
Research report ICL-UT-1301

Multi-criteria checkpointing strategies: optimizing

response-time versus resource utilization

Aurélien Bouteiller1, Franck Cappello2, Jack Dongarra1,
Amina Guermouche3, Thomas Hérault1 and Yves Robert1,4

1. University of Tennessee Knoxville, USA
2. University of Illinois at Urbana Champaign, USA & INRIA, France

3. Univ. Versailles St Quentin, France
4. Ecole Normale Supérieure de Lyon, France

{bouteill|dongarra|herault|yrobert1}@eecs.utk.edu

cappello@illinois.edu, amina.guermouche@uvsq.fr

February 27, 2013

Abstract

Failures are increasingly threatening the efficiency of HPC systems,
and current projections of Exascale platforms indicate that rollback recov-
ery, the most convenient method for providing fault tolerance to general-
purpose applications, reaches its own limits at such scales. One of the
reasons explaining this unnerving situation comes from the focus that has
been given to per-application completion time, rather than to platform
efficiency. In this paper, we discuss the case of uncoordinated rollback
recovery where the idle time spent waiting recovering processors is used
to progress a different, independent application from the system batch
queue. We then propose an extended model of uncoordinated checkpoint-
ing that can discriminate between idle time and wasted computation.
We instantiate this model in a simulator to demonstrate that, with this
strategy, uncoordinated checkpointing per application completion time is
unchanged, while it delivers near-perfect platform efficiency.

1 Introduction

The progress of many fields of research, in chemistry, biology, medicine, aerospace
and general engineering, is heavily dependent on the availability of ever increas-
ing computational capabilities. The High Performance Computing (HPC) com-
munity strives to fulfill these expectations, and in recent years, has embraced
parallel systems to increase computational capabilities. Although there is no

1

alternative technology in sight, the core logic of delivering more performance
through ever larger systems bears its own issues, and most notably declining re-
siliency. In the projections issued by the International Exascale Software Project
(IESP) [10], even if individual components are expected to enjoy significant im-
provements in reliability, their number alone will drive the system Mean Time
Between Failures (MTBF) to plummet, entering a regime where failures are not
uncommon events, but a normal part of application life [13].

Many approaches have been investigated, over the years, to resolve the
formidable threat that process failures pose to both productivity and efficiency
of HPC applications. The most common approach has been the use of roll-
back recovery, based on periodic, complete application checkpoint, and com-
plete restart upon failure. While this scheme has been successful in the past,
it appears that coordinated checkpoint/restart will suffer from unacceptable
I/O overhead at the scale envisioned for future systems, leading to poor overall
efficiency barely competing with replication [12].

Other options are available to design fault tolerant applications, such as Al-
gorithm Based Fault Tolerance [17], or Naturally Fault Tolerant Methods [8].
However, unlike checkpoint/restart, which can be provided automatically (with-
out modifications to the application), these techniques are application-specific,
because thet rely on intrinsic algorithmic properties. In addition, they often
require excruciating software engineering efforts, resulting in generally low ap-
plicability to production codes.

In recent years, an alternative automatic rollback recovery technique, namely
uncoordinated checkpoints with message logging, has received a lot of atten-
tion [4, 14]. The key idea of this approach is to avoid the rollback of processes
that have not been struck by failures, thereby reducing the amount of lost com-
putation that has to be re-executed, and possibly permitting overlap between
recovery and regular application progress. Unfortunately, under the reasonable
hypothesis of tightly coupled applications (the most common type, whose com-
plexity often compels automatic fault tolerance), processes that do not undergo
rollback have to wait for restarted processes to catchup before they can resume
their own progression, thereby spending as much time idling than they would
have spent re-executing work in a coordinated approach.

In this paper, we propose to consider the realistic case of an HPC system with
a queue of independent parallel jobs (typically submitted by different users). In
addition to per-application completion time, which is strongly challenged by
numerous failures, the goal of such a system is to complete as much useful
computations as possible, while still retaining reasonable per-application com-
pletion time. The proposed application deployment scheme addressed in this
paper makes use of automatic, uncoordinated checkpoint/restart, and overlaps
idling time suffered by recovering applications by progress made on other ap-
plications loaded on the resources, meanwhile uncoordinated rollback recovery
is taking place on the limited subset of the resources that needs to re-execute
work after a failure. Based on this strategy, we extend the model proposed
in [1] to make a distinction between wasted computation and processor idle
time. The waste incurred by the individual application, and the total waste

2

of the platform, are both expressed with the model, and we investigate the
tradeoffs between optimizing for application efficiency or for platform efficiency.

