
HierKNEM: An Adaptive Framework for Kernel-Assisted and Topology-Aware
Collective Communications on Many-core Clusters

Teng Ma∗, George Bosilca∗, Aurelien Bouteiller∗, Jack J. Dongarra†
∗ EECS, University of Tennessee

1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA
Email: {tma, bosilca, bouteill}@eecs.utk.edu

† University of Tennessee
Oak Ridge National Laboratory, Oak Ridge, TN, USA

University of Manchester, Manchester, UK
Email: dongarra@eecs.utk.edu

Abstract—Multicore Clusters, which have become the most
prominent form of High Performance Computing (HPC) sys-
tems, challenge the performance of MPI applications with non
uniform memory accesses and shared caches hierarchies. Re-
cent advances in MPI collective communications have alleviated
the performance issue exposed by deep memory hierarchies
by carefully considering the mapping between the collective
topology and the core distance, as well as the use of single-copy
kernel assisted mechanisms. However, on distributed environ-
ments, a single level approach cannot encompass the extreme
variations not only in bandwidth and latency capabilities, but
also in the aptitude to support duplex communications or oper-
ate multiple concurrent copies simultaneously. This calls for a
collaborative approach between multiple layers of collective
algorithms, targeting to extracting the maximum degree of
parallelism from the collective algorithm by consolidating the
intra- and inter- node communications.

In this work, we present HierKNEM a kernel-assisted
topology-aware collective framework, and how this framework
orchestrates the collaboration between multiple layers of collec-
tive algorithms. The resulting scheme enables perfect overlap
of intra- and inter- node communications. We demonstrated
experimentally, by considering three of the most used collective
operations (Broadcast, Allgather and Reduction), that 1) this
approach is immune to modifications of the underlying process-
core binding; 2) it outperforms state-of-art MPI libraries
(Open MPI, MPICH2 and MVAPICH2) demonstrating up to
a 30x speedup for synthetic benchmarks, and up to a 3x
acceleration for a parallel graph application (ASP); 3) it
furthermore demonstrates a linear speedup with the increase
of the number of cores per node, a paramount requirement
for scalability on future many-core hardware.

Keywords-MPI, multicore, cluster, HPC, collective communi-
cation, hierarchical

I. INTRODUCTION

While the insatiable demand of computing power from the
domain sciences motivates the deployment of ever powerful
High Performance Computing (HPC) systems, thermal and
power consumption concerns have curbed the growth of
both node count and processor frequency. As an alternate
source of processing power, multicore clusters have become
the most prominent form of HPC systems, and exhibit a

rapid increase in the number of cores per node. The top
ranking machine in the latest Top500 list, the K computer,
uses more than half a million cores1. Processors with 12
cores are available from major commodity vendors, and it
is common to have these deployed in multiple socket boards
featuring 8 to 48 cores, with network-style interconnection
between caches or to the memory banks (e.g. Intel QPI or
AMD Hyper-transport). Unfortunately, this new hardware
trend challenges the assumptions made by most current
HPC programming models, which threatens the performance
efficiency of the machines. Namely, within nodes, non
uniform memory accesses (NUMA), memory and shared
cache hierarchies, dismiss the assumptions of regular load
balance and even link bandwidth and latency.

In the era of the single-core cluster, the Message Passing
Interface (MPI) standard has enjoyed a wide adoption in
the HPC community, thanks to two key features; its imple-
mentations provide both highest performance and portability.
With respect to portability, not only an MPI code compiles
on different machines, but it also exhibits an excellent
efficiency, because network topologies and features are ac-
counted for by the MPI library rather than the application
code. With the introduction of multicore nodes, both of
these features have been threatened in MPI, most imple-
mentations treating multicore nodes as mere SMP units and
ignoring their internal hierarchies. To alleviate this issues,
some attempts have been made to use hybrid programming
models, retaining MPI between nodes and a thread-centric
approach (pthreads, OpenMP, TBB, ...) between cores. The
suitability of this approach is questionable, research showing
a similar number of applications that successfully benefited
from the approach compared with failures to reach any
performance improvement. It also has several productivity
drawbacks: it imposes a significant complexity on program-
mers, renders explicit management of hierarchies which
defeats performance portability, and imposes major rewrite

1http://www.top500.org



of legacy applications. We believe that the MPI standard
is a competitive proposition for harnessing the power of
multicore clusters, should the implementation use the proper
techniques to account for core and memory link properties,
especially in the area of collective communications.

