
How LAPACK library enables Microsoft Visual Studio
support with CMake and LAPACKE

Julie Langou1, Bill Hoffman2, Brad King2
1. University of Tennessee Knoxville, USA

2. Kitware Inc., USA
This article is an extended version of the blog “Fortran for C/C++ developers made easier with
CMake” posted on the Kitware blog at http://www.kitware.com/blog/home/post/231. This
extended version is intended especially for Fortran library developers and includes many useful
examples available for download.
LAPACK is written in Fortran and offers a native Fortran interface simple enough to inter-
operate with other languages. Recently, INTEL Inc and the LAPACK team developed a C-
language API for LAPACK called LAPACKE 1 to guarantee LAPACK interoperability with C.
However, many developers are either unfamiliar with the non-trivial process of mixing C and
Fortran together or develop with Microsoft Visual Studio which offers no builtin Fortran support.
Starting with LAPACK 3.3.0, the LAPACK team decided to join forces with Kitware Inc. to
develop a new build system for LAPACK using CMake 2. This fruitful collaboration gave
LAPACK the ability to easily compile and run on the popular Linux, Windows, and Mac OS/X
platforms in addition to most UNIX-like platforms. In addition, LAPACK now offers Windows
users the ability to code in C using Microsoft Visual Studio and link to LAPACK Fortran
libraries without the need of a vendor-supplied Fortran compiler add-on.

CMake Fortran Features
The CMake build system contains many powerful features that make combining Fortran with C
and/or C++ easy and cross-platform.
● Automatic detection of Fortran runtime libraries required to link to a Fortran library

into a C/C++ application.
● Automatic detection of Fortran name mangling required to call Fortran routines from

C/C++.
● Automatic detection of Fortran 90 module dependencies required to compile sources in

the correct order. (This is not needed by LAPACK.)
● Windows: Automatic conversion of Fortran libraries compiled with MinGW gfortran to

.lib files compatible with Microsoft Visual Studio.
● Windows: Seamless execution of MinGW gfortran from within Visual Studio C/C++

projects to build Fortran libraries.
The following describes how to apply these features to any CMake project requiring mixed
C/C++ and Fortran code.

1	 LAPACKE: http://www.netlib.org/lapack/#_standard_c_language_apis_for_lapack
LAPACKE User guide: http://www.netlib.org/lapack/lapacke.html
2 CMake: http://www.cmake.org/

Introduction by Example
In order to demonstrate the above features we will work through a series of C examples calling
Fortran routines from BLAS and LAPACK (See 3).

We will use two C programs:

● timer_dgemm.c: Program to time a Dense Matrix Multiplications in double precision
(BLAS routine DGEMM).

● timer_dgesv.c: Program to time a Linear Solve in double precision (LAPACK routine
DGESV) and checks that the solution is correct.

and two Fortran libraries:
● refblas: the Complete Reference BLAS.
● dgesv: a LAPACK subset that just contains the DGESV routine and its dependencies.

This library depends on refblas.
To correctly call Fortran from C source code, the following issues must be addressed in the two
C programs:
● In Fortran, all routine arguments are passed by address and not by value.
● In C global functions can be called directly by the name used in the C code (routine “foo”

is called by the name “foo”). However, when calling Fortran from C the external name
is modified by a vendor-specific mapping. Some Fortran compilers append an
underscore (routine “foo” is symbol “foo_”) , some two underscores, some leave it
unchanged and some convert the name to uppercase. This is known as Fortran Name
Mangling. Since the C compiler has no knowledge of the Fortran compiler’s naming
scheme, the functions must be correctly mangled in the C code.

● Fortran stores arrays in row order while C and C++ store arrays in column order.

For more complete information on how to call Fortran from C see 4.

