
Noname manuscript No.
(will be inserted by the editor)

Power Profiling of Cholesky and QR Factorizations on
Distributed Memory Systems

George Bosilca · Hatem Ltaief · Jack Dongarra

Received: date / Accepted: date

Abstract This paper presents the power profile of two

high performance dense linear algebra libraries on dis-

tributed memory systems, ScaLAPACK and DPLA-

SMA. From the algorithmic perspective, their method-

ologies are opposite. The former is based on block al-

gorithms and relies on multithreaded BLAS and a two-

dimensional block cyclic data distribution to achieve

high parallel performance. The latter is based on tile

algorithms running on top of a tile data layout and

uses fine-grained task parallelism combined with a dy-

namic distributed scheduler (DAGuE) to leverage dis-

tributed memory systems. We present performance re-

sults (Gflop/s) as well as the power profile (Watts) of

two common dense factorizations needed to solve lin-

ear systems of equations, namely Cholesky and QR.

The reported numbers show that DPLASMA surpasses

ScaLAPACK not only in terms of performance (up to

2X speedup) but also in terms of energy efficiency (up

to 62%).

Keywords Power Profile Analysis · Dense Linear

Algebra · Distributed Memory System · Dynamic

Scheduler

1 Introduction and Motivation

More than eight years after traditional processor de-

signs hit the edge of their power envelope, the path of

G. Bosilca and J. Dongarra
Innovative Computing Laboratory
University of Tennessee, Knoxville, USA
E-mail: bosilca,dongarra@eecs.utk.edu

H. Ltaief
Supercomputing Laboratory
KAUST, Thuwal, Saudi Arabia
E-mail: Hatem.Ltaief@kaust.edu.sa

extreme scale computational science to a 100 Petaflop

(Pflop/s) system, which researchers had hoped to be

using by the middle of the coming decade, has never

looked steeper. On current high performance comput-

ing (HPC) systems, the application-architecture perfor-

mance gap, i.e. the gap between theoretical peak per-

formance and the performance realized by full applica-

tions, is already substantial. But with clock frequencies

now capped below 4 GHz and trending downward, la-

tencies in key areas (e.g. memory, bus, interconnect,

power usage) expected to remain relatively stagnant,

and software parallelism required to increase by at least

three orders of magnitude, it is now reasonable to worry

that a widening application-architecture performance

gap will make such systems costly, unproductive to use

and therefore irrational to build.

Moreover, as highlighted in the DOE report about

Exascale Computing [9], the current power usage of

most of the computing components is significantly higher

than acceptable. Scaling today’s systems, based on cur-

rent technologies, to an exaflop level will require over

one gigawatt of power. That amount of power is nearly

equivalent to the output of Hoover Dam, and symbol-

izes an economical barrier that will be difficult to over-

come. Therefore, reducing the power requirement by a

significant factor, estimated at least 100 times, is one of

the most important challenges for future hardware and

software technologies.

However, future exascale machines are not the only

opportunities to get more traction from more efficient

hardware or software solutions. Already, large scale data

centers, installed either at government institutions or

private corporations selling them as services, are using

a significant amount of power. Any reduction in their

energy consumption will directly translate to lower us-

age costs and a more carbon-friendly footprint. At the

2 George Bosilca et al.

hardware level, Google set a trend by building most

of its data centers from scratch, from the building itself

and the solar panels to feed it, down to the servers using

energy-saving chips. At the software level, the picture is

less clear. Most of the current efforts seem to be central-

ized around taking advantage of the power management

techniques implemented in today’s processors.

