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Abstract—Ideal hardware performance counters provide exact
deterministic results. Real-world performance monitoring unit
(PMU) implementations do not always live up to this ideal.
Events that should be exact and deterministic (such as retired
instructions) show run-to-run variation and overcount on x86 64
machines, even when run in strictly controlled environments.
These effects are non-intuitive to casual users and cause dif-
ficulties when strict determinism is desirable, such as when
implementing deterministic replay or deterministic threading
libraries.

We investigate eleven different x86 64 CPU implementations
and discover the sources of divergence from expected count totals.
Of all the counter events investigated, we find only a few that
exhibit enough determinism to be used without adjustment in
deterministic execution environments. We also briefly investigate
ARM, IA64, POWER and SPARC systems and find that on these
platforms the counter events have more determinism.

We explore various methods of working around the limitations
of the x86 64 events, but in many cases this is not possible and
would require architectural redesign of the underlying PMU.

I. INTRODUCTION

Most modern CPUs have hardware performance coun-
ters; these counters allow detailed, low-level measurement of
processor behavior. The counters are most commonly used
for performance analysis, especially in the High Performance
Computing (HPC) field. Usage has spread to the desktop
and embedded areas, with many new and novel utilization
scenarios.

There are a wide variety of events that can be measured
with performance counters, with event availability varying
considerably among CPUs and vendors. Some processors
provide hundreds of events; separating the useful and accurate
ones from those that are broken and/or measure esoteric
architectural minutia can be a harrowing process. Event details
are buried in architectural manuals, often accompanied by
disclaimers disavowing any guarantees of useful results.

Counter validation is a difficult process. Some events can-
not be validated effectively, as they require exact knowledge
of the underlying CPU architecture and can be influenced by
outside timing effects not under user control [1]. This includes
most cache events, cycle counts, and any event affected by
speculative execution.

A subset of events exists that is architecturally specified;
these measure various kinds of retired instructions. With a
deterministic program (one that when provided with the same

input traverses the exact same code path and generates the
exact same output) the counter results should be the same for
every run. These counts should be consistent; otherwise the
processor would not be ISA compatible with others in the
same architecture.

A. The Need for Deterministic Events

There are many situations where deterministic software
execution is necessary. Deterministic execution is useful when
validating architectural simulators [2], [3], when analyzing
program behavior using basic block vectors (BBVs) [4], when
performing Feedback Directed Optimization (FDO) [5], when
using hardware checkpointing and rollback recovery [6], when
performing intrusion analysis [7], and when implementing
parallel deterministic execution.

Parallel deterministic execution enables debugging and
analysis of multi-threaded applications in a repeatable way.
Deterministic lock interleaving makes it possible to track down
locking problems in large parallel applications. There have
been many proposals about how to best implement parallel
deterministic execution; many require modified hardware or
modified operating systems. A quick and easy way to build
deterministic locks is to use hardware performance counters to
ensure that previously non-deterministic lock behavior happens
in a consistent, repeatable way [8], [9], [10], [11]. The need for
parallel deterministic execution has been the primary impetus
for the search for deterministic performance events.

B. Definitions

In this work we search for useful deterministic events. We
define a useful deterministic event as one where the value
does not change run-to-run due to the microarchitecture of
the processor (it is not affected by speculative execution), the
expected value can be determined via code inspection, and
the event occurs with enough frequency and distribution to be
useful in program analysis.

We find two primary causes for events to deviate from
the expected result: nondeterminism (identical runs returning
different values) and overcount (some instructions counting
multiple times). We investigate both sources of deviation.

II. EXPERIMENTAL SETUP

Processor vendors make no guarantees about determinism
or counter accuracy; any limitations must be determined ex-
perimentally. We investigate multiple x86 64 implementations



TABLE I. EVENTS USED IN THIS PAPER (PART 1). VALUES IN PARENTHESIS ARE perf RAW EVENT NUMBERS.

Intel Atom Intel Core2
Intel Nehalem

Intel SandyBridgeIntel Nehalem-EX
Intel Westmere

Retired
Instructions

INSTRUCTIONS RETIRED INSTRUCTIONS RETIRED INSTRUCTIONS RETIRED INSTRUCTIONS RETIRED
(instructions:u) (instructions:u) (instructions:u) (instructions:u)

Retired
Branches

BRANCH INSTRUCTIONS BRANCH INSTRUCTIONS BRANCH INSTRUCTIONS BRANCH INSTRUCTIONS
RETIRED RETIRED RETIRED RETIRED

(branches:u) (branches:u) (branches:u) (branches:u)
Retired
Conditional
Branches

n/a BR CND EXEC BR INST RETIRED BR INST RETIRED
:CONDITIONAL :CONDITIONAL

(r53008b:u) (r5301c4:u) (r5301c4:u)

Retired
Loads

n/a INST RETIRED:LOADS MEM INST RETIRED MEM UOP RETIRED
:LOADS :ANY LOADS

(r5001c0:u) (r50010b:u) (r5381d0:u)

Retired
Stores

n/a INST RETIRED:STORES MEM INST RETIRED MEM UOP RETIRED
:STORES :ANY STORES

(r5002c0:u) (r50020b:u) (r5382d0:u)

Multiplies MUL:AR MUL ARITH:MUL n/a(r508112:u) (r510012:u) (r500214:u)

Divides
DIV:AR DIV ARITH:DIV ARITH:FPU DIV

(r508113:u) (r510013:u) (r1d40114:u) (r1570114:u)

FP1
X87 COMP OPS EXE:ANY AR FP COMP OPS EXE FP COMP OPS EXE:X87 FP COMP OPS EXE:X87

(r508110:u) (r500010:u) (r500110:u) (r5302c0:u)

FP2
X87 COMP OPS EXE:ANY S X87 OPS RETIRED:ANY INST RETIRED:X87 INST RETIRED:X87

(r530110:u) (r50fec1:u) (r5002c0:u) (r5302c0:u)