The rest of this paper is organized as follows: Section 2 gives an informal
statement of the problem. Section 3 presents the model and the scenarios used
to analyze the behavior of the application-centric and platform-centric scenar-
ios. The waste incurred for these scenarios is computed in Section 4. Section 5
is devoted to a comprehensive set of simulations on relevant platform and ap-
plication case studies. Section 6 provides an overview of related work. Finally
we give some concluding remarks and hints for future work in Section 7.

2 Uncoordinated Checkpointing Strategy to Max-
imize Platform Efficiency

Rollback recovery protocols employ checkpoints to periodically save the state
of a parallel application, so that when a failure strikes some process, the appli-
cation can be restored into one of its former states. The closer the checkpoint
date is from the failure date, the smaller the amount of lost computation to
be re-executed. However, checkpointing is an expensive operation, and incurs
overhead of its own, leading the best checkpoint frequency to be a compromise
between minimizing the average lost computation per failure, and limiting the
amount of computing power wasted on checkpoints. Young [21] and more re-
cently Daly [9] proposed first-order formulas to compute the optimal checkpoint
frequency based on the machine MTBF and checkpoint cost.

In a parallel application, the recovery line is the state of the entire applica-
tion after some processes have been restarted from a checkpoint. Unfortunately,
not all recovery lines are consistent; in particular, recovery lines that separate
the emission and matching reception event of a message are problematic [7].
Two main families of rollback recovery techniques have been designed to resolve
the issues posed by these messages crossing the recovery line: coordinated check-
point, and uncoordinated checkpoint with message logging. In the coordinated
checkpoint approach, a collection of checkpoints is constructed in a way that
ensures that consistency threatening messages do not exist between checkpoints
of the collection (using a coordination algorithm). As the checkpoint collec-
tion forms the only recovery line that is guaranteed to be correct, all processes
have to rollback simultaneously, even if they are not faulty. As a result, the
bulk amount of lost work is increased and not optimal for a given number of
failures. The non-coordinated checkpoint approach avoids duplicating the work
completed by non-faulty processes. Checkpoints are taken at random dates,
and only failed processes endure rollback. Obviously, the resulting recovery line
is not guaranteed to be correct without the addition of supplementary state
elements to resolve the issues posed by crossing messages. Typically, message
logging and event logging [11] store the necessary state elements during the ex-
ecution of the application. When a process has to rollback to a checkpoint, it
undergoes a managed, isolated re-execution, where all non-deterministic event

3

outcomes are forced according to the event log, and messages from the past are
served from the message log without rollback of the original sender.

In the case of typical HPC applications, which are often tightly coupled, the
ability of restarting only faulty process (hence limiting duplicate computation
to a minimum) does not translate into great improvements of the application
completion time [1]. Despite being spared the overhead of executing duplicate
work, surviving processes quickly reach a synchronization point where further
progress depends on input from rollback processes. Since the recovered pro-
cesses have a significant amount of duplicate work to re-execute before they can
catchup with the general progress of the application, surviving process spend
significant amount of time idling; altogether, the overall application completion
time is only marginally improved. However, this conclusion is the result of fo-
cusing on the performance of a single application performance. It is clear that,
given the availability of several independent jobs, idle time can be used to per-
form other useful computations, thereby diminishing the wasted time incurred
by the whole platform.

In this paper, we propose a scheduling strategy that complements uncoor-
dinated rollback recovery, in order to decrease the waste of computing power
during recovery periods. When a failure occurs, a set of spare processes are used
to execute the duplicate work of processes that have to rollback to a checkpoint.
However, unlike regular uncoordinated checkpoint, instead of remaining active
and idling, the remainder of the application is stopped and flushed from memory
to disk. The resulting free resources are used to progress an independent appli-
cation. When the processes reloaded from checkpoint have completed sufficient
duplicate work, the supplementary application can be stopped (and its progress
saved with a checkpoint); the initial application can then be reloaded and its ex-
ecution resumes normally. In the next section, we propose an analytical model
for this strategy that permits to compute the supplementary execution time
for the initial application, together with the total waste of computing power
endured by the platform. We then use the model to investigate the appropriate
checkpoint period, and to predict adequate strategies that deliver low platform
waste while preserving application completion time.

3 Model

In this section, we introduce all model parameters, and we detail the execution
scenarios: Application-oriented uses the whole platform for a single appli-
cation, while Platform-oriented uses a fraction of the resources as spare
resources that recover and re-execute work upon failures, while the rest of the
resources loads, executes and stores another application.