In this paper, we will focus on credible scenarios

happening inside a High Performance Computing Cen-

ter, where highly computational intensive parallel ap-

plications and simulations are the most common. Such

environments are mainly government funded institu-

tions, places where the next generation large scale envi-

ronments are nurtured. Our motivation is to investigate

the power usage and identify research directions on syn-

chronous and asynchronous approaches for dense lin-

ear algebra numerical algorithms, using as benchmarks

two of the most widely used one-sided factorizations for

solving dense linear systems of equations for symmetric

and non symmetric matrices [12,18]. This class of al-

gorithms includes the Cholesky and QR factorizations,

which actually correspond to the most computation-

ally intensive step in solving various linear systems of

equations. While they do not represent the most com-

mon pattern in data centers, they are still critical pieces

as a large number of other software solutions extracts

their parallel performance from an efficient dense lin-

ear algebra solvers. Additionally, due to their regularity

and inherent load balancing characteristic, they offer a

straightforward way to link energy consumption to al-

gorithmic behaviors.

This is in this context that the authors propose

to analyze the power efficiency of both factorizations

using the distributed version of these two algorithms,

as implemented in the high performance dense linear

algebra libraries ScaLAPACK [7] and DPLASMA [4].

The aforementioned libraries employ diametrically op-

posite approaches in terms of algorithms, data layout

and scheduling to effectively exploit the available hard-

ware resources.

The remainder of this paper is organized as fol-

lows: Section 2 gives a detailed overview of previous

research works in this area. Section 3 recalls the main

features of the ScaLAPACK library. Section 4 describes

the DPLASMA framework based on tile algorithms.

Section 5 highlights the dynamic runtime engine used

within DPLASMA. Section 6 outlines the experimen-

tal settings. Section 7 demonstrates the impact of the

block/tile size as well as the number of cores on power

consumption. Finally, Section 8 summarizes the results

of this paper and presents some future work.

2 Background

During the last decade, the hardware evolution toward

multicore architecture has pressed the scientific com-

munity to redesign their software stack in order to take

advantage of the fine-grained parallelism. In the context

of dense linear algebra, libraries such as LAPACK [3]

for shared-memory platforms have shown their limita-

tions on such architecture. One of the main reasons is

that LAPACK relies on optimized multithreaded BLAS

to exploit the underlying hardware. With the multicore

era, parallelism has to be brought to the fore and ex-

posed as much as possible through fine-grained com-

putational tasks. The PLASMA [19] and FLAME [20]

frameworks have anticipated the hardware landscape

change by deeply rethinking the previous dense algo-

rithms for solving linear systems of equations. The main

concepts can be described in twofold: (a) reformulate

the original algorithms using fine-grained computational

kernels; the algorithms can then be depicted as a di-

rected acyclic graph (DAG), where nodes represent tasks

and edges represent data dependencies between them,

and (b) a dynamic runtime system, which will schedule

the different tasks, with respect to their data depen-

dencies, on the available computing resources. These

concepts have been successfully applied in solving linear

systems of equations [6,17,2] as well as solving the sym-

metric eigenvalue problem and computing the singu-

lar value decompositions [13,14]. In a previous work by

some of the authors [16], the power profile of the major

routines of LAPACK and PLASMA libraries have been

studied on a single shared-memory node. The authors

were able to identify the critical algorithmic phases in

both libraries thanks to the power profile. In this paper,

the authors propose to extend the power analysis to the

distributed memory system environment in the context

of the ScaLAPACK [7] and DPLASMA [4] libraries. It

is particularly noteworthy to mention that this is the

first power usage study in the context of the distributed

linear algebra libraries1.

3 The ScaLAPACK Library

ScaLAPACK is a library of high-performance linear al-

gebra routines for distributed-memory message passing

MIMD computers and networks of workstations sup-

porting PVM [11] and/or MPI [1]. It is a continua-

tion of the LAPACK project, which designed and pro-

duced analogous software for workstations, vector su-

percomputers, and shared-memory parallel computers.

The other extension to LAPACK is that ScaLAPACK

uses a two-dimensional block cyclic distribution, which

1 Up to our knowledge.

Power Profiling of Cholesky and QR Factorizations on Distributed Memory Systems 3

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

0

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3 2

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

(a) Column-major data lay-
out format within a block.

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

0

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3 2

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

3

0

2

1

(b) Tile data layout format
within a block.