SSE
SIMD INST RETIRED SIMD INSTR RETIRED FP COMP OPS EXE

:SSE FP
FP COMP OPS EXE

:SSE DOUBLE PRECISION
(r501fc7:u) (r5000ce:u) (r500410:u) (r538010:u)

Retired
Uops

UOPS RETIRED UOPS RETIRED UOPS RETIRED:ANY UOPS RETIRED:ANY
(r5010c2:u) (r500fc2:u) (r5001c2:u) (r5301c2:u)

Hardware
Interrupts

HW INT RCV† HW INT RCV HW INT:RCV‡ HW INTERRUPTS
:RECEIVED

(r5100c8:u) (r5000c8:u) (r50011d:u) (r5301cb:u)
†This counter does not work on Atom N270 or 230. ‡ Event support dropped in 6/2010 Intel Vol3B, interacts poorly with HyperThreading

TABLE II. EVENTS USED IN THIS PAPER (PART 2). VALUES IN PARENTHESIS ARE perf RAW EVENT NUMBERS.

Intel IvyBridge Intel Pentium D AMD Phenom / Istanbul AMD Bobcat
Retired INSTRUCTION RETIRED INSTR RETIRED:NBOGUSNTAG RETIRED INSTRUCTIONS RETIRED INSTRUCTIONS
Instructions (instructions:u) (instructions:u) (instructions:u) (instructions:u)

Retired
Branches

BR INST RETIRED BRANCH RETIRED RETIRED BRANCH RETIRED BRANCH
:MMNP:MMNM:MMTP:MMTM INSTRUCTIONS INSTRUCTIONS

(branches:u) (branches:u) (r5000c2:u) (branches:u)
Retired
Conditional
Branches

BR INST RETIRED:COND RETIRED BRANCH TYPE
n/a n/a:CONDITIONAL

(r5301c4:u)

Retired
Loads

MEM UOPS RETIRED FRONT END EVENT:NBOGUS,
n/a n/a:ALL LOADS UOPS TYPE:TAGLOADS

(r5381d0:u)

Retired
Stores

MEM UOPS RETIRED: INSTR RETIRED:NBOGUSTAG,
n/a n/a:ALL STORES UOPS TYPE:TAGSTORES

(r5382d0:u)

Multiplies
UOPS ISSUED
:SINGLE MUL n/a

DISPATCHED FPU
:OPS MULTIPLY

RETIRED SSE OPERATIONS:
SINGLE MUL OPS:
DOUBLE MUL OPS

(r53400e:u) (r500200:u) (r531203:u)

Divides
ARITH:FPU DIV n/a n/a

RETIRED SSE OPERATIONS:
SINGLE DIV OPS:
DOUBLE DIV OPS

(r1570114:u) (r524003:u)

FP1
Undocumented EXECUTION EVENT:NBOGUS1, RETIRED MMX AND RETIRED FLOATING

Used SandyBridge event X87 FP UOP:ALL:TAG1 FP INSTRUCTIONS:X87 POINT INSTRUCTIONS
(r5302c0:u) (r5001cb:u) (r5303cb:u)

FP2
Undocumented

n/a
RETIRED MMX AND DISPATCHED FPU:

Used SandyBridge event FP INSTRUCTIONS:ALL ANY
(r5302c0:u) (r5007cb:u) (r530300:u)

SSE
Undocumented

Used SandyBridge event

EXECUTION EVENT:NBOGUS2,
RETIRED SSE

OPERATIONS:ALL
RETIRED SSE

OPERATIONS:ALL
PACKED SP UOP:ALL:TAG2,
PACKED DP UOP:ALL:TAG2

(r538010:u) (r507f03:u) (r537f03:u)
Retired UOPS RETIRED:ALL UOPS RETIRED:NBOGUS DRETIRED UOPS RETIRED UOPS
Uops (r5301c2:u) (r5000c1:u) (r5000c1:u)
Hardware HW INTERRUPTS n/a INTERRUPTS TAKEN INTERRUPTS TAKEN
Interrupts (r5301cb:u) (r5000cf:u) (r5300cf:u)



to see if any of the performance events can provide deter-
ministic events with no overcount, suitable for applications
such as parallel deterministic execution. We also investigate
the availability of such events on other platforms.

A. External Sources of Non-Determinism

Measuring exact event counts can be difficult due to various
external sources of variation found in a typical system, includ-
ing operating system interaction [12], program layout [13], [1],
measurement overhead [14], multi-processor variation [15],
and hardware implementation details [13], [16]. In our ex-
periments we attempt to avoid these sources of variability by
carefully controlling our test environment.

Benchmarks often have internal sources of non-
determinism that are inherent in their design, usually
unintentionally. If a program depends on the time, pointer
values, or I/O input, then the application can take unpredictable
paths through its codebase. Even benchmarks designed to
give repeatable results, such as SPEC CPU, can vary in subtle
ways due to a changing operating system environment [13].
We carefully construct our test-cases to avoid these sources
of variation as much as possible.

B. Our Custom Assembly Benchmark

Analysis of performance counter accuracy is difficult; it
requires exact knowledge of all executing instructions and their
effects on a system. This precludes using existing benchmarks
written in high level languages as the resulting binaries are
compiler dependent and no “known” overall instruction count
is available. Compilers rarely use the full complement of avail-
able processor opcodes, leaving many unexplored corner cases.
Total aggregate event measurements over large benchmarks can
make major divergences from estimated totals visible, but the
root causes can be nearly impossible to discover. Counts can
vary due to complex interactions deep within a program and
can be perturbed by debugging.

We avoid the variation inherent in high-level benchmarks
by writing a large assembly language benchmark. This mi-
crobenchmark has over 200 million dynamic instructions,
which is larger than the interval size used in many computer
architecture investigations. The benchmark attempts to exercise
most x86 64 instructions while having no outside dependen-
cies (by calling operating system syscalls directly, as in our
previous code density investigation [17]).