3.1 Model parameters

All relevant parameters are summarized in Table 1. We give a few words of
explanation form each of them. More details can be found in [1]:

4

Table 1: Key model parameters.

µp Platform MTBF
G or G+ 1 Number of groups
T Length of period
W Work done every period
C Checkpoint time
D Downtime
R Restart (from checkpoint) time
α Slow-down execution factor when checkpointing
λ Slow-down execution factor due to message logging
β Increase rate of checkpoint size per work unit

• µp is the MTBF of the platform, meaning that failures strike every µp
seconds in average. We have µp = µind

ptotal
, where µind is the MTBF of

individual processors, and ptotal is the total number of processors. Our
approach is agnostic of the granularity of the processor, which can be
either a single CPU, or a multi-core processor, or any relevant computing
entity

• The platform is partitioned into processor groups. We have G+1 processor
groups, each of size q (hence (G+ 1)q = ptotal). One of these groups will
be used as spare group in the Platform-oriented scenario, while all
G + 1 participate to execution in the Application-oriented scenario
(see Section 3.2 below). We use a hierarchical protocol with message-
logging in both cases.

• Checkpoints are taken periodically, every T seconds. All groups checkpoint
concurrently, in time C. Hence, every period of length T , we perform
some useful work W and take a checkpoint of duration C. Without loss
of generality, we express W and T with the same unit: an unit of work
executed at full speed takes one second. However, there are two factors
that slow-down execution:

– During checkpointing, which lasts C seconds, we account for a slow-
down due to I/O operations, and only αC units of work are executed,
where 0 ≤ α ≤ 1. The case α = 0 corresponds to a fully blocking
checkpoint, while α = 1 corresponds to a fully overlapped checkpoint,
and all intermediate situations can be represented;

– Throughout the period, we account for a slow-down factor λ due
to the extra-communications induced by message logging. A typical
value is λ = 0.98 [2, 14];

– Altogether, the amount of work W that is executed every period of
length T is

W = λ((T − C) + αC) = λ(T − (1− α)C) (1)

5

• In addition to the durations of the checkpoint C, we use D for the down-
time and R for the time to restart from a checkpoint. We assume that
D ≤ C to avoid clumsy expressions, and because it is always the case in
practice. However, we can easily extend the analysis to the case where
D > C.

• Message logging has both a positive impact and a negative impact on
performance:

– On the positive side, message logging reduces the re-execution time
after a failure, because inter-group messages are stored in memory
and directly accessible during the recovery. Our model accounts for
this by introducing a speed-up factor ρ during the re-execution. Typ-
ical values for ρ lie in the interval [1; 2], meaning that re-execution
time can be reduced up to a half for some applications [5].

– On the negative side (in addition to execution slow-down by the
factor λ), message-logging increases the size of checkpoints. Because
inter-group messages are logged, the size of the checkpoint increases
with the amount of work per unit. To account for this increase, we
write the equation

C = C0(1 + βW) (2)

The parameter C0 is the time needed to write this application foot-
print onto stable storage, without message-logging. The parameter
β quantifies the increase in the checkpoint time resulting from the
increase of the log size per work unit (which is itself strongly tied to
the communication to computation ratio of the application). Typical
values of β are given in the examples of Section 5.

• Combining Equations (1) and (2), we derive the final value of the check-
point time

C =
C0(1 + βλT)

1 + C0βλ(1− α)
(3)

We point out that the same application is deployed on G groups instead
of G + 1 in the Platform-oriented scenario. As a consequence, when
processor local storage is available, C0 is increased by G+1

G in Platform-
oriented, compared to the Application-oriented case.

3.2 Scenarios

In this section, we introduce some notations for both execution scenarios. The
objective is to compare the overhead incurred for each of them. We define the
waste as the fraction of time where resources are not used to perform useful work,
and we aim at comparing the value of the minimum waste for each scenario.
This minimum waste will be achieved for some optimal value of the period,
which will likely differ for each scenario.

6

Scenario Application-oriented. One single application executes on the en-
tire platform, using all G+1 groups. Resilience is provided through the standard
uncoordinated hierarchical protocol. We let Wasteapp(T) denote the waste in-
duced by this scenario, and T optapp the value of T that minimizes it.

Scenario Platform-oriented. One main application executes on G groups
and uses the spare group in case of failure. During the downtime, restart and
re-execution, another application is loaded, if time permits. The utilization rate
of the platform is higher this way, but at the price of using a spare group. We
use the notations Wasteplat(T) for the waste, and T optplat for the value of T that
minimizes it.