Indeed, recent advances in MPI collective communica-
tions have already demonstrated that the performance issues
incurred by multicore memory hierarchies can be solved
on shared memory multicore nodes. The careful mapping
between the collective topology and the core distance [1],
and the use of single-copy kernel assisted mechanisms deep
inside the collective algorithms [2] have been proven to
greatly increase the shared memory communication effi-
ciency. However, on distributed memory machines, like
clusters of multicores, a single approach cannot encompass
the extreme variations not only in the bandwidth and latency
capabilities, but also in features such as the aptitude to
operate multiple concurrent copies simultaneously. Efficient
multicore shared memory approaches are so specific, in-
cluding kernel assisted copies, that they cannot apply to
network communications; on the other hand, regular network
approaches fail to extract performance off shared memory
links. This calls for a collaborative approach between mul-
tiple layers of collective algorithms, dedicated to managing
intra and inter node communications.

In this work, we present how a kernel-assisted topology-
aware collective framework: HierKNEM, orchestrates the
collaboration between multiple layers of collective algo-
rithms. Leaders are selected among the core-centric col-
lective algorithm, to participate in the inter-node collective
topology. Intra-node communications are managed by of-
floading memory copies to non-leader processes, taking ad-
vantage of the kernel-assisted single-copy approach to even
the memory copy load among available cores. The resulting
scheme enables perfect overlap of intra-node communica-
tion time by external communications, thanks to innovative
hierarchical algorithms. We demonstrate experimentally, by
considering three collective patterns (one-to-many, many-to-
many and many-to-one), that 1) this approach is immune to
modifications of the underlying process-core binding; 2) it
outperforms state-of-art MPI libraries (Open MPI, MPICH2
and MVAPICH2) demonstrating up to a 30x speedup for
messages between 8KB and 256KB in synthetic bench-
marks, and up to 3x speedup for a parallel graph application
(ASP); 3) it demonstrates a linear speedup with the increase
of the number of cores per node, a paramount requirement
for scalability on future many-core hardware.

The rest of this paper is organized as follows: Section II
introduces related work on current efforts to optimize MPI
collective communication on multi-core clusters and the
application of kernel-assisted approach into MPI libraries.
Then, Section III describes the framework for kernel-assisted
hierarchical collective communications on clusters of mul-
ticore and details three collective algorithms: one-to-all

(Broadcast), all-to-one (Reduce), all-to-all (Allgather), and
their corresponding implementations in a new Open MPI’s
collective component: HierKNEM. These algorithms are
experimentally compared with state-of-the-art MPI imple-
mentations to assess the benefits of the hierarchical approach
in Section IV. Finally, Section V concludes the paper with
a discussion of the results.

II. RELATED WORK

The legacy approach to implement collective communica-
tion is to adopt one of many different communication topolo-
gies (linear, chain, split binary tree, binomial tree, etc.) [3].
These basic approaches can be refined by enabling parallel
treatment through message pipelining, a technique in which
large messages are split into smaller chunks to maximize
steady state bandwidth. Furthermore, a runtime decision
module can be used to select the best algorithm and tuning
parameters, according to message size, communicator size,
and other input variables [4]. The Tuned collective module,
in Open MPI, is iconic of such an approach; MPICH2 and
other MPI libraries feature an implementation of the similar
idea. Unfortunately, because the tuned collective operations
have been designed to fit single-processor clusters, none of
these parameters could reflect a runtime processes’ topology
in a view of physical distances. To further exacerbate this
issue, intelligent process placements, used as a bridge be-
tween applications and MPI libraries, e.g. MPIPP [5], often
break regular process-core binding patterns and schedule
continuous processes (in the way of MPI ranks) to cores
between a long physical distance. This irregular mapping
leads into a further mismatch between collective topologies
and underneath hardwares [1].