Due to the CISC nature of the x86 architecture it is difficult
to make a completely comprehensive test. We exercise most
integer, x87 floating point, MMX, and SSE instructions (up to
and including SSE3). We attempt to use various combinations
of register accesses, operand sizes (single byte accesses up
through 128-bit SSE), memory accesses, and the wide variety
of x86 addressing modes. Sections of the code are looped many
thousands of times to make anomalies stand out in the overall
instruction count and to allow binary searches for extra counts.
The complete annotated source for the microbenchmark is
available from our website:
http://www.eece.maine.edu/∼vweaver/projects/deterministic/

We measure userspace events generated by our benchmark
alone; the operating system provides process-specific counts

TABLE III. MACHINES USED IN THIS STUDY.

Processor Linux Kernel

Intel Atom 230 3.2 perf events

Intel Core2 X5355 2.6.36.2 perf events

Intel Nehalem X5570 2.6.38.6 perf events

Intel Nehalem-EX X7550 2.6.32-RHEL6 perf events

Intel Westmere-EX 8870 3.2 perf events

Intel SandyBridge-EP 2.6.32-RHEL6 perf events

Intel IvyBridge i5-3427U 3.2 perf events

Intel Pentium D 2.6.28 perfmon2

AMD Phenom 9500 2.6.29 perfmon2

AMD Istanbul 8439 2.6.35 perf events

AMD Bobcat E-350 3.2 perf events

by saving and restoring the counter values at context switch
time and the CPU performance monitoring unit (PMU) differ-
entiates between events happening in user and kernel domains.
There are many other conceivable sources of variation, such
as crossing cache-line boundaries, crossing page boundaries,
unaligned instruction fetches, unaligned memory accesses, etc.
We have not found these to affect event counts.

C. Events

Modern processors have hundreds of available performance
events (a full list can be found in the various vendor’s
architectural manuals [18], [19]). We limit our search to those
described as counting retired or committed instructions.

In general the following types of retired instruction counts
are available:

• total retired instructions

• retired branches (total or conditional),

• retired loads and stores, and

• retired floating point and SSE.

In addition, many processors provide retired counts of
unusual instructions, such as fxch, cpuid, move operations,
serializing instructions, memory barriers, multiplies and di-
vides, and not-taken branches. While these are useful when
analyzing specific program bottlenecks, they are less useful
for large-scale validation work. Other retired events, such as
retired µops, are unsuitable because they are speculative and
implementation dependent.

Tables I and II list the names of the events for which we
provide detailed results.

D. The Experiments

We ran our assembly benchmark ten times each on eleven
different x86 64 machines as shown in Table III. We compare
the results of our benchmarks against an expected value
determined via code inspection. Due to circumstances beyond
our control the test machines are running different Linux kernel
revisions; we ran tests of various kernels and performance
counter implementations on the same machine and found
that the different kernel infrastructures have no impact on
userspace-only aggregate counter results. We use the perf
tool on systems that support the perf_events interface, and
the pfmon tool systems using perfmon2 [20].



The perf tool only supports a small number of common
“generic” events; many events have to be specified using a
raw event code. We use the libpfm4 library to determine these
codes. We run perf as follows:

perf stat -e r5001c0:u ./retired_instructions

In this example r5001c0 corresponds to the Core2
RETIRED_LOADS event and the :u mask specifies we only
care about user-space (not kernel) counts.

The pfmon utility included with perfmon2 has a much
more user-friendly interface that uses proper event names. It
is run like this:

pfmon -e RETIRED_LOADS ./retired_instructions

III. EVALUATION

We first look at results found using our assembly micro-
benchmark on x86 64. We then look at other architectures
to see if the same limitations apply. We analyze methods for
mitigating the variations in counts. Finally we attempt to apply
our methodology to a full benchmark suite.

A. Sources of Overcount and Non-Determinism on x86 64

We use our hand-crafted assembly language benchmark
to find deviation from the known expected count. We are
interested in nondeterminism (run-to-run variations) and over-
count (always-the-same predictable offsets against known
event count due to errata in the chip design).

We calculate known total event counts for the various
metrics via code inspection, and then validate the expected
counts with the Pin [21] dynamic binary instrumentation (DBI)
tool. We use a script to gather performance counter totals for
each platform; in the common case where counter results do
not match expectations we manually comment out parts of the
assembly benchmark and re-run until we localize the source
of variation.

Table IV shows a summary of the overcount and non-
determinism found on each system. The actual event totals
gathered are not important; they are arbitrary values related
to the instruction mix of the benchmark. They key below the
table describes the sources of variation, as described below.

1) Nondeterministic Hardware Interrupts: Most x86 64
events are incremented an extra time for every hardware
interrupt that occurs (the most common hardware interrupt is
the periodic timer, causing a noticeable runtime-related vari-
ation). This interrupt behavior was originally undocumented
when we first described it, but now appears in some vendor
documentation. The number of extra events is inherently
unpredictable, but often can be measured with an additional
“hardware interrupts” event that can be used to adjust the total
aggregate results. If an event is affected by hardware interrupts,
then it cannot be a deterministic event, as it is impossible to
predict in advance when these events will happen.

Another source of interrupts is generated when a page fault
occurs; in general the first time a page of memory is accessed
it causes a page fault that counts as an extra instruction. This
variation is more predictable than other interrupts, but can still
be affected by the behavior of the operating system and other
programs running on the system.

2) Sources of Instruction Overcount: There are various
sources that can cause overcount on x86 processors.

On all the systems we tested an extra instruction event
happens if the x87 top-of-stack pointer overflows; care is taken
in our benchmark to avoid this condition.

An additional count may happen when the floating point
unit is used for the first time; this is due to the lazy floating-
point save mechanism used by Linux to avoid context-switch
overhead for non-floating point applications.

A major source of overcount is when an instruction event is
incremented multiple times for a single instruction, or when an
instruction is not counted at all. This is likely due to missing
terms in the instruction classifying hardware on the PMU.