Examples 1 to 4 demonstrate the approach to mixing C and Fortran in the CMake build system:
● Example 1: Linking Fortran libraries from C/C++ code.
● Example 2: Resolving Fortran mangling
● Example 3: Introducing Microsoft Visual Studio
● Example 4: Complete example based on LAPACKE (linking C and Fortran libraries

directly under Visual Studio)
The complete set of examples is available for download at http://icl.cs.utk.edu/lapack-for-
windows/Example_C_Fortran_CMake.tgz

3 NETLIB LAPACK Library: http://www.netlib.org/netlib
 LAPACK technical articles: http://www.netlib.org/netlib/lawns
 LAPACK for windows http://icl.cs.utk.edu/lapack-for-windows/lapack
4 Mixing Fortran and C: http://www.math.utah.edu/software/c-with-fortran.html

Automatic detection of Fortran runtime libraries to link
The first challenge to mix Fortran and C/C++ is to link all the language runtime libraries. The
Fortran, C, and C++ compiler front-ends automatically pass their corresponding language
runtime libraries when invoking the linker. When linking to a Fortran library from a C/C++
project the C/C++ compiler front end will not automatically add the Fortran language runtime
libraries. Instead one must pass them explicitly when linking. Typically one must run the
Fortran compiler in a verbose mode, look for the –L and –l flags, and manually add them to the
C/C++ application link line. This tedious process must be repeated for each platform supported!

CMake handles this automatically for projects that mix C/C++ with Fortran. It detects the
language runtime library link options used by the compiler front-end for each language.
Whenever a library written in one language (say Fortran) is linked by a binary written in another
language (say C++) CMake will explicitly pass the necessary link options for the extra
languages.

CMake module name: none

This feature is builtin to CMake and automatically applied to projects that use both Fortran and C
or C++.

Example 1: Linking Fortran from C
Do not pay too much attention to the C code yet, just keep in mind that it is calling a Fortran
BLAS and/or LAPACK routine. The further we go in those examples, the simpler the C code
will get.

Example 1: CMakeLists.txt Linking Fortran from C	
CMake_minimum_required(VERSION 2.8.8)
Fortran and C are specified so the Fortran runtime library will be
automatically detected and used for linking
project (TIMER_Example1 Fortran C)

Set Mangling by hand
Assume _name mangling see C code for how ADD_ will be used in
Fortran mangling
add_definitions (-DADD_)

Build the refblas library

add_subdirectory (refblas)

Timer for Matrix Multiplication
Calling Fortran DGEMM routine from C
add_executable(timer_dgemm timer_dgemm.c)
target_link_libraries(timer_dgemm refblas)

Create the dgesv library

add_subdirectory (dgesv)

Timer for Linear Solve
Calling Fortran DGESV routine from C also requires linking
the BLAS routines.
add_executable(timer_dgesv timer_dgesv.c)
target_link_libraries(timer_dgesv dgesv refblas)

Example 1: timer_dgemm.c Calling Fortran from C with manual mangling	

[…]

Mangling is done “by hand”
User needs to know which define to set at compile time.
#if defined(ADD_)
 #define dgemm dgemm_
#elif defined(UPPER)
 #define dgemm DGEMM
#elif defined(NOCHANGE)
 #define dgemm dgemm
#endif

[…]

Declaration of Fortran DGESV routine
extern void dgemm (char *transa, char *transb, int *m, int *n, int *k, double
*alpha, double *a, int *lda, double *b, int *ldb, double *beta, double *c,
int *ldc);

[…]

Call to Fortran DGEMM routine
dgemm (&char01, &char01, &m, &n, &k, &dble01, A, &m, B, &k, &dble01, C, &m);

[…]
	

Download Example 1:
http://icl.cs.utk.edu/lapack-for-windows/Example_C_Fortran_CMake/Example1.tgz

Automatic Detection of Fortran Name Mangling

The second challenge in mixing Fortran and C/C++ is to know how the Fortran compiler
transforms symbol names. Different compilers append or prepend “_”, or use upper or lower
case for the function names. For more information on name mangling in Fortran, see 5. CMake

5 Fortran MANGLING:
http://en.wikipedia.org/wiki/Name_mangling#Name_mangling_in_Fortran

contains a module that can be used to determine the mangling scheme used by the Fortran
compiler. It can be used to create C/C++ header files that contain preprocessor definitions that
map C/C++ symbol names to their Fortran-mangled counterparts.