The conventional effort toward adaptive collective com-
munications to hierarchical hardware topologies is leader-
based hierarchical algorithms [6], [7], [8], [9], [10], [11].
The early trying of the hierarchical approach focuses on col-
lective communication on clusters of SMPs [6] or Grids [12]
to reduce the message amount crossing high latency and low
bandwidth links. Combining with the SMP-aware method,
leader-based hierarchical algorithms were widely applied
into collective communications on multicore clusters, e.g.,
MPI on Quadrics networks [7], Open MPI’s Hierarch collec-
tives, or MVAPICH2 on Infiniband networks [9], [10], [11].
In these SMP-aware methods, multicore nodes are often
treated as shared memory nodes. As a consequence, the
layered collective components that handle inter and intra
node communications do not cooperate tightly, leading to
suboptimal pipelining and sometimes contradictory tuning
choices. This results in another difference with our proposed
work: the intra-node communication is mainly implemented
by a copy-in/copy-out approach using a shared memory
segment.

The copy-in/copy-out approach implies two memory
copies to pass a single message, greatly wasting memory



bandwidth and CPU cycles. When applying this approach
into leader-based hierarchical algorithms, leader processes
are heavily involved into intra-node data movement [2],
resulting in serializing the inter- and intra-node commu-
nications. Most of the intra-node communication overhead
accumulates and results in a significant overhead that cannot
benefit from overlap by inter-node communications. Obvi-
ously, such overhead is bound to increase with the number
of cores; the copy-in/copy-out at the leader process has to
be sequentially executed once for each of the processes
participating in the collective communication.

To reduce the overhead from double memory copies in the
copy-in/copy-out approach, one-sided single-copy methods
have been proposed. SMARTMAP [13], [14] is an effort to
make use of a simple page table management in catamount
systems to implement single-copy intra-node communica-
tion. Another direction is the kernel-assisted approach such
as LiMIC [15] in MVAPICH2 or KNEM [16] in MPICH2
and Open MPI. This kernel-assisted approach has been
widely used to speed up large messages’ point-to-point com-
munication on shared memory machines [17]. Furthermore,
an intra-node collective communication component, KNEM
collective [2], is implemented into Open MPI, based directly
on the KNEM copy and not implemented over KNEM-
enabled point-to-point communication. The KNEM collec-
tive harnesses KNEM’s single-copy and direction control
techniques to offload memory copies to non-root processes,
providing a significant performance gain [2]. Furthermore,
efforts have been made to take into account NUMA hi-
erarchies in the process placement and to optimize intra-
node collective algorithms to adapt architectural features [1].
However, these projects focus solely on improving commu-
nications within a single shared memory multicore node. The
aspects regarding cooperation of these complex algorithms
with the inter-node layer of the collective communication
have not been addressed so far. There is an obvious need to
develop algorithms that encompass both layers and account
for all particularities and varieties of the hardware.

III. COLLECTIVE ALGORITHM COMPOSITION

A. Framework

As hinted previously, most existing approaches to develop
hierarchical collective communications are based on a multi-
level approach where the top level represents the largest area
network, and each subsequent level is for a smaller area net-
work. While they provide interesting performance compared
with a single-level approaches, they do not benefit from
the entire overlapping potential of collective algorithms,
as the transition processes (i.e. processes that are leafs in
one level and become root on the next), are step by step
blocked in a collective for a particular level. What has been
missing in these attempts at providing hierarchical collective
operations on cluster of multicore system was the ability to
express a multi-level algorithm with a very tight level of

interoperability between the levels. In the present effort, we
want to enable an unprecedented level of integration between
different algorithms, by dissolving the boundaries between
the levels, and allowing the transition processes to overlap
collective between the inter and intra levels.