One last source of overcount is when an event measures
microcoded events rather than retired events. Sometimes these
events are deterministic, but it is hard to verify because
microcode is system dependent and undocumented. Recent
counter documentation has gotten much better at indicating
which events are architectural instructions and which are
microcoded.

a) Total Retired Instruction Overcount: The total re-
tired instructions event is high-profile and often used, but still
may be affected by overcount.

While not strictly a source of overcount, some instruc-
tions are actually pseudo-instructions and can confuse a user
determining expected instruction counts via code inspection.
Various x87 floating point instructions have “wait” and “no
wait” versions that optionally force execution to wait to see if
an exception has occurred. The wait versions are pseudo-ops
for instructions with a wait prefix and count twice.

The AMD machines overcount by one when fninit,
fnsave, and fnclex instructions execute and one of the FP
exception status word flags (such as PE or ZE) is set. Despite
being interrupt related, this variation is an overcount because
it can be predicted and happens deterministically.

The Pentium D processor has two different retired instruc-
tion events. The newer (not available on earlier Pentium 4 mod-
els) event is INSTRUCTIONS_COMPLETED:NBOGUS which
behaves like the corresponding event on other processors.
The other event, INSTRUCTIONS_RETIRED:NBOGUSNTAG
is very different. It is not affected by hardware interrupts
(unless those interrupts cause a string instruction to re-start).
This has the potential to be a deterministic event; however it
suffers from overcount with the following instructions: fldcw,
fldenv, frstor, maskmovq, emms, cvtpd2pi (mem),
cvttpd2pi (mem), sfence, and mfence. The fldcw
instruction is particularly troublesome as it is a common in-
struction used when converting floating point values to integers
(and it has been shown to cause up to 2% overcount on some
SPEC CPU benchmarks [13]).

b) Retired Branches Overcount: The retired branches
event counts control flow changes, including system call entry.

On AMD processors, the perf event branches:u gen-
eralized event counts the wrong value. We supplied a fix that
was incorporated into the 2.6.35 kernel; care must be taken to
use the proper raw event on earlier kernels.



TABLE IV. SUMMARY OF SOURCES OF NONDETERMINISM AND OVERCOUNT FOR RETIRED INSTRUCTIONS.

Atom Core2 Nehalem
Nehalem-EX

Westmere-EX SandyBridge-EP
IvyBridge Pentium D

Phenom
Istanbul
Bobcat

Total hpEF hpEF hpEF hpEF hpEF hpEFD hpEFDInstructions
Total hp hpD hp hp hp hp hpBranches
Conditional – p D DETERMINISTIC DETERMINISTIC ! –Branches

Loads – hpD hpM hp U hpU –

Stores – DETERMINISTIC hpD hpD U hpU –

Sources of nondeterminism: h Hardware Interrupts
p Page Faults

Sources of overcount: E x87/SSE exceptions
F OS Lazy FP handling
D Instructions Overcounted
M Instructions Undercounted
U Counts micro-ops

Missing Results: – Event not available
! Test not run

TABLE V. RETIRED µOPS, MULTIPLIES, AND DIVIDES IN THE MICROBENCHMARK; THESE VALUES VARY FROM MACHINE TO MACHINE.

Machine µops Multiplies Divides
Atom 12,650,929,921± 10,048 13,700,000± 0 7,000,000± 0
Core2 14,250,314,285± 38,796 16,300,012± 13 5,800,058± 16
Nehalem 11,746,800,094± 38,192 17,719,572±1,992,446 3,180,368± 7,409
Nehalem-EX 11,746,938,597± 27,708 19,835,890± 215,301 3,265,181±21,966
Westmere-EX 11,740,683,274± 218,900 19,866,413± 196,031 5,800,072± 64
SandyBridge-EP 12,292,221,237± 7,258 n/a 5,800,304± 56
IvyBridge 12,315,297,486±4,669,700 620,550± 17,451 3,244,139±17,414
Pentium D 12,555,222,761±6,650,825 n/a n/a
Phenom 10,550,974,722± 36,819 69,242,930± 62,492 n/a
Istanbul 10,557,954,252± 168,608 69,988,147± 317,885 n/a
Bobcat 11,366,903,273± 153,234 1,800,000± 0 2,400,000± 0

TABLE VI. RETIRED FP, MMX AND SSE INSTRUCTIONS IN THE MICROBENCHMARK. THESE VALUES VARY FROM MACHINE TO MACHINE. SOME MAY
BE DETERMINISTIC, BUT CANNOT BE USED WITH INTEGER-ONLY WORKLOADS.

Machine FP1 FP2 SSE
Atom 38,800,000± 0 44,000,221± 341 88,293,855± 70,345
Core2 72,601,258± 215 39,099,997± 0 23,200,000± 0
Nehalem 50,234,437± 6,800 17,199,998± 2 24,203,034± 563
Nehalem-EX 50,230,521± 5,827 17,199,998± 4 24,028,996±222,406
Westmere-EX 50,015,343±43,898 17,199,998± 2 24,921,548± 38,051
SandyBridge-EP 48,784,041± 1,325 17,200,028± 8 23,136,313± 18,585
IvyBridge 49,025,110±37,400 17,200,040± 27 5,434,935± 26,195
Pentium D 100,400,310± 413 n/a 28,795,097± 5,662
Phenom 26,600,001± 0 112,700,001± 0 15,800,000± 0
Istanbul 26,600,001± 0 112,700,001± 0 15,800,000± 0
Bobcat 115,199,563± 21 276,217,480±541,728 15,800,000± 0

On Core2 processors the cpuid instruction also counts as
a branch.

c) Retired Conditional Branches Overcount: Not all
processors support counting conditional branches (and we were
unable to test on Pentium D as the machine we used for the
other results has been decommissioned).

Noll [22] reports that this event is deterministic on Sandy-
Bridge; we have verified this result and found that the equiva-
lent event is likewise deterministic on Westmere and Nehalem.
The Nehalem event suffers from overcount: in addition to
conditional branches (which start with opcode 0F) many in-
structions are counted that also start with opcode 0F, including
various non-branch MMX and SSE instructions.