CMake module name: FortranCInterface

CMake function name: FortranCInterface_HEADER
CMake help: cmake --help-module FortranCInterface

Syntax: FortranCInterface_HEADER
from include(FortranCInterface)	

	

FortranCInterface_HEADER(
 <file>

 [MACRO_NAMESPACE <macro-ns>]

 [SYMBOL_NAMESPACE <ns>]

 [SYMBOLS
[<module>:]<function> …])

	

name of the header file to be created

The MACRO_NAMESPACE option replaces the
default "FortranCInterface_" prefix with a
given namespace "<macro-ns>".

The SYMBOL_NAMESPACE option prefixes all
preprocessor definitions generated by the
SYMBOLS option with a given namespace
"<ns>".	

The SYMBOLS option lists symbols to mangle
automatically with C preprocessor
definitions:
<function> � #define <ns><function> ...
<module>:<function> �

 #define <ns><module>_<function> ...

If the mangling for some symbol is not
known then no preprocessor definition is
created, and a warning is displayed.

Example 2: Resolving Fortran Mangling

In Example 1 we assumed the mangling for the routine to be “add underscore” but this is not
necessarily the case. Let’s use the CMake FortranCInterface module described above to create
the netlib.h header file that will take care of the mangling automatically. It will generate a header
mapping dgemm, dgesv, dcopy and dnrm1 to the correct routine name. The header file is by
default generated in the current binary directory so we must also tell CMake to add that as an
include directory.

Example 2: CMakeLists.txt to Detect Fortran Name Mangling	

cmake_minimum_required(VERSION 2.8.8)
project (TIMER_Example2 Fortran C) # enable Fortran and C

Create a header file netlib.h with the correct mangling
for the Fortran routines called in my C programs.
include(FortranCInterface)
FortranCInterface_HEADER(netlib.h
 MACRO_NAMESPACE "NETLIB_"
 SYMBOLS dgemm dgesv dcopy dnrm2)

To find the newly generated header file netlib.h at compile time
include_directories (${PROJECT_BINARY_DIR})

Build the refblas library
add_subdirectory (refblas)

Timer for Matrix Multiplication
Calling Fortran DGEMM routine from C
add_executable(timer_dgemm timer_dgemm.c)
target_link_libraries(timer_dgemm refblas)

Create the dgesv library
add_subdirectory(dgesv)

Timer for Linear Solve
Calling Fortran DGESV routine from C requires also to
have the BLAS routines.
add_executable(timer_dgesv timer_dgesv.c)
target_link_libraries(timer_dgesv dgesv refblas)

Example 2: sample netlib.h Header generated by CMake FortranCInterface module	
#ifndef NETLIB_HEADER_INCLUDED	
#define NETLIB_HEADER_INCLUDED

/* Mangling for Fortran global symbols without underscores. */
#define NETLIB_GLOBAL(name,NAME) name##_

/* Mangling for Fortran global symbols with underscores. */
#define NETLIB_GLOBAL_(name,NAME) name##_

/* Mangling for Fortran module symbols without underscores. */
#define NETLIB_MODULE(mod_name,name, mod_NAME,NAME) \
 __##mod_name##_MOD_##name

/* Mangling for Fortran module symbols with underscores. */
#define NETLIB_MODULE_(mod_name,name, mod_NAME,NAME) \
 __##mod_name##_MOD_##name

/*--*/
/* Mangle some symbols automatically. */
#define dgemm NETLIB_GLOBAL(dgemm, DGEMM)
#define dgesv NETLIB_GLOBAL(dgesv, DGESV)
#define dcopy NETLIB_GLOBAL(dcopy, DCOPY)
#define dnrm2 NETLIB_GLOBAL(dnrm2, DNRM2)

#endif

Example 2: timer_dgemm.c Calling Fortran from C with automatic mangling	

[…]

/* Use CMake generated header file with auto-detected Mangling */
#include <netlib.h>

[…]

/* Declaration of Fortran DGESV routine */
extern void sdgemm (char *transa, char *transb, int *m, int *n, int *k,
double *alpha, double *a, int *lda, double *b, int *ldb, double *beta, double
*c, int *ldc);

[…]

/* Call to Fortran DGEMM routine */	
dgemm (&char01, &char01, &m, &n, &k, &dble01, A, &m, B, &k, &dble01, C, &m);

[…]

Download Example2:
http://icl.cs.utk.edu/lapack-for-windows/Example_C_Fortran_CMake/Example2.tgz

Using MinGW6 gfortran with Visual Studio
The third challenge to mix Fortran and C/C++ is to make it work on Windows under Microsoft
Visual Studio without the need of installing a commercial Fortran compiler. Fortunately
MinGW provides a Windows port of gfortran, the free GNU Fortran compiler. However, unlike
commercial Fortran compilers such as Intel, PGI, Silverforst, etc. MinGW gfortran does not
provide direct integration into Visual Studio.