The major objective of this paper is to compare the minimum waste result-
ing from each scenario. Intuitively, the period T optapp (single application) will be

smaller than the period T optplat (platform-oriented) because the loss due to a fail-
ure is higher in the former scenario. In the latter scenario, we lose a constant
amount of time (due to switching applications) instead of losing an average of
half the checkpointing period in the first scenario. We then aim at compar-
ing the four values Wasteapp(T

opt
app), Wasteapp(T

opt
plat), Wasteplat(T

opt
plat), and

Wasteplat(T
opt
app), the later two values characterizing the tradeoff when using

the optimal period of a scenario for the other one.

4 Computing the waste

In this section, we show how to compute the waste for both scenarios. We start
with the generic approach to compute the waste, which we specialize later for
each scenario.

4.1 Generic approach

Let Tbase be the parallel execution time without any overhead (no checkpoint,
failure-free execution). The first source of overhead comes the rollback-and-
recovery protocol. Every period of length T , we perform some useful work W
(whose value is given by Equation (1)) and take a checkpoint. Checkpointing
induces an overhead, even if there is no failure, because not all the time is spent
computing: the fraction of useful time is W

T ≤ 1. The failure-free execution

time Tff is thus given by the equation W
T Tff = Tbase, which we rewrite as

(1−Wasteff)Tff = Tbase, where Wasteff =
T −W
T

(4)

Here Wasteff denotes the waste due to checkpointing and message logging
in a failure-free environment. Now, we compute the overhead due to failures.
Failures strike every µp units of time in average, and for each of them, we lose

7

an amount of time tlost. The final execution time Tfinal is thus given by the
equation (1− tlost

µp
)Tfinal = Tff which we rewrite as

(1−Wastefail)Tfinal = Tff , where Wastefail =
tlost
µp

(5)

Here Wastefail denotes the waste due to failures. Combining Equations (4)
and (5), we derive that

(1−Wastefinal)Tfinal = Tbase (6)

Wastefinal = Wasteff + Wastefail −WasteffWastefail (7)

Here Wastefinal denotes the total waste during the execution, which we aim
at minimizing by finding the optimal value of the checkpointing period T . In
the following, we compute the values of Wastefinal for each scenario.

(a)

∆ = T + tlost

αC CT − CRDFT−C

P3

P2

P1

P0

Work Checkpointing Work with Checkpointing slowdown

Re-executing slowed-down workRestartDowntime

T

Time

(b)

CT − CαCRDFC

∆ = T + tlost

T − C

T

P3

P2

P1

P0

Work Checkpointing Work with Checkpointing slowdown

Re-executing slowed-down workRestartDowntime
Time

Figure 1: Uncoordinated checkpoint: illustrating the waste when a failure occurs
(a) during the work phase; and (b) during the checkpoint phase (assuming
ρ = 1, λ = 1 for clarity.)

4.2 Scenario Application-oriented

We have Wasteff = T−W
T = T−λ(T−(1−α)C)

T for both scenarios but recall that
we enroll G+ 1 groups in scenario Application-oriented and only G groups
in in scenario Platform-oriented, so that the value of C is not the same in
Equation (3). Next, we compute the value of Wastefail for the Application-
oriented scenario. We illustrate this computation with Figure 1:

Wastefail =
1

µp

[
D +R+

T − C
T

× ReExec1 +
C

T
× ReExec2

]
(8)

8

where

ReExec1 =
1

ρ

(
αC +

T − C
2

)
ReExec2 =

1

ρ

(
αC + T − C +

C

2

)
First, D + R is the duration of the downtime and restart. Then we add

the time needed to re-execute the work that had already completed during the
period, and that has been lost due to the failure. Assume first that the failure
strikes during work interval (T −C), see Figure 1(a): we need to re-execute the
work done in parallel with the last checkpoint (of duration C). This takes a time
αC since no checkpoint activity is taking place during that replay. Then we re-
execute the work done in the work-only area. On average, the failure happens
in the middle of the interval of length T − C, hence the time lost has expected
value T−C

2 . We derive the value of ReExec1 by accounting for the speedup in
re-execution (parameter ρ). This value is weighted by the probability (T−C)/T
of the failure striking within the work interval. We derive the value of ReExec2
with a similar reasoning (see Figure 1(b)), and weight it by the probability
C/T of the failure striking within the checkpoint interval. After simplification,
we derive

Wastefail =
1

µp

(
D +R+

1

ρ

(
T

2
+ αC

))
(9)

4.3 Scenario Platform-oriented

In this scenario, the first G groups are computing for the current application and
are called regular groups. The last group is the spare group. As already pointed
out, this leads to modifying the value of C, and hence the value of Wasteff . In
addition, we also have to modify the value of Tbase, which becomes G+1

