ZHEEVD (MAGMA on 3 GPUs)
ZHETRD (MAGMA on 3 GPUs)

Figure 11. Performance of shared-memory xSYEVD and distributed-memory ELPA.

the slowdown in xSYR2K. For the rest of the experiments, we used the block size of 64 with
recursive-blocking.

5.3. Case study 1: performance of xSYEVD

We study the performance of our multi-GPU xSYTRD in our new multi-GPU dense symmet-
ric eigensolver xSYEVD. In our experiments, we computed all the eigenvalues and eigenvectors
of each dense symmetric ransom matrix. Once the matrix is reduced to a tridiagonal form, the
eigenvalues and eigenvectors of the tridiagonal matrix are computed by a multi-GPU extension of
the divide-conquer algorithm xSTEDC [30, 31]. Then, the eigenvectors of the original matrix is
computed using a multi-GPU extension of xORMTR, where the eigenvectors are distributed in a
block-column layout, and each GPU independently applies the Householder transformation to the
local set of eigenvectors. Figure 11(a) shows the strong scalability of DSYEVD, where the matrix
size is fixed at n D 20, 000. If only the eigenvalues of A are requested, then we only need the first
two steps using xSYTRD and xSTEDC.

Figure 11(b) compares the performance of our multi-GPU ZHEEVD with a distributed-memory
dense symmetric eigensolver called Eigenvalue SoLvers for Petaflop-Applications (ELPA) [19]
using OpenMPI 1.4.3 and the default block size of 40. ELPA implements two approaches to solve
the eigenvalue problem: (i) one-stage approach: just like our xSYEVD, the matrix A is directly
reduced to a tridiagonal form; and (ii) two-stage approach: the matrix A is first reduced to a banded
form using BLAS-3, then the banded matrix is reduced to a tridiagonal form using the so-called
bulge chasing technique. In the figure, for each node count, the first bar shows the solution time of
the one-stage approach, while the second bar shows that of the two-stage approach. The solid lines

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

MULTI-GPU TRIDIAGONALIZATION AND ITS APPLICATION TO EIGENVALUE PROBLEMS

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of GPUs

T
im

e
(s

)

ZPOTRF
ZHEGST
ZHEEVD
ZTRSMM

2 4 8
0

50

100

150

Number of nodes

T
im

e
(m

)

Total solution time
LAPACK DSYEVD
MAGMA DSYEVD

Figure 12. Performance of shared-memory ZHEGVD (Left) and distributed-memory TRLan (Right).

represent the solution time of MAGMA using three GPUs on a single node. The figure shows that
because of the use of BLAS-3, the two-stage approach was much faster to reduce A into a tridiag-
onal form in most cases. However, the two-stage approach requires additional flops to compute the
eigenvectors, and if the eigenvectors are requested, its total solution time was greater than that of
the one-stage approach. We see that the performance of our ZHETRD was competitive with that
of ELPA on up to 24 compute nodes. On the other hand, the performance of our ZSTEDC was
lower than that of ELPA because ELPA utilizes all the cores on the multiple compute nodes, while
MAGMA can exploit only a single node. In the end, our ZHEEVD obtained the performance simi-
lar to that of ELPA on eight nodes. We also observed that for a smaller-scale matrix, ELPA may not
scale to a large number of nodes, and in this case, the performance of our ZHEEVD on three GPUs
was comparable to that of ELPA using an optimal number of nodes.

5.4. Case study 2: performance of xSYGVD

We extended the dense symmetric generalized eigensolver xSYGEVD of MAGMA to utilize mul-
tiple GPUs. First, our multi-GPU one-sided factorization kernel xPOTRF [8] is used to compute
the Cholesky factorization of the symmetric positive definite matrix. Then, to transform the general-
ized problem into and from a standard problem, multi-GPU xSYGST and xTRSMM, respectively,
apply the corresponding transformations to an independent set of vectors on each GPU. Finally, the
standard eigenvalue problem is solved using our multi-GPU xSYEVD of Section 5.3. Figure 12(a)
shows the time spent in each step of ZHEGVD on twelve 2.8GHz Intel Xeon processors and up
to eight Tesla M2090 GPUs at ETH, Zürich. This multi-GPU ZHEGVD is being integrated into
electronic structure calculation simulations [13].

5.5. Case study 3: performance of TRLan

TRLan implements a thick restart Lanczos method [15] to compute eigenpairs of a large-scale sparse
Hermitian matrix on a distributed-memory system. At each iteration, TRLan generates a new basis
vector of a projection subspace using multiple MPI processes. Then, to restart the iteration, each
MPI process redundantly solves the projected eigenvalue problem using xSYEVD of LAPACK. To
enhance its performance, TRLan integrates a communication-avoiding technique to generate the
projection subspace [32], and an auto-tuning technique to adaptively select the vectors to keep at
each restart and the next subspace dimension [33].