6	 MINGW:	 http://www.mingw.org/	
	 	 http://mingw-‐w64.sourceforge.net/	 for	 both	 x64	 &	 x86	 Windows	
	

CMake offers two features to make using MinGW gfortran with Microsoft Visual Studio easy.
First, it can create a MS-format import library (.lib) for a shared library (.dll) compiled with
MinGW gfortran. Second, it comes with a new CMake module called
CMakeAddFortranSubdirectory. The module brings a subdirectory containing a Fortran-only
subproject into an otherwise C/C++-only project. The module will automatically enable
Fortran support under Visual Studio. It can use native Fortran language support when
available (e.g. a VS plugin from Intel or PGI) or generate rules to compile the subproject by
invoking MinGW gfortran inside VS. Of course, this will work just fine if you do have a
commercial Fortran compiler.

Creating Visual Studio .lib files from MinGW gfortran
When creating a shared library (.dll) the MinGW toolchain produces a GNU-format import
library (.dll.a) needed to link to the shared library. Microsoft (MS) tools do not recognize this
format. In order to use MS tools and link to a shared library created by MinGW tools one must
generate a MS-format import library (.lib) using the MS lib.exe tool installed with Visual Studio.

When building with MinGW tools on a machine that also has Visual Studio installed CMake
2.8.7 and higher offers a “CMAKE_GNUtoMS” option. When enabled CMake automatically
generates additional build rules to run the MS lib.exe tool and create a MS-format import library
(.lib) for each shared library (.dll) created by a project in addition to its normal GNU-format
import library (.dll.a). One may enable the option by setting CMAKE_GNUtoMS inside the
project CMake code or by passing it on the CMake command line when generating the build
tree:

CMake FLAGS	

cmake … -DCMake_GNUtoMS=ON …	

Note that the feature currently works only for SHARED libraries because they reference their
dependence on the GNU Fortran runtime libraries internally. STATIC libraries are more
challenging because they requires explicit linking to the runtime libraries whose format would
also need conversion. A project may specify that a library be shared by using the SHARED
option of the add_library command:

Inside the project CMake code	

add_library(… SHARED …)	

If a project does not specify the library type when calling add_library one may tell CMake to
build shared libraies on the command line:

CMake FLAGS	

cmake … -DBUILD_SHARED_LIBS=ON …	

Side note: DLLs and Intel Fortran

If a project needs to work with the Intel Fortran compiler as well then one needs to make sure
symbols are exported from each shared library. MinGW gfortran can export all the symbols from
a shared library automatically but Intel Fortran requires explicit specification of symbols to
export. One may manually create a DLL module definition (.def) file that lists the symbols to
export and add it to the add_library call as a source file in CMake. Alternatively, one may mark
up the Fortran code with special “DEC$” comments recognized by the Intel Fortran compiler:

hello.f	

!DEC$ ATTRIBUTES DLLEXPORT :: HELLO
 SUBROUTINE HELLO
 PRINT *, 'Hello'

The CMakeAddFortranSubdirectory Module
CMake 2.8.8 offers a new experimental module called CMakeAddFortranSubdirectory. It
provides a “cmake_add_fortran_subdirectory” function to make a Fortran subproject appear as if
it were included in a C/C++ project using a normal add_subdirectory command. The subproject
may contain only Fortran code and may not contain any C/C++ code.

The function first checks if a Fortran compiler is available along with the C/C++ compiler
toolchain and if so simply calls add_subdirectory. This is the normal case on most platforms.
The “magic” happens when building for Visual Studio without an integrated Fortran
compiler on a machine with MinGW gfortran. The cmake_add_fortran_subdirectory function
searches for MinGW gfortran installation and uses the CMake ExternalProject module to add a
custom target that builds the subdirectory with the MinGW tools. It enables the
BUILD_SHARED_LIBS and CMAKE_GNUtoMS options in the external project to build the
Fortran code into shared libraries with MS-format import libraries.