3) Retired Load Overcount: Retired loads are not supported
on all of the processors we investigate. Extra loads are counted
on exceptions: first floating point usage, page faults, x87 FPU

exceptions and SSE exceptions.

Load events are subject to various forms of under and
overcount. Conditional move instructions will always register
a load from memory, even if the condition is not met. The
fbstp “store 80-bit BCD” instruction counts as a load. The
cmps string compare instruction (where two values from
distinct memory are loaded and then compared) counts as only
being a single load.

On Core2 machines the leave instruction counts as two
loads. The fstenv, fxsave, and fsave floating point state-
save instructions also count as loads. The maskmovq and
maskmovdqu count loads even though they only write to
memory. The movups, movupd and movdqu instructions
count as loads even if their operands indicate a store-to-
memory operation.

On Nehalem processors the paddb, paddw, and paddd
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Fig. 1. On Pentium D, the retired loads event shows unusual behav-
ior with rep movs string instructions. The observed count is related to
64-byte chunks being moved with individual moves for the remainder:
(floor(reps/64) ∗ 4) + (reps%64).

do not count as load operations even if the their operands
indicate a load from memory.

The Pentium D event has complicated overcount, likely
because it is recording microcoded loads and not architectural
loads. Unlike other x86 processors, software prefetches are
not counted as loads and page faults count as five loads total.
Pop of a segment (fs/gs), movdqu (load), lddqu, movupd
(load), and fldt all count as two loads instead of one.
fldenv counts as seven loads, frstor counts as 23 loads,
and fxrstor counts as 26. The movups (store) instruction
counts as a load. The fstps instruction counts as two (not
zero) loads.

Unlike the other x86 load events that treat a rep-prefixed
string instruction as a single atomic instruction, on Pentium D
the loads are counted separately, sometimes at a cache-
line granularity. The rep lods and rep scas instructions
count each repeated load individually. The rep movs instruc-
tions performs moves in blocks of 64-bytes, then goes one-by-
one for the remainder (see Fig. 1). The rep cmps instruction
counts each compare instruction as two loads.

The SandyBridge load event measures load µops so it
has limitations similar to Pentium D. On IvyBridge the event
name for this event was changed to make its µop nature more
obvious.

a) Retired Store Overcount: On Core2 processors the
retired store event was found by Olszewski et al. [8] to be
deterministic with no overcount, and we have reproduced this
result. All other processors count hardware interrupts and page
faults with store events.

On Nehalem and Westmere processors the cpuid,
sfence, and mfence instructions all count as stores (these
are all serializing instructions). clflush also counts as a
store.

As with retired loads, the Pentium D processor has elab-
orate retired store behavior that likely exposes internal mi-
crocode behavior. As with Nehalem, the cpuid, sfence,
mfence and clflush instructions count as a stores. The
enter instruction counts an extra store for each nested
stack frame. The fbstp, fstps, fstpt, movups (store),
movupd (store), movdqu (store), and maskmovdqu instruc-
tions counts as two stores. The fstenv instruction counts
as seven stores, fsave as 23 and fxsave as 25. The rep
stos string instruction counts stores in 16B blocks (unless
storing backwards in memory). The rep movs instruction
counts stores in 16B blocks.

The SandyBridge and IvyBridge store events measure µops
and have similar limitations to Pentium D.

4) Other Events: Tables V and VI show results from
other events that we investigated as possibly being useful
deterministic events, but found to have too much microarchi-
tectural variation. Total events are show to give a feel for the
variation, for comparison the dynamic total retired event count
is 226,990,030. The values shown are the average of ten runs,
with the plus/minus value indicating the maximum distance
from the average.

a) Retired µops: Despite the “retired” modifier in the
event name, µop behavior is nondeterministic as well as
implementation specific and cannot be relied on when com-
paring different machines. The values are almost two orders
of magnitude higher than the total instruction count; this is
skewed by the fact that repeated string instructions are only
counted once by the retired instruction event but counted
individually by the µop event.

b) Multiplies and Divides: Table V also shows the num-
bers of multiplies and divides for each processor. Some of these
counts are speculative or else count µops; the documentation
for the counters is not always clear. The implementation of
these events varies from model to model; some count integer
only, some also count floating point and SSE, and some count
multiple times for one instruction. On Core2 divq (64-bit
divide) instructions also count as a multiply, and mulq (64-
bit multiplies) count twice.

On Atom and Bobcat processors the events are determin-
istic, but these instructions are rare enough in most code that
they would likely not be useful in practice.

c) Floating Point and SSE: Table VI shows results for
various floating point, MMX and SSE events. Some of these
events appear to be deterministic, most notably the events on
the AMD machines. Unfortunately these events are hard to
predict via code inspection. Some events are retired, some
speculative; some count retired instructions, some count retired
µops. Some count only math instructions, some count any sort
of instruction where floating point is involved. Comparisons
between machines will not work due to these variations, and
these events would not be useful for obtaining deterministic
counts on integer-only benchmarks.

B. Other Architectures

In addition to the x86 64 architecture, we investigate other
architectures to see if they have similar limitations with regard
to determinism.



Creating a detailed microbenchmark like the one used on
x86 64 is a long and tedious process, and we do not currently
have sufficient resources to do this for every architecture.
Instead we use the ll assembly benchmark [17] modified
to repeat 10,000 times. This is not as comprehensive as the
x86 64 test (it does not test every possible opcode so may
miss issues with overcount), but should catch any obvious de-
terminism issues (such as hardware interrupts being counted).

ARM We count retired instructions on ARM Cortex-
A8 and Cortex-A9 processors. Unfortunately the performance
counters on this architecture cannot select only user-space
events; kernel events are always counted too, which makes
all of the available events non-deterministic.

IA64 On Merced STORES_RETIRED,
LOADS_RETIRED, and IA64_INST_RETIRED appear
to be deterministic.