Fig. 1 Two-Dimensional Block Cyclic Data Distribution.

improves the memory locality. Figure 1(a) shows an ex-

ample of a two-dimensional block cyclic distribution us-

ing four processes. The data is contiguous in memory

with each block following the column-major data layout

format. The goal of this data distribution is to optimize

the work load among each process, such that the idle

time is minimized.

4 The DPLASMA Framework

DPLASMA is a new library providing high-performance

dense liner algebra routines for distributed-memory en-

vironments. Developed based on the mathematical al-

gorithms implemented in the context of the PLASMA

library, augmented with different layers of compiler tech-

nology to translate sequential tile-based dense linear

algebra code into highly specialized DAGs, and exe-

cutes the resulting DAG of tasks using the DAGuE

runtime depicted in Section 5. In contrast to the ScaLA-

PACK library described in Section 3 and similarly to

the PLASMA library, the DPLASMA library is using a

tile data layout (TDL), where each tile data is con-

tiguous in memory in order to improve the memory

locality. In fact, due to the TDL local data distribu-

tion, the data storage in memory is similar to what is

sketched in Figure 1(b). Moreover, the data can be dis-

tributed across the processes in any type of distribution,

regular or irregular, and the algorithms will adapt dy-

namically to the data layout. For the algorithms stud-

ied in this paper, using a two-dimensional block cyclic

distribution is common as this avoids load imbalance.

5 The DAGuE Engine

DAGuE [5] is a distributed runtime system designed to

achieve extreme computational scalability by exploiting

an algebraic representation of Direct Acyclic Graphs

that efficiently captures the totality of tasks involved

in a computation and the flow of data between them.

Its primary goal is to maximize parallelism while au-

tomatically orchestrating task execution so as to mini-

mize both data movements and load imbalance. Unlike

other available DAG-based runtimes, the concise sym-

bolic representation [8] of the algorithm that DAGuE

uses minimizes the memory footprint required to com-

pletely express the total map of tasks; at the same

time, it provides extreme flexibility during the schedul-

ing process. This algebraic representation allows the

DAG to be traversed at very high speed, while track-

ing any flow of data from task to task. By combin-

ing this underlying mechanism with an understanding

of the specific hardware capabilities of the target ar-

chitecture, DAGuE is able schedule tasks in ways that

creatively adapt alternative work-stealing strategies to

the unique features of the system. These capabilities

enable DAGuE to optimize data movement between

distributed memory computational resources, including

both different nodes of the full system and different ac-

celerators on the same node.

6 Experimental Settings

All experiments have been conducted on an x86-based

cluster named systemg.cs.vt.edu from Virginia Tech,

composed of 324 nodes with an InfiniBand network

interconnect. Each node is composed of a dual-socket

quad-core Intel Xeon 2.8GHz (2592 cores total) with

8GB of memory. It has over thirty power and thermal

sensors per node, and relies on PowerPack [10] to ob-

tain measurements of the major system components’

power consumption, using power meters attached to

the system’s hardware. The PowerPack framework is

a collection of software components, including libraries

and APIs, which enable system component-level power

profiling correlated to application functions. PowerPack

allows the user to obtain direct measurements of the

system’s power consumption on a per-component ba-

sis, including the CPU, memory, hard disk, and moth-

erboard. Furthermore, the efficiency of the AC/DC con-

version happening at the power supply level is around

80%, which explains the gap between the overall sys-

tem’s power consumption and the sum of the different

hardware components’s power consumption (see Fig-

ures in Section 7). It is noteworthy to mention that

there are no power sensors on the network interconnect

cards, and it is not possible to monitor its power con-

sumption through PowerPack. However, it is captured

within the entire system’s power consumption and it

can therefore be extracted by subtracting the recorded

power rate of the system components from the whole

system power rate. In fact, this is one of the main contri-

butions of this paper compared to previous work done

on a single shared-memory system [16]. Furthermore,

the Cholesky and QR factorizations are compute-bound

numerical algorithms with a ratio flops per byte close

to the matrix-matrix multiplication kernel (DGEMM).

One of the main way to reduce their overall power con-

4 George Bosilca et al.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) block size = 32.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) block size = 128.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(c) block size = 512.