In the latter case the function creates CMake “imported” targets to make the Fortran libraries
available to the main project as if they had been built by a direct add_subdirectory call. This
requires one to pass additional arguments to the function to tell it what libraries will be built by
the subproject.

CMake module name: CMakeAddFortranSubdirectory

CMake function name: cmake_add_fortran_subdirectory
CMake help: cmake --help-module CMakeAddFortranSubdirectory

Syntax: cmake_add_fortran_subdirectory
from
include(CMakeAddFortranSubdirectory)	

	

cmake_add_fortran_subdirectory (
 <subdir>
 PROJECT <project_name>
 ARCHIVE_DIR <dir>
 RUNTIME_DIR <dir>
 LIBRARIES <lib>...
 LINK_LIBRARIES
 [LINK_LIBS <lib> <dep>...]...
 CMake_COMMAND_LINE ...
 NO_EXTERNAL_INSTALL
)	

name of subdirectory
project name in subdir
dir where project places .lib files
dir where project places .dll files
names of library targets to import
link dependencies for LIBRARIES
	

extra command line to pass to CMake
skip installation of external project

Note: The relative paths in ARCHIVE_DIR and RUNTIME_DIR are interpreted with respect to
the build directory corresponding to the source directory in which the function is invoked.

Example 3: Introducing Microsoft Visual Studio
Here is our second example modified to use the CMakeAddFortranSubdirectory feature. Only
the CMake configuration has been changed; the C and Fortran source files are the same as in the
previous example. The main difference is that now we work under Windows with Microsoft
Visual Studio. On our machine, no Fortran compiler is integrated with VS (i.e no Intel Fortran
Compiler for Windows installed) but we have MinGW installed on our machine. The MinGW
installation must include gfortran and gcc in order to determine the Fortran mangling scheme
used.

● We move our Fortran subfolders to the new fortran folder that will be an actual CMake
Fortran project. We are now able to use the CMakeAddFortranSubdirectory module.

● Our Fortran Project will still need C as we want still to use the CMake FortranCInterface
module to create our netlib.h header. The header will now be generated in the binary dir of
the dgesv project.

● Because now we are going to work under Visual Studio and with dll’s, we need to add extra
commands to make sure the dll’s generated will be available in our binary directory.

Example 3: CMakeLists.txt Using MinGW gfortran from Visual Studio	

CMake_minimum_required(VERSION 2.8.8)
Fortran is not mentioned as we accept no Native Fortran Support
project (TIMER_Example3)	

Organize output so that all generated lib go to the same lib directory
and all dll and executable go to the same bin directory
set(CMake_RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/bin")
set(CMake_ARCHIVE_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/lib")
set(CMake_LIBRARY_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/lib")

Get the module CMakeAddFortranSubdirectory
include(CMakeAddFortranSubdirectory)

Add the fortran subdirectory as a fortran project
the subdir is fortran, the project is DGESV
CMake_add_fortran_subdirectory(fortran
PROJECT DGESV
ARCHIVE_DIR ${CMake_ARCHIVE_OUTPUT_DIRECTORY}
RUNTIME_DIR ${CMake_RUNTIME_OUTPUT_DIRECTORY}
LIBRARIES refblas dgesv # target libraries created
LINK_LIBRARIES # link interface libraries
LINK_LIBS dgesv refblas # dgesv needs refblas to link
CMake_COMMAND_LINE
-DCMake_ARCHIVE_OUTPUT_DIRECTORY=${CMake_ARCHIVE_OUTPUT_DIRECTORY}
-DCMake_RUNTIME_OUTPUT_DIRECTORY=${CMake_RUNTIME_OUTPUT_DIRECTORY}
NO_EXTERNAL_INSTALL
)

To find the newly generated header file
include_directories (${PROJECT_BINARY_DIR}/fortran)

The autofortran library linking does not work unless Fortran is enabled.
include(CheckLanguage)
check_language(Fortran)
if(CMAKE_Fortran_COMPILER)
 enable_language(Fortran)
else()
 message(STATUS "No native Fortran support ")
endif()