From a technical point of view, in most of the hierarchical
approaches including ours, collective communication are
divided between inter- and intra-node communication. Each
process has an intra-node communicator encompassing every
processes hosted on the same physical node. Among these
local processes, a leader process is selected to represent
the compute node in the inter-node layer. All non-leader
processes only communicate with the local leader process
and then messages are forwarded by the leader process to
remote leader processes on remote nodes. The advantage is
that the messages carried through expensive inter-node links
are explicit, giving leverage for the algorithm composition
to minimize cross-traffic volume. From a technical stand-
point, what differentiate our approach compared to previous
attempts is the level of integration between the layers of the
hierarchy, allowing multiple algorithms to coordinate their
pipelining strategies at a very low level.

One major challenge for multi-level algorithms is to
coordinate around the usage of common resources. In this
particular instance, one should pay attention to the load im-
posed on the memory bus. This load is two-folds: on one side
sending/receiving data over the network translates in moving
data across the PCI bus from the memory bus. On the
other side, moving data inside the node generates memory
bus traffic, and therefore collides with the network transfer
(the data in Figure 2 highlight this fact). Therefore, special
care have been taken to minimize the number of memory
transfers at the inter-node level. The approach chosen in this
framework is to base all intra-node memory transfers on the
KNEM collective components, described in [2]. KNEM’s of-
floading capability is naturally matched up with leader-based
hierarchical collectives: workloads of memory copies can be
offloaded onto non-leader processes. Non-leader processes
can simultaneously read or write leader processes’ memory
through KNEM primitives; meanwhile, leader processes
can dedicate themselves into inter-node forwarding, without
sequentialization experienced by less integrated hierarchical
approaches. For communication strictly within large NUMA
nodes, different approaches yield varying performance. Our
new hierarchical algorithms leverage from the knowledge
accumulated on a single node [2] to design sound algorithm
compositions that can cope with a large number of cores
within nodes. The experimental section demonstrates how
well these approaches collaborate with another layer.

In this new context, we provide three improved versions
of the most used collective communications: a one-to-many
(Broadcast), a many-to-many (Allgather) and a many-to-one
(Reduce).



B. Broadcast

Let’s assume the intra-node communicator for each com-
pute node is lcomm, the inter-node communicator for leader
processes is llcomm, and process rank is P. Suppose a
two-level broadcast algorithm, using a spanning tree-based
approach for the inter-node level and a linear approach for
the intra-node level. Our HierKNEM broadcast algorithm
is adaptive enough to handle special cases, e.g. when all
processes are allocated on a single node, our broadcast is
transformed into a linear algorithm identical to the KNEM
one; when each node has a single process in the communica-
tor, our HierKNEM broadcast is automatically morphed into
a spanning tree broadcast identical to the inter-node level.

Algorithm 1 presents the pseudo-code of the HierKNEM
Broadcast. In order to save space, we trimmed the pseudo-
code handling the special cases mentioned above and pre-
sented the algorithm processing a general case: each com-
pute node has more than one process bound to different
cores and all leader processes are organized into a spanning
tree with more than two levels: a root node, intermediate
nodes, and leaf nodes. At first, each leader process registers
‘rbuf’ into KNEM device and gets an ‘cookie’ back at step
2. This cookie is an unique identifier to point to an entry
recording rbuf’s physical memory address and any other
process in the node having this identifier can access (based
on the granted right) this registered buffer via the KNEM
module. This cookie will then be broadcasted to all non-
leader processes on the same compute node (step 3 and 36).
Afterward the message is divided into equal-sized fragments
and forwarded in a pipelining fashion along the spanning tree
composed of all leader processes (between step 4 and 31).
In this particular context, father and children mentioned in
Algorithm 1 refer to the process up and down the spanning
tree from the current process P. For intermediate and leaf
nodes in the spanning tree, once the leader processes receive
a segment from its father node, they will notify all non-
leader processes on the same node to fetch the segment (step
16 and 22). Upon receiving this notification at step 42, each
non-leader process will fetch the segment by a KNEM get
operation at step 43. This get operation is one-sided and
will be offloaded to the non-leader processes. Therefore the
overhead of intra-node data movement can be overlapped
at the leader process with the forwarding between leader
processes on the upper level (step 13, 15, or 21).