G Tbase, to
account for the fact that it takes more time to produce the same work with fewer
processors. We need to recompute Wastefinal accordingly so that Equation (6)
still holds and we derive:

(1−Wastefinal)Tfinal =
G+ 1

G
Tbase (10)

Wastefinal =
1

G+ 1
+

G

G+ 1

(
Wasteff + Wastefail −WasteffWastefail

)
(11)

We now proceed to the computation of Wastefail, which is intricate. See
Figure 2 for an illustration:

• Assume that a fault occurs within group g. Let t1 be the time elapsed
since the completion of the last checkpoint. At that point, the amount of
work that is lost and should be re-executed is W1 = αC + t1. Then:

1. The faulty group (number g) is down during D seconds;

9

2. The spare group (number G+ 1) takes over for the faulty group and
does the recovery from the previous checkpoint at time t1. It starts
re-executing the work until time t2 = t1 + R + ReExec, when it
has reached the point of execution where the fault took place. Here
ReExec denotes the time needed to re-execute the work, and we have
ReExec = W1

ρ ;

3. The remaining G− 1 groups checkpoint their current state while the
faulty group g takes its downtime (recall that D ≤ C);

4. At time t1 +C, the now free G groups load another application from
its last checkpoint, which takes L seconds, perform some compu-
tations for this second application, and store their state to stable
storage, which takes S seconds. The amount of work for the second
application is computed so that the store operation completes exactly
at time t2 − R. Note that it is possible to perform useful work for
the second application only if t2− t1 = R+ReExec ≥ C+L+S+R.
Note that we did not assume that L = C, nor that S = R, because
the amount of data written and read to stable storage may well vary
from one application to another;

5. At time t2 − R, the G groups excluding the faulty group start the
recovery for the first application, and at time t2 they are ready to
resume the execution of this first application together with the spare
group: there remains W −W1 units of work to execute to finish up
the period. From time t2 on, the faulty group becomes the spare
group.

App1 work

Checkpoint Load

Store

App2 work

Restart

Down TimeReplay

Idling Failure

T

C R

L S

ReExec

G
ro

u
p

s

g

G
G+1

.

.1

...

.

0 t t1 2

Figure 2: Illustrating the waste when a fault occurs in the Platform-oriented
scenario.

To simplify notations, let X = C+L+S+R and Y = X−R. We rewrite the
condition t2 − t1 = R + ReExec ≥ X as ReExec ≥ Y , i.e., αC+t1

ρ ≥ Y . This is
equivalent to t1 ≥ Z, where Z = ρY − αC. So if t1 ≥ Z, the first G groups lose
X seconds, and otherwise they lose R + ReExec seconds. Since t1 is uniformly
distributed over the period T , the first case happens with probability T−Z

T and

the second case with probability Z
T . As for the second case, the expectation

of t1 conditioned to t1 ≤ Z is E[t1|t1 ≤ Z] = Z
2 , hence the expectation of the

time lost is E[R + ReExec|t1 ≤ Z] = R + Y
2 + αC

2ρ . Altogether the formula for
Wastefail is

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 100

W
as

te

MTBF of a single node (in years)

Application (Topt obtained by model)
Application (Topt obtained by sampling)

Platform (Topt obtained by model)
Platform (Topt obtained by sampling)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
as

te

Checkpoint Interval (T) (in seconds)

Topt
App Topt

Plat

Application
Platform

Figure 3: Waste as function of the
compute node MTBF, considering
a matrix multiplication, on the K-
Computer model.

Figure 4: Waste as function of the
checkpoint period, considering a 2D-
stencil operation, on the Fat Exascale
Computer model (20 years individual
processor MTBF.)

Wastefail =
1

µp

(
T − Z
T

×X +
Z

T
× (R+

Y

2
+
αC

2ρ
)

)
(12)

and is explained as follows:

• if the failure strikes during the first Z units of the period, which happens
with probability Z

T , there is not enough time to load the second applica-
tion, and the regular groups all waste E[R + ReExec|t1 ≤ Z] seconds in
average

• if the failure strikes during the last T − Z units of the period, which
happens with probability T−Z

T , then the regular groups all wasteX units of
time, and they perform some useful computation for the second application
in the remaining time that they have before the spare group catches up.

5 Experiments

We instantiated the proposed waste model with different scenarios. We first
detail two scenarios that illustrate the benefits of the proposed approach. Then
we provide comprehensive results for a wider set of experiments, whose results
are similar.