Fig. 2 Impact of the block size on the power profiles (Watts)
of the ScaLAPACK Cholesky Factorization.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) tile size = 48.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) tile size = 192.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory
Network

(c) tile size = 768.

Fig. 3 Impact of the tile size on the power profiles (Watts) of
the DPLASMA Cholesky Factorization.

sumption is to increase the degree of parallelism such

that there is enough concurrency to feed the available

cores and therefore, to reduce the time to solution.

And this is exactly what tile algorithms are able to

achieve by breaking the computation into fine-grained

numerical kernels. Consequently, there is no need to

enable processor throttling in such algorithms through

the commonly used technique of dynamic voltage fre-

quency scaling (DVFS) [15]. These tile factorizations

require rather the full processing power of the avail-

able cores until the end of the execution. However, this

might not be always true for the other dense factor-

izations e.g., tridiagonal and bidiagonal reductions [13,

14] needed for eigenvalue problems and singular value

decomposition, respectively, which are characterized by

memory-bound computational stages. DVFS for these

two-sided reductions may in fact play a major role in

reducing their energy footprints. Their distributed ver-

sion implementations and their actual integrations into

the DPLASMA library are very challenging and still

under work in progress. Finally, ScaLAPACK V2.0.1

and DPLASMA 1.0-rc1 have been compiled against the

sequential version of the Intel MKL library V10.3 and

OpenMPI V1.4.4.

7 Power Profiling Analysis

Understanding The Graphs As described in [5], the par-

allel performance of the mathematical algorithms are

highly dependent on the blocking factor for ScaLA-

PACK and the tile size for DPLASMA. In both cases,

these sizes impact the cache reuse and the balance be-

tween the computations and communications. In the

context of the DPLASMA library, the tile size has a

tremendous impact on the available parallelism and the

number of tasks to be executed, as well as on the size

and number of communications. A smaller tile size will

generate more tasks, potentially exacerbating the over-

head of the runtime due to low arithmetic intensity,

while increasing the potential for late execution due

to missing remote data (delayed communications). On

the other side, a larger tile will limit the degree of par-

allelism in the algorithm and increase the load imbal-

ance. A second parameter investigated is the number of

cores, and its impact on the overall power consumption.

For the sake of simplicity, the size of the matrix has

Power Profiling of Cholesky and QR Factorizations on Distributed Memory Systems 5

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) block size = 32.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) block size = 128.

 5000

 10000

 15000

 20000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(c) block size = 512.

Fig. 4 Impact of the block size on the power profiles (Watts)
of the ScaLAPACK QR Factorization.

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350 400 450

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) tile size = 48.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) tile size = 192.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(c) tile size = 768.

Fig. 5 Impact of the tile size on the power profiles (Watts) of
the DPLASMA QR Factorization.

been set to N = 40000 for all experiments presented

below. We have also reduced the power consumption

monitors to only two components using the PowerPack

framework i.e., CPU and memory, in addition to mon-

itoring the entire system power consumption. We have

disregarded the disk and the motherboard since they

are not relevant. We have also provided an estimation

of the network interconnect power consumption using

the collected data from PowerPack power sensors. All

power consumption measurements presented in the Fig-

ures below are for the entire allocated resource parti-

tion power consumption (up to 64 allocated nodes). In

addition, areas non essential to the understanding of

the algorithms pictured in the graphs (e.g., matrix al-

location and initialization and different validity checks)

have been grayed out.

7.1 Impact of Block/Tile Size on Power Profiles

Here, we present the power consumption profiles for the

Cholesky and QR factorizations implemented within

ScaLAPACK and DPLASMA, while varying the block-

ing factor and the tile size, respectively. Such profiles

allow us not only to observe temporal changes of the

power drawn by the hardware, but, primarily, give us

additional information about the usage of system com-

ponents and how changes in this usage are influenced

by various algorithms or steps in the algorithms.

ScaLAPACK. Figures 2 and 4 show the power rate of

ScaLAPACK Cholesky and QR. Small block sizes affect

the power consumption as the algorithm performance

is mostly driven by the extensive communication load.