POWER On a POWER6 system we find
instructions:u to be deterministic, but branches:u
suffers from overcount.

SPARC Finally, on a SPARC Niagara T-1 system we find
that the INSTR_CNT event is deterministic.

IV. COMPENSATING FOR OVERCOUNTS

Now that we have determined the factors causing non-
determinism and overcount, we investigate if it may be possible
to compensate for the limitations and derive deterministic
events where there are none.

Overcount on its own does not provide a problem for
applications such as deterministic locking. The run-to-run
counts will be the same, just different from the expected value.
This is only a problem if applying results gathered on one
machine to runs on a different one with different level of
overcounts. In this case adjusted results can be generated if
the exact opcode mix of a program is known; this is usually
not possible without extra analysis by an external tool and in
general not possible to determine in real time.

Compensating for non-determinism is a more difficult
problem. When measuring aggregate totals, a compensation
factor can be subtracted at the end of a run. For events that
include hardware interrupts, corrected counts can be generated
by measuring a hardware interrupt event (if available) and ad-
justing the total by this count. Many implementations include
an event which can be used for this purpose; some CPUs do
not (such as Atom or Pentium D) and on some the event is
unreliable when HyperThreading is enabled (Nehalem) [23].
When no interrupt event is available it is possible (at least
on Linux) to use values from /proc/interrupts instead
(although this adds additional error and may count interrupts
that happen outside of process context).

Compensation becomes more difficult when using hard-
ware counters in overflow or sampling mode (as is often used
in performance analysis or deterministic threading). Users may
want hardware to signal an interrupt after exactly one million
retired instructions; aggregate compensation methods will not
work in this case. One workaround for this is described in the
ReVirt project [7]; they set the counter to overflow at a value
before the value wanted, adjust the count to be accurate, and

then slowly single step the program until the desired count
occurs.

A. Dynamic Binary Instrumentation Results

To aid in determining expected instruction counts, as well
as determining per-opcode instruction frequency, we used var-
ious dynamic binary instrumentation (DBI) tools. These tools
are used in program analysis and are capable of measuring
program execution at a per-instruction level; ideally the counts
generated will match actual hardware.

We evaluate Pin [21] version 2.8-33586, the exp-bbv and
cachegrind tools that come with Valgrind [24] version 3.8,
and a current git checkout of Qemu [25] that is patched to
generate instruction statistics.

Initial results did not match expected values; this is because
all of the DBI tools report string instructions with a rep
repeat prefix as having a count equivalent to the times repeated;
this contrasts with real hardware which reports rep-prefixed
string instruction as only one instruction. We have modified
the tools to take this into account, and for Pin the results for
the assembly benchmark match the expected values exactly.

We were unable to fully evaluate Valgrind as it currently
does not handle numerous infrequent instructions that are not
generated by gcc but are generated by our test. Qemu works
well, but the patches needed for it to generate counts are
intrusive and make it a poor candidate for this type of analysis.

B. Full-sized benchmarks

We apply our methods to the SPEC CPU 2000 [26] bench-
marks and investigate how much variation is found in “real-
world” applications. We compile these programs statically
using gcc 4.3 and the -O3 -sse3 compiler options. We run
on a Core2 machine with a perf event enabled kernel. SPEC
CPU 2000 is out-dated compared to more recent benchmarks,
but it provides enough runtime to show any variations without
completely overwhelming analysis with orders of magnitude
larger instruction counts.

Care is made to turn off address layout randomization and
attempt to set the environment up in an exacting way previ-
ously shown to minimize run-to-run variations [13]. Despite
these precautions, some variation is caused by the Pin DBI
tool, as it adds various environment variables.

Table VII shows results for retired instructions on each
benchmark, with the reference Pin result, the adjusted mea-
sured value, and the difference between the two. Likewise,
Table VIII shows results for retired stores, which is determin-
istic on Core2. The results show large divergences that are
still under investigation, although some seem to be related
to malloc() and strlen() being non-deterministic at
runtime.

It is extremely difficult to track down the causes of diver-
gences in benchmarks this large, so new methodologies need
to be designed to analyze these kinds of problems. This will
be even more difficult when analyzing parallel applications.



TABLE VII. MEASURED CORE2 RETIRED INSTRUCTIONS FOR SPEC CPU 2000.