Timer for Matrix Multiplication Calling Fortran DGEMM routine from C
add_executable(timer_dgemm timer_dgemm.c)
target_link_libraries(timer_dgemm refblas)

Timer for Linear Solve Calling Fortran DGESV routine from C
add_executable(timer_dgesv timer_dgesv.c)
target_link_libraries(timer_dgesv dgesv)

Add extra command to copy dll's next to the binaries
so that the PATH does not have to be altered to run
the executables
IF(WIN32)
 ADD_CUSTOM_COMMAND(
 TARGET timer_dgemm
 POST_BUILD
 COMMAND ${CMake_COMMAND} -E copy
 ${PROJECT_BINARY_DIR}/bin/librefblas.dll
 ${PROJECT_BINARY_DIR}/bin/${CMake_CFG_INTDIR}
)

 ADD_CUSTOM_COMMAND(
 TARGET timer_dgesv
 POST_BUILD
 COMMAND ${CMake_COMMAND} -E copy
 ${PROJECT_BINARY_DIR}/bin/libdgesv.dll
 ${PROJECT_BINARY_DIR}/bin/${CMake_CFG_INTDIR}
)

ENDIF(WIN32)

Example 3: fortran/CMakeLists.txt DGESV Fortran Project	

CMake_minimum_required(VERSION 2.8.7)	

project(DGESV Fortran C)

Create a header file netlib.h for the routines called in my C programs

include(FortranCInterface)

FortranCInterface_HEADER(netlib.h

 SYMBOLS dgemm dgesv dcopy dnrm2)

Creating a library with the Fortran routine DGESV and its dependencies

add_subdirectory(refblas)

add_subdirectory(dgesv)

Example 3: Screenshot of CMake output under Windows	

	

Example 3: Screenshot of Visual Studio Build	

	

Download Example3:
http://icl.cs.utk.edu/lapack-for-windows/Example_C_Fortran_CMake/Example3.tgz

Plugging a C Interface with the FORTRAN Library
Now that your project of mixing Fortran and C with CMake is ready, the only burden that
remains for the user is the coding part. Some of you will decide that a C Interface could to be
useful to your project to handle for example column-major and row-major format, complex
data types , input arguments passed by value, .. In this section, we will show that

plugging your C Interface in your project is straight-forward now that you understood
the powerful CMake features shown in the previous examples.

Example 4: Introducing LAPACKE

Since CMake allow us to link Fortran directly from Microsoft Visual Studio, we are going to add
a C Interface layer, namely LAPACKE, to make calls to LAPACK easier from C from a user
point-of view. Please refer to the LAPACKE User guide for further help [i] . Example 4
demonstrates how LAPACKE is included into the LAPACK CMake build. As LAPACKE subset
is build directly from Microsoft Visual Studio, we can choose to build static or dynamic library
of LAPACKE (default being static). We are going to use the official LAPACKE DGESV
examples written by INTEL corporation.

This example represents a subset of LAPACK and LAPACKE as only DGESV and its
dependencies are used. To get complete prebuilt of Reference BLAS, LAPACK, LAPACKE
libraries, please refer to http://icl.cs.utk.edu/lapack-for-windows/lapack/index.html#libraries.

Example 4: CMakeLists.txt Using MinGW gfortran and including LAPACKE from Visual
Studio	

CMake_minimum_required(VERSION 2.8.8)
Fortran is not mentioned as we accept no Native Fortran Support
project (LAPACKE_Example C)

Organize output so that all generated lib go to the same lib directory
and all dll and executable go to the same bin directory
set(CMake_RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/bin")
set(CMake_ARCHIVE_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/lib")
set(CMake_LIBRARY_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/lib")

Looking for an optimized BLAS library already installed on the machine

If none available, we will use the Reference BLAS

result will be stored in the BLAS_LIBRARIES variable
include(${PROJECT_SOURCE_DIR}/setBLAS.CMake)
setBLAS()

Get the module CMakeAddFortranSubdirectory
include(CMakeAddFortranSubdirectory)