In the same manner, a large block size hinders the per-

formance due to a low degree of generated parallelism.

Choosing a block size b = 128 seems to be the ap-

propriate number to get the best out of ScaLAPACK

for the matrix size considered. The power curve of the

network interconnect is more dense for the QR factor-

ization than the Cholesky factorizations mainly due to

the number of global communications required when it

comes to reducing non-symmetric matrices.

DPLASMA. Figures 3 and 5 underline the power pro-

files of DPLASMA QR and Cholesky. In particular, Fig-

ures 3(a) and 5(a) show the negative impact of using

a very small tile size on the computation time. The

large number of communications and their latencies,

along with the low computation intensity of the kernels

6 George Bosilca et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) Number of cores = 128.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) Number of cores = 512.

Fig. 6 Impact of the number of cores on the power profiles
(Watts) of the ScaLAPACK Cholesky Factorization.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) Number of cores = 128.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) Number of cores = 512.

Fig. 7 Impact of the number of cores on the power profiles
(Watts) of the DPLASMA Cholesky Factorization.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) Number of cores = 128.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) Number of cores = 512.

Fig. 8 Impact of the number of cores on the power profiles
(Watts) of the ScaLAPACK QR Factorization.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(a) Number of cores = 128.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o
w

e
r

(W
a
tt
s
)

Time (seconds)

System

CPU

Memory

Network

(b) Number of cores = 512.

Fig. 9 Impact of the number of cores on the power profiles
(Watts) of the DPLASMA QR Factorization.

(see the low CPU power rate), induce considerable over-

head, more than what can be dealt with by the dynamic

scheduler in the runtime, limiting its efficiency. In this

particular case, a more power-aware type of scheduler

may improve the performance and power usage, to a

level similar to ScaLAPACK. While Figure 3(a) shows

only a snapshot of the Cholesky power profile due to

its excessive execution time, Figure 5(a) presents the

entire snapshot of QR with an elapsed time of around

375 seconds. The power curves from the subsequent Fig-

ures shrink as the tile size increases, and again, as seen

above for ScaLAPACK, after passing a certain thresh-

old t = 192, the power consumptions start widening and

decreasing at the same time, since processes are running

out of work for such a coarse-grain tile size. Increasing

the size of the matrix will certainly alleviate this prob-

lem, but not solve it entirely. The power curves of the

network interconnect are also smoother than those from

ScaLAPACK. The fine-grained computations in DPLA-

SMA generate fine-grained communications, which can

be better overlapped, compared to ScaLAPACK block

algorithms.

Power Profiling of Cholesky and QR Factorizations on Distributed Memory Systems 7

7.2 Impact of the Core Number on Power Profiles

This Section describes the impact of the core number

on the power profiles of ScaLAPACK and DPLASMA

Cholesky/QR factorizations, in the context of a strong

scaling analysis, i.e. the matrix size remains constant

while the number of computational resources varies.

ScaLAPACK. Figures 6 and 8 show the power evolu-

tion of ScaLAPACK Cholesky/QR when changing the

total number of cores. As the number of cores increases,

the time to solution is shortened accordingly and the

power consumption is therefore enhanced. However, the

correlation between the power usage and the number of

cores is not linear.

DPLASMA. Figures 7 and 9 show a somehow simi-

lar power profile behavior, as the number of cores in-

creases. As the tile size has been optimally chosen based

on the previous measurements, a significant amount of

parallelism is available. Adding more cores would only

improve the time to solution accordingly.