This is the fundamental reason why our HierKNEM
collective can outperform other collective components: intra-
node communication is offloaded to non-leader processes
and leader processes can dedicate themselves into inter-
node messages forwarding. In an ideal situation, the intra-
node communication overhead can be completely hidden
from the overall execution time and the entire collective
communication execution time made close to the inter-
node collective execution time (the collective on the leader

Input: MPI Bcast(void *rubf, int count, MPI Datatype
dtype, int root, MPI Comm comm)

1 if P is leader process then
2 Register rbuf into KNEM device and get a cookie;
3 Broadcast this cookie to all non-leader processes on

the same node;
4 if P is root node then
5 for i ← 1 to seg num do
6 Isend segment i to its children in spanning

tree;
7 Wait for all Isend;
8 end
9 end

10 else if P is intermediate node then
11 Post Irecv for 1st segment from its father;
12 for i ← 1 to seg num-1 do
13 Post Irecv for next segment(segment i+1)

from its father;
14 Wait for previous Irecv(segment i);
15 Isend received segment(segment i) to its

children;
16 Barrier in the lcomm communicator;
17 Wait for all Isend;
18 end
19 if i ≡ seg num then
20 Wait for previous Irecv(last segment);
21 Isend last segment to its children;
22 Barrier in the lcomm communicator;
23 Wait for Isend;
24 end
25 end
26 else
27 for i ← 1 to seg num do
28 Recv segment i from its father;
29 Barrier in the lcomm communicator;
30 end
31 end
32 Barrier in the lcomm communicator;
33 Deregister buffer from KNEM device;
34 end
35 else
36 Get KNEM cookie from the leader process;
37 if P is on the same node with root process then
38 Fetch the whole data from root process by

KNEM;
39 end
40 else
41 for i ← 1 to seg num do
42 Barrier in the lcomm communicator;
43 Fetch segment i from leader process by

KNEM;
44 end
45 Barrier in the lcomm communicator;
46 end
47 end

Algorithm 1: The HierKNEM Broadcast Algorithm.



processes communicator). In the event of a perfect overlap,
a multi-core broadcast operation can be made number-of-
nodes dependent instead of number-of-cores.

C. Reduce

Input: MPI Reduce(void *sbuf, void *rbuf, int
count,MPI Datatype dtype, MPI Op op, int
root, MPI Comm comm)

1 if P is the 1st leader process then
2 for i ← 1 to seg num do
3 Wait notification from 2nd leader;
4 Reduction in the llcomm for segment i;
5 end
6 end
7 else if P is the 2nd leader process then
8 for i ← 1 to seg num do
9 Fetch segment i from 1st leader;

10 Reduction between two leaders’ segment i;
11 Reduction in the new comm for segment i;
12 Push reduction result of segment i to 1st

leader’s tmpbuf;
13 Notify 1st leader that pushing operation is

done;
14 end
15 end
16 else if non-leader processes exist inside the node then
17 for i ← 1 to seg num do
18 Reduction in the new comm for segment i;
19 end
20 end

Algorithm 2: The HierKNEM Reduce Algorithm.

Similarly to the Broadcast algorithm, the HierKNEM
Reduce uses an inter-node communicator (llcomm) and
intra-node communicator (lcomm). In addition to these
two communicators, the HierKNEM Reduce creates another
local communicator, a subset of the lcomm, to organize
all non-leader processes on the same node (new comm).
This new comm is used to isolate leader processes from the
intra-node reduction. The HierKNEM Reduce is actually a
double-leader algorithm: the 1st leader process participate to
the upper level (inter-node) reduction while the 2nd leader
process will be the root for an intra-node reduction on
each of the new comm communicators and responsible for
updating the 1st leader with the local contribution to the
upper level reduction. Algorithm 2 describes the HierKNEM
Reduce for a general case: each node has more than two
processes participating to a reduction operation: one leader
for the inter-node reduction and another leader for the intra-
node reduction. In order to save space, we trimmed the
algorithm of the handling of special cases, the internal
management and distribution of KNEM registrations.