Benchmark Pin Results Counter Results Difference
164.gzip.graphic 65,982,806,258+/-0 65,985,332,330+/-9 2,526,072
164.gzip.log 27,630,471,231+/-0 27,630,661,869+/-297 190,638
164.gzip.program 134,182,216,830+/-0 134,184,158,711+/-25 1,941,881
164.gzip.random 50,551,063,959+/-0 50,553,651,410+/-241 2,587,451
164.gzip.source 63,534,557,188+/-0 63,534,886,361+/-711 329,173
168.wupwise 360,553,377,202+/-0 360,553,378,908+/-175 1,706
171.swim 211,144,484,205+/-0 211,145,870,699+/-235 1,386,494
172.mgrid 317,894,840,723+/-0 317,902,191,070+/-37 7,350,347
173.applu 329,639,819,901+/-0 329,639,964,577+/-135 144,676
175.vpr.place 91,801,778,868+/-0 91,801,906,033+/-48 127,165
175.vpr.route 65,840,452,950+/-0 65,842,333,845+/-65 1,880,895
176.gcc.166 26,039,501,852+/-0 26,053,619,535+/-69 14,117,683
176.gcc.200 69,280,861,993+/-0 69,333,288,826+/-106 52,426,833
176.gcc.expr 7,253,042,753+/-71 7,257,808,289+/-43 4,765,536
176.gcc.integrate 7,594,306,527+/-0 7,598,639,195+/-69 4,332,668
176.gcc.scilab 38,687,677,208+/-12 38,718,412,887+/-127 30,735,679
177.mesa 224,909,291,041+/-0 225,141,328,681+/-36 232,037,640
178.galgel 265,298,711,252+/-0 265,315,417,293+/-91 16,706,041
179.art.110 37,455,717,089+/-0 37,684,112,743+/-46 228,395,654
179.art.470 41,559,174,782+/-0 41,815,556,622+/-70 256,381,840
181.mcf 47,176,435,708+/-0 47,178,182,387+/-41 1,746,679
183.equake 91,830,166,829+/-0 91,831,754,253+/-486 1,587,424
186.crafty 140,410,682,095+/-0 140,491,624,577+/-46 80,942,482
187.facerec 249,446,706,530+/-0 249,466,271,565+/-20 19,565,035
188.ammp 282,267,674,633+/-0 282,273,791,341+/-85 6,116,708
189.lucas 205,650,970,148+/-0 205,650,971,675+/-54 1,527
191.fma3d 252,617,528,064+/-0 252,621,707,010+/-130 4,178,946
197.parser 263,198,435,420+/-0 263,268,978,039+/-227 70,542,619
200.sixtrack 542,747,136,304+/-0 542,751,505,285+/-13 4,368,981
252.eon.cook 59,410,255,668+/-144 59,432,884,285+/-211 22,628,617
252.eon.kajiya 79,522,489,405+/-92 79,548,194,010+/-119 25,704,605
252.eon.rushmeier 46,636,612,121+/-577 46,652,449,863+/-73 15,837,742
253.perlbmk.535 2,696,610,456+/-2 2,698,843,490+/-199 2,233,034
253.perlbmk.704 2,764,426,301+/-4 2,766,432,903+/-243 2,006,602
253.perlbmk.850 5,655,963,871+/-22 5,661,167,625+/-253 5,203,754
253.perlbmk.957 4,508,337,217+/-2 4,512,393,547+/-203 4,056,330
253.perlbmk.diffmail 30,233,369,642+/-22 30,339,690,700+/-164 106,321,058
253.perlbmk.makerand 1,090,891,857+/-22 1,090,909,156+/-150 17,299
253.perlbmk.perfect 19,657,248,256+/-22 19,666,664,723+/-198 9,416,467
254.gap 183,293,201,373+/-0 183,443,753,693+/-20 150,552,320
255.vortex.1 162,104+/-0 162,215+/-10 111
255.vortex.2 161,905+/-0 162,016+/-10 111
255.vortex.3 162,024+/-0 162,135+/-10 111
256.bzip2.graphic 104,650,996,309+/-0 104,716,216,837+/-399 65,220,528
256.bzip2.program 92,138,659,767+/-0 92,195,366,446+/-283 56,706,679
256.bzip2.source 75,683,045,767+/-0 75,737,142,438+/-309 54,096,671
300.twolf 294,394,181,323+/-0 294,395,384,751+/-203 1,203,428
301.apsi 335,965,776,144+/-0 335,998,221,972+/-190 32,445,828

V. RELATED WORK

The primary use of deterministic events is for parallel
deterministic execution and deterministic replay. In these cases
any deterministic event will do, and once one is found it tends
to be mentioned in passing without discussing the methodology
used to analyze the determinism.

Olszewski et al. [8], while attempting to create a
user-space deterministic multi-threading library, find that
RETIRED_STORES is deterministic on Core2 processors.
They do not describe their methodology for how this was
determined, nor do they look at any other architectures. Bergan
et al. [11] use retired instructions while doing deterministic
multi-threading; they use the methodology of Dunlap et al. [7]
which used retired branches on AMD machines but stopped
early and single-stepped to avoid hardware interrupt issues.

Many other studies use hardware performance counters in
various ways, but there has been little research into determin-
istic variation or overcount. Our work is unique in looking at
a wide range of architectures and a wide variety of modern
64-bit machines, as well as determining correctness based on
code inspection rather than using a simulator.

Stodden et al. [6] use assembly-language programs to vali-
date use of hardware counters for log-based rollback recovery,
but they do not analyze the determinism of the events, only
the amount of interrupt lag when trying to stop at a precise
instruction address.

Zaparanuks et al. [14] investigate the performance counter
accuracy as provided by various high-level counter APIs on
three different x86 architectures. They measure overhead of
the cycle and total retired instruction events, but use a very
small (4 instruction long) assembly benchmark and do not fully
explore the underlying causes of the variation.

Mytkowicz et al. [1] investigate sources of measurement
bias and non-determinism in program execution. The cycles
event was used in this work, and the problems found focused
on high-level executable layout and operating system issues
and not limitations of the underlying PMU.

Korn, Teller, and Castillo [27] validate MIPS R12000
performance counters with microbenchmarks, reporting up to
25% error with INSTRUCTIONS_DECODED when comparing
against a hardware simulator. Black et al. [28] investigate the
number of retired instructions and cycles on the PowerPC



TABLE VIII. MEASURED CORE2 RETIRED STORES FOR SPEC CPU 2000.