7.3 Power Profile Comparisons

Figures 10 and 11 compare the power profiles of both al-

gorithms, as implemented in ScaLAPACK and DPLA-

SMA. DPLASMA Cholesky consumes up to 62% less

energy than ScaLAPACK Cholesky and DPLASMA QR

consumes up to 40% less energy than ScaLAPACK QR

for the matrix size considered. Furthermore, Figure 12

reports the total amount of energy needed for each

test depending on the number of cores used. The to-

tal energy consumption of ScaLAPACK increases as

more cores are used to compute the Cholesky/QR fac-

torizations. However, we see a different behavior for

DPLASMA total power consumption. For example, for

the DPLASMA Cholesky factorization, the total en-

ergy consumption decreases when doubling the num-

ber of cores from 128 to 256, due to the super linear

speedup seen in Figure 7(a), where the elapsed time

starts at 20 seconds and goes down to 8 seconds. Dou-

bling further the number of cores to 512 does not actu-

ally bring more performance (the scalability is limited

due to the small workload per cores for the matrix size

considered since only the upper/lower part of the sym-

metric matrix is factorized) but does increase the total

energy consumption compared to the experiments with

256 cores. Regarding the DPLASMA QR factorization,

the total energy consumption stays roughly the same

regardless of the number of cores used. Indeed, the QR

factorization is very compute intensive (four times the

Cholesky algorithmic complexity), besides the high de-

gree of parallelism for such a matrix size.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Fig. 10 Power Profiles of the Cholesky Factorization.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(a) ScaLAPACK.

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

P
o

w
e

r
(W

a
tt

s
)

Time (seconds)

System

CPU

Memory

Network

(b) DPLASMA.

Fig. 11 Power Profiles of the QR Factorization.

8 Conclusion

This paper presents the power profiles of two high per-

formance one-sided dense linear algebra factorizations,

namely Cholesky and QR, on distributed memory sys-

tems in the context of ScaLAPACK and DPLASMA

libraries. From a pure performance point of view, the

results demonstrate that a completely asynchronous ap-

proach, such as the data-flow based approach in DPLA-

SMA, achieve significantly higher efficiencies, deliver-

ing up to two-fold speedup. However, due to the asyn-

chronous behavior of the algorithms and a scheduler

targeted toward high efficiency, all available hardware

components are in use during the entire execution, lead-

8 George Bosilca et al.

Cores Library Cholesky QR

128
ScaLAPACK 192000 672000
DPLASMA 128000 540000

256
ScaLAPACK 240000 816000
DPLASMA 96000 540000

512
ScaLAPACK 325000 1000000
DPLASMA 125000 576000

Fig. 12 Total amount of energy (joule) used for each test
based on the number of cores

ing to a higher power usage. Nevertheless, combining

the execution time decrease with the power usage in-

crease, the DPLASMA algorithms decrease the energy

consumption up to 62% compared to ScaLAPACK. This

is interesting evidence that the shift to more hardware

challenging environments, if accompagnied by asynchronous

execution runtime and adapted algorithms can lead to

significantly improved efficiencies and power saving.

In the future, the authors plan to extend this study

with other dense reductions (two-sided factorizations)

required for computing the eigenvalues and singular val-

ues. Based on a two-stage approach, the original ma-

trix is first reduced to a band using compute inten-

sive kernels. Then, the band matrix is further reduced

to the corresponding condensed form using memory-

bound kernels where the degree of parallelism is ex-

tremely low. Therefore, the DAGuE runtime could ex-

ploit the nature of the algorithms and detect that the

second stage, being less compute intensive, requires a

smaller number of cores. The engine could then decide

to dynamically adapt the frequencies of the core and

eventually turn them off using Dynamic Voltage Fre-

quency Scaling [15], a commonly used technique with

which it is possible to achieve reduction of energy con-

sumption.

Acknowledgment

The authors would like to thank Pr. Kirk Cameron from

the Department of Computer Science at Virginia Tech,

for granting access to his platform.