The first scenario shown in Fig. 3, considers a model of the K-Computer
([18]), and a matrix-matrix multiply operation, assuming that the whole ma-
chine (less a group) is used and the problem size occupies the whole machine
memory. Using the waste model, we computed the optimal checkpoint time, and
simulated the waste as a function of the node MTBF using an in-house simulator
adapted from [1], from the system perspective (green lines) and from the appli-
cation perspective (red lines). We also sampled other checkpoint interval times,
to take into account multiple failure scenarios: although mathematical limita-
tions prevent us to compute a close formula for the waste in case of overlapping
failures, the simulator is not limited, and take into account all scenarios. Note,

11

however, that the model is still required, to provide a basis for the checkpoint
interval, and that this interval provides a good approximation of the best, as is
shown in the figure.

This figure demonstrates the huge benefit, from the application perspective,
of introducing a spare node: indeed, when the application waste, due to I/O
congestion at checkpoint time, starts from a relatively high level when the com-
ponent MTBF is very low (and thus when the machine usability is low), the
system waste itself is at significantly low levels.

The second scenario is illustrated in Figure 4: here, we fix the MTBF of
a single component to 20 years, and study the impact of choosing the optimal
checkpoint interval targeting the system efficiency, or the application efficiency.
To do so, we varied that checkpoint interval between the Application optimal,
and the System optimal, as given by the model. To illustrate the diversity of ex-
periments we conducted, the modeled system is one of the envisioned machines
for exascale systems (the “Fat” version, featuring heavy multicore nodes), and
the modeled application is a 2D-Stencil application that fills the systems mem-
ory. As evaluated in [1], rollback/recovery protocols will be efficient in such a
machine, only if there is a 10 fold increase in performance (or more) of check-
pointing techniques, so we place ourself in this scenario. Figures 5, 6, 7, and
8present an exhaustive study on different sets of machines, applications and
checkpoint performance models, and they conclude to the same general behav-
ior: system’s optimal checkpoint intervals are much higher than application’s
optimal checkpoint intervals of the same scenario, and both system and appli-
cation exhibit a waste that increases when taking a checkpoint interval far away
from their optimal. However, because the spare node is so much more beneficial
to the general efficiency of the system than to the efficiency of the application, it
is extremely beneficial to select the optimal application checkpoint interval: the
performance of the system remains close to an efficiency of 1, while the waste
of the application can be reduced significantly.

As a side note, one can also see that although replication (with a top effi-
ciency of 50%) could be considered to improve the efficiency of the applications,
in the scenarios where rollback-recovery can be less efficient than replication, a
hierarchical checkpointing technique with dedicated spare node, as the one we
propose here, is the only one that can provide a waste for the system close to 0.

As already mentioned, results with other platforms, applications and failure
distributions exhibit similar behavior, as shown in Figures 5, 6, 7, and 8. In these
figures, Platform/X corresponds to experiments on the corresponding Platform,
where the checkpoint time C0 is divided by X, where X = {1, 10, 100}. Note
that C0 is the time to write the memory footprint of one application group onto
stable storage; detailed information on the platform parameters are available
in [1]. Dividing by the factor X allows up to investigate whether, and up to
what extent, faster checkpointing can prove useful, or necessary, at very large
scale.

12

6 Related work

Fault tolerance and rollback recovery has been a very active field of research [11].
Recent optimizations and experimental studies outline that compelling perfor-
mance can be obtained from uncoordinated checkpointing [4, 14], and have
characterized with more precision the typical range of values for fixed overheads
(such as the slowdown imposed by checkpointing, message logging, and message
log growth rate). In some recent work, we have proposed a general model captur-
ing the intricacies of these advanced rollback recovery techniques [1]. However,
the model considered only the impact on application efficiency, and therefore
let one of the key advantages of uncoordinated recovery unaccounted for, in the
(reasonable) hypothesis of tightly coupled applications.

Another interesting development designed to take advantage of the idling
time left on surviving processors with uncoordinated rollback recovery is parallel
re-execution of the lost workload. Upon restart, the workload initially executed
by the failed processes is split and dispatched across all computing resources [6].
In this work, the workload can be easily divided as the program is written
with Charm++. In practice, however, the deployment of such techniques for
production MPI codes written in legacy Fortran/C is difficult, as it requires a
full rewrite of the application to account for the different data and computation
distribution during recovery periods (some works propose to partially automate
this with compilation techniques [20]). Even when such splitting is practical,
the resulting scalability is challenged, as the workload to be re-executed after
a partial rollback is (hopefully) orders of magnitude smaller than the initial
application workload, which, in accordance with Gustafson law [15], typically
results in poor parallel efficiency at scale.