To integrate our multi-GPU DSYEVD, we modified TRLan so that even when we have multiple
MPI processes per node, the projected problem is solved by one MPI process on a node. Because
MAGMA has the same interface as LAPACK, it was easy to integrate our kernel into TRLan.
Figure 12(b) shows the effects of using the GPUs in TRLan, where 5, 000 eigenpairs of a synthetic
diagonal matrix diag.1, 2, : : : , 100000/ were computed using the maximum projection subspace of

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

I. YAMAZAKI ET AL.

10, 000. ** To solve this eigenvalue problem, TRLan required about 44, 000 iterations and 15 restarts.
We clearly see that the serial bottleneck of TRLan was reduced using our multi-GPU DSYEVD.

6. CONCLUSION

In this paper, we parallelized a matrix-vector multiplication (xSYMV) and tridiagonal reduc-
tion (xSYTRD) of a symmetric dense matrix on a single compute node with multiple GPUs. The
experimental results on the Keeneland system demonstrated the excellent scalability of our algo-
rithms, especially on a large-scale matrix. We then integrated our multi-GPU kernels into dense
symmetric standard and generalized eigensolvers on a compute node and into a sparse symmetric
eigensolver on a distributed-memory system. Our experimental results demonstrated the significant
impacts of our kernels on the performance of these higher-level kernels. We are currently studying
the performance of our kernels in real simulations. Because our multi-GPU extension can exploit
both aggregated computing power and memory storage of multiple GPUs for solving large-scale
problems, it may lead us to new scientific discoveries. †† We also plan to extend our performance
comparison of state-of-the-art dense eigensolvers for the specific applications of our interests. For
instance, in our experiments, we have computed all the eigenvalues and eigenvectors. If only a small
number of the eigenvalues are needed, then other algorithms like an algorithm based on multiple rel-
atively robust representations [34] may be preferred for computing the eigenvalues and eigenvectors
of the tridiagonal matrix (even though their GPU-extensions have not been explored, yet). Similarly,
if only a few eigenvalues and eigenvectors were needed, or if only the eigenvalues were needed, then
the two-stage approach often has an advantage over the one-stage approach because the overhead
of computing the eigenvectors is removed or reduced. Finally, in our experiments, we used ran-
dom matrices. However, unlike the performance of the tridiagonalization, the performance of the
eigensolvers depends on the spectral properties of the matrix.

ACKNOWLEDGEMENTS

This research was supported in part by NSF SDCI - National Science Foundation Award #OCI-1032815,
“Collaborative Research: SDCI HPC Improvement: Improvement and Support of Community Based Dense
Linear Algebra Software for Extreme Scale Computational Science,” NSF Keeneland - Georgia Institute of
Technology subcontract #RA241-G1 on NSF Prime Grant #OCI-0910735, and DOE MAGMA - Department
of Energy Office of Science grant #DE-SC0004983, “Matrix Algebra for GPU and Multicore Architectures
(MAGMA) for Large Petascale Systems.” This research used resources of the Keeneland Computing
Facility at the Georgia Institute of Technology, which is supported by the National Foundation under contract
OCI-0910735.

REFERENCES

1. Vetter J, Glassbrook R, Dongarra J, Schwan K, Loftis B, McNally S, Meredith J, Rogers J, Roth P, Spafford K,
Yalamanchili S. Keeneland: bringing heterogeneous GPU computing to the computational science community. IEEE
Computing in Science and Engineering 2011; 13:90–5. available also at http://dx.doi.org/10.1109/MCSE.2011.83.

2. Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Croz J, Greenbaum A, Hammarling S, McKenney
A, Sorensen D. LAPACK Users’ Guide, 3rd Edition. Society for Industrial and Applied Mathematics: Philadelphia,
PA, 1999.

3. Tomov S, Nath R, Du P, Dongarra J. MAGMA users’ guide, 2009. available at http://icl.eecs.utk.edu/magma.
4. Lawson C, Hanson R, Kincaid D, Krogh F. Basic linear algebra subprograms for FORTRAN usage. Acm

Transactions on Mathematical Software 1979; 5:308–323.
5. Nath R, Tomov S, Dongarra J. An improved MAGMA GEMM for Fermi graphics processing units. International

Journal of High Performance Computing Applications 2010; 24:511–515.
6. Tomov S, Dongarra J, Baboulin M. Towards dense linear algebra for hybrid GPU accelerated manycore systems.

Parallel Computing 2010; 36:232–240.
7. Tomov S, Nath R, Dongarra J. Accelerating the reduction to upper Hessenberg, tridiagonal, and bidiagonal forms

through hybrid GPU-based computing. Parallel Computing 2010; 36:645–654.

**This test matrix was used to study the performance of TRLan in [33].
††We have investigated the potential of using distributed GPUs in our recent paper [35].

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

MULTI-GPU TRIDIAGONALIZATION AND ITS APPLICATION TO EIGENVALUE PROBLEMS

8. Yamazaki I, Tomov S, Dongarra J. One-sided dense matrix factorizations on a multicore with multiple GPU
accelerators. International Conference on Computational Science (ICCS), Omaha, Nebraska, 2012; 37–46.

9. Auckenthaler T, Blum V, Bungartz H, Huckle T, Jahanni R, Krämer L, Lang B, Lederer H, Willems P. Parallel
solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Computing 2011;
37:783–794.