Benchmark Pin Results Counter Results Difference
164.gzip.graphic 9,220,255,442+/-0 9,220,318,816+/-1 63,374
164.gzip.log 2,869,442,570+/-0 2,869,475,599+/-2 33,029
164.gzip.program 15,043,298,768+/-0 15,043,347,481+/-0 48,713
164.gzip.random 7,333,288,257+/-0 7,333,345,900+/-1 57,643
164.gzip.source 7,099,846,266+/-0 7,099,884,570+/-1 38,304
168.wupwise 33,509,937,868+/-0 33,509,937,948+/-0 80
171.swim 18,657,590,092+/-0 18,657,604,499+/-0 14,407
172.mgrid 19,780,977,379+/-0 19,780,992,153+/-0 14,774
173.applu 36,944,783,307+/-0 36,944,806,144+/-0 22,837
175.vpr.place 10,506,996,023+/-0 10,507,367,334+/-1 371,311
175.vpr.route 8,498,211,242+/-0 8,498,625,210+/-1 413,968
176.gcc.166 6,126,548,968+/-0 6,126,646,078+/-2 97,110
176.gcc.200 10,809,876,957+/-0 10,810,247,099+/-14 370,142
176.gcc.expr 1,262,579,952+/-14 1,262,641,060+/-4 61,108
176.gcc.integrate 1,472,392,036+/-0 1,472,436,588+/-3 44,552
176.gcc.scilab 6,544,043,598+/-1 6,544,314,779+/-10 271,181
177.mesa 35,256,814,647+/-0 35,256,814,675+/-0 28
178.galgel 25,736,467,292+/-0 25,736,468,525+/-0 1,233
179.art.110 3,467,916,650+/-0 3,467,916,650+/-0 0
179.art.470 3,792,351,365+/-0 3,792,351,365+/-0 0
181.mcf 3,101,673,836+/-0 3,101,673,836+/-0 0
183.equake 6,401,707,007+/-0 6,401,707,013+/-0 6
186.crafty 14,715,329,050+/-0 14,715,329,550+/-0 500
187.facerec 17,108,726,507+/-0 17,175,891,130+/-6 67,164,623
188.ammp 31,435,756,072+/-0 31,435,756,072+/-0 0
189.lucas 18,135,992,918+/-0 18,135,993,050+/-0 132
191.fma3d 42,289,894,809+/-0 42,326,598,083+/-13 36,703,274
197.parser 32,254,247,249+/-0 32,254,090,688+/-0 -156,561
200.sixtrack 24,831,293,048+/-0 24,831,447,915+/-1 154,867
252.eon.cook 9,168,538,965+/-10 9,168,538,925+/-21 -40
252.eon.kajiya 12,616,424,674+/-5 12,616,424,618+/-39 -56
252.eon.rushmeier 7,321,524,013+/-47 7,321,523,805+/-0 -208
253.perlbmk.535 502,744,026+/-0 502,853,217+/-1 109,191
253.perlbmk.704 515,446,194+/-1 515,464,538+/-0 18,344
253.perlbmk.850 1,077,046,593+/-2 1,077,124,158+/-1 77,565
253.perlbmk.957 853,729,475+/-0 853,824,516+/-0 95,041
253.perlbmk.diffmail 5,192,919,547+/-2 5,192,873,218+/-0 -46,329
253.perlbmk.makerand 188,774,998+/-2 188,774,884+/-1 -114
253.perlbmk.perfect 3,498,063,997+/-2 3,498,435,094+/-0 371,097
254.gap 25,380,689,015+/-0 25,380,688,751+/-0 -264
255.vortex.1 22,413+/-0 22,405+/-0 -8
255.vortex.2 22,403+/-0 22,395+/-0 -8
255.vortex.3 22,410+/-0 22,402+/-0 -8
256.bzip2.graphic 14,992,496,929+/-0 14,992,496,932+/-0 3
256.bzip2.program 12,378,627,404+/-0 12,378,627,408+/-0 4
256.bzip2.source 8,647,185,380+/-0 8,647,185,382+/-0 2
300.twolf 30,735,278,724+/-0 30,735,278,725+/-0 1
301.apsi 39,722,966,049+/-0 39,722,972,988+/-0 6,939

604 platform, comparing their results against a cycle-accurate
simulator. Cycle-accurate simulators have their own inherent
error, so unless that is known exactly it limits what can be
learned about the accuracy of the hardware counters being
compared.

We previously investigate the determinism of the
RETIRED_INSTRUCTION counter on a wide range of 32-bit
x86 processors using the SPEC CPU benchmarks [13], finding
upward of 2% error on Pentium D. This work found many
sources of variation but was limited to one event and did not
fully explore the causes of non-determinism.

Maxwell et al. [29] look at accuracy of performance
counters on a variety of architectures, reporting less than 1%
error with retired instructions when using a microbenchmark.
DeRose et al. [30] look at variation and error with perfor-
mance counters on a Power3 system, but only for startup and
shutdown costs; they do not report total benchmark behavior.

VI. CONCLUSIONS AND FUTURE WORK

In our experiments we have found only a small
minority of x86 64 events to be deterministic and

without overcount: RETIRED_STORES on Core2 and
BR_INST_RETIRED_CONDITIONAL on SandyBridge
and Westmere. This lack of useful events limits the use
of performance counters for advanced applications such as
deterministic replay and threading libraries on the popular
x86 64 architecture.

Many potentially deterministic events are rendered unus-
able by including the unpredictable hardware interrupt count.
This can be mitigated by subtracting off a separate interrupt
counter event (if available), but this will not help in the
deterministic use case where exact overflow is desired in order
to stop at precise locations.

Our investigation of other architectures shows that deter-
ministic events are more common on non-x86 hardware. This
shows that deterministic events can be accomplished and are
not an unsolvable problem. Unfortunately these platforms are
typically not available to most users.

New users of performance counters are often frustrated that
the results they measure are not the ones they “know” to be
correct. Eventually the users learn the sources of the error,
and undertake analysis that allows for run-to-run variation in



the results. It becomes almost a rite of passage, learning why
the counters work the way they do, and working around them.
This fatalistic view of the quality of counters explains the lack
of impetus for fixing the underlying problem.

We propose that there are definite benefits to providing
deterministic counters with little overcount or variation. Ex-
isting methodologies that can stand some variation will not
be harmed, and new and better uses for the counters will be
found. Use of counters by non-experts can then be encouraged,
as there will be so many fewer caveats to their use.

The various x86 64 vendors need to be strongly encour-
aged to fix the performance monitoring units on their respective
CPUs. There are many inherent hardware problems with pro-
viding deterministic counters, but other non-x86 architectures
seem to have solved them. This may mean simplifying the
available counters or limiting the number of available events,
but in practice few people use the counters at all, let alone the
full feature set.

A change like this will not happen overnight; In the
meantime more work on analyzing the causes and amounts
of variations can be done. Manually generating and validating
test suites is a slow, tedious process. We are investigating a
method of automated testcase generation and validation that
can vastly improve the process.

When deterministic counters do become available, they
will be welcomed not only by those working on deterministic
replay and simulator validators, but also by all users of
performance counters.
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