Overlapping downtime of programs blocked on I/O or memory accesses is
an idea that has been investigated in many contexts, and has resulted in a
variety of hardware and software techniques to improve throughput (Hyper-
threads [19], massive oversubscription in task based systems [16], etc.) . Inter-
estingly, checkpoint-restart can be used as a tool designed to improve overlap of
computation and computation with co-scheduling [3]. However, it has seldom
been considered to overcome the cost of rollback recovery itself, and modeling
tools to assess the effectiveness of compensation techniques have not been avail-
able yet, to the best of our knowledge. The model proposed here permits to
characterize the difference in terms of platform efficiency when multiple inde-
pendent applications must be completed.

7 Conclusion

In this paper, we have proposed a deployment strategy that permits to overlap
the idle time created by recovery periods in uncoordinated rollback recovery with
useful work from another application. We recall that this opportunity is unique
to uncoordinated rollback recovery, since coordinated checkpointing requires
the rollback of all processors, hence generates a similar re-execution time, but

13

without idle time. We designed an accurate analytical model that captures the
waste resulting from failures and protection actions, both in term of application
runtime and in term of resource usage. The model results are compatible with
experimentally observed behavior, and simplifications to express the model as
a closed formula introduce only a minimal imprecision, that we have quantified
through simulations.

The model has been used to investigate the effective benefit of the uncoor-
dinated checkpointing strategy to improve platform efficiency, even in the most
stringent assumptions of tightly coupled applications. Indeed, the efficiency
of the platform can be greatly improved, even when using the checkpointing
period that is the most amenable to minimizing application runtime. Finally,
although replication (with a top efficiency of 50%) sometime delivers better
per-application efficiency, we point out that a hierarchical checkpointing tech-
nique with dedicated spare nodes, as the one proposed in this paper, is the only
approach that can provide a global platform waste close to zero.

Acknowledgments. Y. Robert is with the Institut Universitaire de France. This
work was supported in part by the ANR Rescue project.

References

[1] Georges Bosilca, Aurelien Bouteiller, Elisabeth Brunet, Franck Cap-
pello, Jack Dongarra, Amina Guermouche, Thomas Herault, Yves Robert,
Frédéric Vivien, and Dounia Zaidouni. Unified model for assessing check-
pointing protocols at extreme-scale. Research report RR-7950, INRIA,
2012.

[2] Aurelien Bouteiller, George Bosilca, and Jack Dongarra. Redesigning the
message logging model for high performance. Concurrency and Computa-
tion: Practice and Experience, 22(16):2196–2211, 2010.

[3] Aurelien Bouteiller, Hinde-Lilia Bouziane, Thomas Herault, Pierre
Lemarinier, and Franck Cappello. Hybrid preemptive scheduling of mes-
sage passing interface applications on grids. International Journal of High
Performance Computing Applications, 20(1):77–90, 2006.

[4] Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack J. Don-
garra. Correlated set coordination in fault tolerant message logging pro-
tocols. In Proc. of Euro-Par’11 (II), volume 6853 of LNCS, pages 51–64.
Springer, 2011.

[5] Aurelien Bouteiller, Thomas Herault, Geraud Krawezik, Pierre Lemarinier,
and Franck Cappello. MPICH-V: a multiprotocol fault tolerant MPI. IJH-
PCA, 20(3):319–333, 2006.

14

[6] Sayantan Chakravorty and L.V. Kale. A fault tolerance protocol with fast
fault recovery. In Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, pages 1 –10, march 2007.

[7] K. M. Chandy and L. Lamport. Distributed snapshots : Determining
global states of distributed systems. In Transactions on Computer Systems,
volume 3(1), pages 63–75. ACM, February 1985.

[8] Zizhong Chen, Graham E. Fagg, Edgar Gabriel, Julien Langou, Thara
Angskun, George Bosilca, and Jack Dongarra. Fault tolerant high perfor-
mance computing by a coding approach. In Proc. 10th ACM SIGPLAN
symp. on Principles and practice of parallel programming, PPoPP ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[9] J. T. Daly. A higher order estimate of the optimum checkpoint interval for
restart dumps. FGCS, 22(3):303–312, 2004.

[10] Jack Dongarra, Pete Beckman, Patrick Aerts, Frank Cappello, Thomas
Lippert, Satoshi Matsuoka, Paul Messina, Terry Moore, Rick Stevens, Anne
Trefethen, and Mateo Valero. The international exascale software project:
a call to cooperative action by the global high-performance community. Int.
J. High Perform. Comput. Appl., 23(4):309–322, 2009.