References

1. MPI-2: Extensions to the message passing interface stan-
dard. http://www.mpi-forum.org/ (1997)

2. Agullo, E., Hadri, B., Ltaief, H., Dongarra, J.: Compara-
tive study of one-sided factorizations with multiple soft-
ware packages on multi-core hardware. SC ’09: Proceed-
ings of the Conference on High Performance Computing
Networking, Storage and Analysis pp. 1–12 (2009)

3. Anderson, E., Bai, Z., Bischof, C., Blackford, S.L., Dem-
mel, J.W., Dongarra, J.J., Croz, J.D., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorensen, D.C.: LA-
PACK User’s Guide, 3rd edn. Society for Industrial and
Applied Mathematics, Philadelphia (1999)

4. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M.,
Haidar, A., Herault, T., Kurzak, J., Langou, J.,
Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,

Dongarra, J.: Flexible Development of Dense Linear Al-
gebra Algorithms on Massively Parallel Architectures
with DPLASMA. In: PDSEC-11. ACM (2011)

5. Bosilca, G., Bouteiller, A., Herault, T., Lemarinier, P.,
Dongarra, J.: DAGuE: A generic distributed DAG engine
for high performance computing. HIPS (2011)

6. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class
of parallel tiled linear algebra algorithms for multicore
architectures. Parallel Computing 35(1), 38–53 (2009)

7. Choi, J., Demmel, J., Dhillon, I., Dongarra, J., Ostrou-
chov, S., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK, a portable linear algebra library for
distributed memory computers-design issues and perfor-
mance. Computer Physics Communications 97(1-2)

8. Cosnard, M., Jeannot, E.: Compact DAG representation
and its dynamic scheduling. Journal of Parallel and Dis-
tributed Computing 58, 487–514 (1999)

9. Dongarra, J., Beckman, P.: The International Exascale
Software Roadmap. International Journal of High Per-
formance Computer Applications 25(1) (2011)

10. Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron,
K.W.: PowerPack: Energy Profiling and Analysis of High-
Performance Systems and Applications. IEEE Transac-
tions on Parallel and Distributed Systems 21(5), 658–671

11. Geist, A., Beguelin, A., Dongarra, J., Jiang, W.,
Manchek, R., Sunderam, V.: PVM: Parallel Virtual Ma-
chine. A Users’ Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, MA (1994)

12. Golub, G.H., Van Loan, C.F.: Matrix Computations,
third edn. John Hopkins Studies in the Mathematical
Sciences. Baltimore, Maryland (1996)

13. Haidar, A., Ltaief, H., Dongarra, J.: Parallel Reduction
to Condensed Forms for Symmetric Eigenvalue Problems
using Aggregated Fine-Grained and Memory-Aware Ker-
nels. In: SC11. Seattle, WA, USA

14. Haidar, A., Ltaief, H., Luszczek, P., Dongarra, J.: A Com-
prehensive Study of Task Coalescing for Selecting Paral-
lelism Granularity in a Two-Stage Bidiagonal Reduction.
In: IPDPS’12. Shanghai, China (2012)

15. Kappiah, N., Freeh, V.W., Lowenthal, D.K.: Just In Time
Dynamic Voltage Scaling: Exploiting Inter-Node Slack to
Save Energy in MPI Programs. In: SC, p. 33. IEEE Com-
puter Society (2005)

16. Ltaief, H., Luszczek, P., Dongarra, J.: Profiling High Per-
formance Dense Linear Algebra Algorithms on Multicore
Architectures for Power and Energy Efficiency. In: EnA-
HPC 2011: Second International Conference on Energy-
Aware HPC. Hamburg, Germany (2011)

17. Quintana-Ort́ı, G., Quintana-Ort́ı, E.S., Chan, E., van de
Geijn, R.A., F. G. Van Zee: Scheduling of QR factoriza-
tion algorithms on SMP and multi-core architectures. In:
PDP, pp. 301–310. IEEE Computer Society (2008)

18. Trefethen, L.N., Bau, D.: Numerical Linear Alge-
bra. SIAM, Philadelphia, PA (1997). URL
http://www.siam.org/books/OT50/Index.htm

19. University of Tennessee Knoxville: PLASMA Users’
Guide, Parallel Linear Algebra Software for Multicore
Architectures, Version 2.4 (2011)

20. Zee, F.G.V., Chan, E., van de Geijn, R.A., Quintana-
Orti, E.S., Quintana-Orti, G.: The libflame library for
dense matrix computations. Computing in Science and
Engineering 11(6), 56–63 (2009)