Add the fortran subdirectory as a fortran project
the subdir is fortran, the project is DGESV
CMake_add_fortran_subdirectory(fortran
PROJECT DGESV
ARCHIVE_DIR ${CMake_ARCHIVE_OUTPUT_DIRECTORY}
RUNTIME_DIR ${CMake_RUNTIME_OUTPUT_DIRECTORY}
LIBRARIES refblas dgesv # target libraries created
LINK_LIBRARIES # link interface libraries
LINK_LIBS dgesv refblas # dgesv needs refblas to link
CMake_COMMAND_LINE
-DCMake_ARCHIVE_OUTPUT_DIRECTORY=${CMake_ARCHIVE_OUTPUT_DIRECTORY}
-DCMake_RUNTIME_OUTPUT_DIRECTORY=${CMake_RUNTIME_OUTPUT_DIRECTORY}
NO_EXTERNAL_INSTALL

)

To find the newly generated header file
include_directories (${PROJECT_BINARY_DIR}/include)

All C subdirectory to build LAPACKE
add_subdirectory(c)

The autofortran library linking does not work unless Fortran is enabled.
include(CheckLanguage)
check_language(Fortran)
if(CMake_Fortran_COMPILER)
 enable_language(Fortran)
else()
 message(STATUS "No native Fortran support ")
endif()

LAPACKE Examples: Calling LAPACKE DGESV routine from C

add_executable(example_DGESV_rowmajor example_DGESV_rowmajor.c)
target_link_libraries(example_DGESV_rowmajor lapacke dgesv ${BLAS_LIBRARIES}
)

add_executable(example_DGESV_colmajor example_DGESV_colmajor.c)
target_link_libraries(example_DGESV_colmajor lapacke dgesv ${BLAS_LIBRARIES}
)

Add extra command to copy dll's next to the binaries
IF(WIN32)
 ADD_CUSTOM_COMMAND(
 TARGET example_DGESV_rowmajor
 POST_BUILD
 COMMAND ${CMake_COMMAND} -E copy
 ${PROJECT_BINARY_DIR}/bin/librefblas.dll
 ${PROJECT_BINARY_DIR}/bin/${CMake_CFG_INTDIR}
)

 ADD_CUSTOM_COMMAND(
 TARGET example_DGESV_rowmajor
 POST_BUILD
 COMMAND ${CMake_COMMAND} -E copy
 ${PROJECT_BINARY_DIR}/bin/libdgesv.dll
 ${PROJECT_BINARY_DIR}/bin/${CMake_CFG_INTDIR}
)
ENDIF(WIN32)

LAPACKE requires the creation of lapacke_mangling.h. We are just going to directly use
CMAKE capabilities to create the mangling macro LAPACK_GLOBAL and save it in the
lapacke_mangling.h file. The lapacke.h include file will include the lapacke_mangling.h file and
define the new routine name with calls to the LAPACK_GLOBAL macro.

Example 4: fortran/CMakeLists.txt DGESV Fortran Project	

CMake_minimum_required(VERSION 2.8.8)	

project(DGESV Fortran C)

Create a header file lapacke_mangling.h for the routines called in my C
programs

include(FortranCInterface)

FortranCInterface_HEADER(../include/lapacke_mangling.h

 MACRO_NAMESPACE "LAPACK_"

 - SYMBOL_NAMESPACE "LAPACK_")

Creating a library with the Fortran routine DGESV and its dependencies

add_subdirectory(refblas)

add_subdirectory(dgesv)

Example 4: Screenshot of Visual Studio Build and executable output	

	

Download Example4:
http://icl.cs.utk.edu/lapack-for-windows/Example_C_Fortran_CMAKE/Example4.tgz

Summary
CMake has a rich set of tools to enable the cross platform development of C/C++ code that
compiles and links to Fortran source code. CMake can determine compiler symbol mangling as
well as the correct run time libraries required to use the Fortran code from C/C++. The new
CMake_add_fortran_subdirectory function currently under development will give VS studio
users a free Fortran compiler available for use from the Visual Studio IDE using the MinGW
gfortran compiler.

Thanks to all those great CMake features and to an optional development of a C Interface, the
Fortran library can now be called from C directly from Microsoft Visual Studio without putting
undue burden on the user.

Thanks
The CMake team would like to thank the Trilinos (http://trilinos.sandia.gov/) and DAKOTA
(http://dakota.sandia.gov/) teams for their input and collaboration on the CMake Fortran
support.