[11] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B.
Johnson. A survey of rollback-recovery protocols in message-passing sys-
tems. ACM Survey, 34:375–408, 2002.

[12] K. Ferreira, J. Stearley, J. H. III Laros, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the
Viability of Process Replication Reliability for Exascale Systems. In Pro-
ceedings of the 2011 ACM/IEEE Conf. on Supercomputing, 2011.

[13] G. Gibson. Failure tolerance in petascale computers. In Journal of Physics:
Conference Series, volume 78, page 012022, 2007.

[14] A. Guermouche, T. Ropars, M. Snir, and F. Cappello. Hydee: Failure
containment without event logging for large scale send-deterministic mpi
applications. In Parallel Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pages 1216 –1227, may 2012.

[15] John L. Gustafson. Reevaluating amdahl’s law. Communications of the
ACM, 31:532–533, 1988.

[16] Chao Huang, Gengbin Zheng, Laxmikant Kalé, and Sameer Kumar. Perfor-
mance evaluation of adaptive mpi. In Proc. 11th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming, PPoPP ’06, pages
12–21, New York, NY, USA, 2006. ACM.

[17] K.H. Huang and J.A. Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Transactions on Computers, 100(6):518–528, 1984.

15

[18] Hiroyuki Miyazaki, Yoshihiro Kusano, Hiroshi Okano, Tatsumi Nakada,
Ken Seki, Toshiyuki Shimizu, Naoki Shinjo, Fumiyoshi Shoji, Atsuya Uno,
and Motoyoshi Kurokawa. K computer: 8.162 petaflops massively parallel
scalar supercomputer built with over 548k cores. In ISSCC, pages 192–194.
IEEE, 2012.

[19] Radhika Thekkath and Susan J. Eggers. The effectiveness of multiple hard-
ware contexts. In Proc. 6th int. conf. on Architectural support for program-
ming languages and operating systems, ASPLOS VI, pages 328–337, New
York, NY, USA, 1994. ACM.

[20] Xuejun Yang, Yunfei Du, Panfeng Wang, Hongyi Fu, and Jia Jia. Ftpa:
Supporting fault-tolerant parallel computing through parallel recomputing.
Parallel and Distributed Systems, IEEE Transactions on, 20(10):1471 –
1486, oct. 2009.

[21] John W. Young. A first order approximation to the optimum checkpoint
interval. Comm. of the ACM, 17(9):530–531, 1974.

16

T
it

an

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

Application-Oriented
Platform-Oriented

Application-Oriented BestPer
Machine-Oriented BestPer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

Application-Oriented
Platform-Oriented

Application-Oriented BestPer
Platform-Oriented BestPer

T
it

an
/1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

T
it

a
n

/1
00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

K
-C

om
p

u
te

r/
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

K
-C

om
p

u
te

r/
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

K
-C

om
p

u
te

r/
10

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix-Product

Figure 5: Waste as a function of processor MTBF µ, for an Exponential Distri-
bution, Current platforms

17

E
x
as

ca
le

-S
li

m
/1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-S
li

m
/1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-S
li

m
/1

00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
a
sc

al
e-

F
at

/
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-F
at

/1
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-F
at

/1
00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix-Product

Figure 6: Waste as a function of processor MTBF µ, for an Exponential Distri-
bution, Exascale platforms

18

T
it

an
/
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

Application-Oriented
Platform-Oriented

Application-Oriented BestPer
Machine-Oriented BestPer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

Application-Oriented
Platform-Oriented

Application-Oriented BestPer
Platform-Oriented BestPer

T
it

an
/1

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

T
it

a
n

/1
00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

K
-C

om
p

u
te

r/
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

Application-Waste 296 Groups
Application-Waste 296 Groups BestPer

Platform-Waste 295 Groups
Platform-Waste 295 Groups BestPer

K
-C

om
p

u
te

r/
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

K
-C

om
p

u
te

r/
10

0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix-Product

Figure 7: Waste as a function of processor MTBF µ, for a Weibull Distribution
k=0.7, Current platforms

19

E
x
as

ca
le

-S
li

m
/1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-S
li

m
/
1
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-S
li

m
/1

00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
a
sc

al
e-

F
at

/
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-F
at

/1
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

E
x
as

ca
le

-F
at

/1
00

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 5 7.5 10 15 20 25 30 35 50 75 100

2D-Stencil Matrix-Product

Figure 8: Waste as a function of processor MTBF µ, for a Weibull Distribution
k=0.7, Exascale platforms

20