10. Kent P. Computational challenges of large-scale long-time first-principles molecular dynamics. Journal of Physics:
Conference Series 2008; 125:012–058.

11. Martin R. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 2004.
12. Exciting. software (Available at http://exciting-code.org/) [Accessed date: September 12, 2013].
13. Dewhurst J, Sharma S, Nordström L, Cricchio F, Bultmark F, Gross E. The ELK code manual version 1.4.18.

software (Available at http://elk.sourceforge.net/) [Accessed date: September 12, 2013].
14. Yamazaki I, Wu K, Simon H. nu-TRLan User Guide. Technical Report LBNL-1288E, Lawrence Berkeley National

Lab, 2008. software available at https://codeforge.lbl.gov/projects/trlan/.
15. Wu K, Simon H. Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM Journal on Matrix

Analysis and Applications 2000; 22:602–616.
16. Tomov S, Langou J, Dongarra J, Canning A, Wang LW. Conjugate-gradient eigenvalue solvers in computing elec-

tronic properties of nanostructure architectures. International Journal of Computational Science and Engineering
2006; 2:205–212.

17. Wang LW, Zunger A. Solving Schrodingers equation around a desired energy: application to silicon quantum dots.
Journal of Chemical Physics 1994; 100:2394–2397.

18. Higham N. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 2008.

19. Auckenthaler T, Bungartz HJ, Huckle T, Kramer L, Lang B, Willems P. Developing algorithms and software for
the parallel solution of the symmetric eigenvalue problem. Journal of Computational Science; 2:272–278. software
available at http://elpa.rzg.mpg.de/.

20. QuantumEspresso. software (Available at http://www.quantum-espresso.org/) [Accessed date: September 12, 2013].
21. Gonze X, Amadon B, Anglade P-M, Beuken J-M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M,

Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann DR, Hermet P, Jollet F, Jomard G,
Leroux S. ABINIT: First-principles approach of materials and nanosystem properties, 2009. software (Available at
www.http://abinit.org/) [Accessed date: September 12, 2013].

22. Choi J, Dongarra J, Ostrouchov S, Petitet A, Walker D, Whaley R. A proposal for a set of parallel basic linear alge-
bra subprograms. The Proceedings of the Second International Workshop on Applied Parallel Computing (PARA),
Lyngby, Denmark, 1995; 107–114.

23. van de Geijn R. Using Plapack: Parallel Linear Algebra Package. MIT press: Cambridge, MA, 1997.
24. Abdelfattah A, Keyes D, Dongarra J, Ltaief H. Optimizing memory-bound numerical kernels on GPU hardware

accelerators. The Proceedings of the 10th International Meeting on High-Performance Computing for Computational
Science (VECPAR), Kobe, Japan, 2012; 72–79.

25. Imamura T, Yamada S, Machida M. A high performance SYMV kernel on a Fermi-core GPU. The Proceedings
of the 10th International Meeting on High-Performance Computing for Computational Science (VECPAR), Kobe,
Japan, 2012; 59–71.

26. Nath R, Tomov S, Dong T, Dongarra J. Optimizing symmetric dense matrix-vector multiplication on GPUs.
Acm/IEEE Conference on Supercomputing (SC11), 2011.

27. Yamada S, Imamura T, Machida M. Dynamic variation of eigenvalue problems in density-matrix renormalization-
group code, 2012. presented at SIAM conference on Parallel Processing for Scientific Computing.

28. NVIDIA CUDA Compute Unified Device Architecture - Programming Guide.
29. Kurzak J, Tomov S, Dongarra J. Autotuning GEMMs for Fermi. LAPACK working note 245: Technical Report

UT-CS-11-671, Electrical Engineering and Computer Science Department, University of Tennessee, 2011.
30. Cuppen J. A divide and conquer method for the symmetric tridiagonal eigenproblem. Numerical Mathematics 1981;

36:177–195.
31. Vömel C, Tomov S, Dongarra J. Divide and conquer on hybrid GPU-accelerated multicore systems. SIAM Journal

of Scientific Computing 2012; 34:C70–C82.
32. Yamazaki I, Wu K. A communication-avoiding thick-restart Lanczos method on a distributed-memory system.

Workshop on Algorithms and Programming Tools for Next-Generation High-Performance Scientific and Software
(HPCC), 2011.

33. Yamazaki I, Bai Z, Simon H, Wang LW, Wu K. Adaptive projection subspace dimension for the thick-restart Lanczos

34. Dhillon I, Parlett B. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices.
Linear Algebra and its Applications 2004; 387:1–28.

35. Yamazaki I, Dong T, Tomov S, Dongarra J. Tridiagonalization of a symmetric dense matrix on a GPU cluster. The
Proceedings of the Third International Workshop on Accelerators and Hybrid Exascale Systems (AsHES), Boston,
Massachusetts, 2013; 1070–1079.

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2013)
DOI: 10.1002/cpe

method. ACM Transactions on Mathematical Software 2010; 37:1–1.