The 2nd leader fetches segment i from the 1st leader’s
sbuf by a KNEM get operation (step 9), and applies the
reduction operation between their sbuf’s segment i (step
10). As a root process, the 2nd leader calls an intra-node
reduction for segment i in the new comm with the result
from step 10. After finishing this reduction, the 2nd leader
will push the reduction result of segment i to the 1st leader
by a KNEM writing. After getting the notification from the
2nd leader (step 3), the 1st leader will trigger an inter-node
reduction between leader processes with pushed results for
segment i. The intra-node reduction for segment i+1 can be
overlapped with inter-node reduction for segment i thanks
to KNEM’s one-sided operation and the pipelining reduction
algorithm between hierarchical communicators.

D. Allgather

The HierKNEM provides two algorithms for Allgather: a
leader-based algorithm for clusters of small nodes(2-6 cores
per node) and a ring algorithm for large nodes. Leader-based
algorithm has three steps:1) gathering messages into leader
processes; 2) exchanging data between leader processes;
3) broadcasting data from leader processes to non-leader
processes. Step 1 and 3 happen inside a node while step
2 exchanges data using inter-node communications. At the
inter-node level (step 2), the leader processes are organized
into a logical ring and each leader process communicate only
with the left and right neighbors in this ring. Once leader
processes get a message from step 1 or step 2, they will
notify non-leader processes to fetch data by KNEM copy.
Because KNEM copy in step 1 or 3 is one-sided and always
offloaded onto non-leader processes, leader processes only
synchronize with non-leader processes before or after non-
leader processes write or read data into or from leaders. This
synchronization overhead is minimal compared with the cost
of intra-node data movement. As a result, the leader pro-
cesses can dedicate themselves to inter-node data exchanging
and steps 1-3 can be totally overlapped. The critical path
of our algorithm depends on the overhead of inter-node
exchanging or intra-node gather (step 1) and broadcast (step
3). When intra-node communication cost exceeds inter-node
exchanging time (more cores per node or faster network),
leaders’ memory bandwidth is overloaded by this ad-hoc
memory access pattern. Thus, the overall throughput is seri-
ously restricted by such a simple combination of Gather and
Broadcast operations. So in clusters of large NUMA nodes,
the HierKNEM Allgather adopts a ring-based algorithm to
distribute data both at the inter-node and intra-node levels
in order to avoid such hot-spots on leader processes. The
HierKNEM Allgather ring algorithm is similar to MPICH
Allgather ring algorithm [18]: all processes are organized
into a logical ring and each process receives messages only
from its left neighbor and sends messages only to its right
neighbor. This send and receive will be executed number
of comm size-1 times and a local memory copy will be



executed at the beginning. A notable improvement over the
ordinary ring algorithm, the construction of the HierKNEM’s
logical ring is not based on the order of MPI ranks but adhere
to the physical process distance in terms of sockets and
NUMA nodes. Thus, processes physically close are clustered
together into a set. Only processes on edges between sets
communicate through slow links: inter-node links or inter-
socket links.

IV. EXPERIMENTAL EVALUATION

A. Experimental Conditions

We used two clusters of the Grid5000 experimental plat-
form: Stremi and Parapluie. The Stremi cluster features
32 compute nodes, each with two AMD Opteron 6164
HE twelve-core CPUs (24 cores per node). Each socket
is a NUMA node, with 12 MB L3 caches and 12 GB of
memory. These 32 compute nodes are interconnected by
Gigabit Ethernet. The Parapluie cluster is identical to Stremi,
except that the 32 compute nodes are interconnected through
Infiniband 20G.

Our HierKNEM collective is based on Open MPI ver-
sion 1.5.3. We compared HierKNEM collective with the
Open MPI’s(1.5.3) Tuned, Hierarch collective, MPICH2 ver-
sion 1.4.1 on the Ethernet cluster (Stremi) and MVAPICH2
version 1.7RC1 on the Infiniband cluster (Parapluie). All
implementation that supports kernel assisted memory oper-
ations use KNEM version 0.9.6 [17].

For intra-node communications, HierKNEM, Tuned, and
Hierarch collective modules are configured to use the
SM/KNEM BTL (byte transfer layer) as underneath point-to-
point communication helper. SM/KNEM BTL uses KNEM
copy to speed up point-to-point communication; for perfor-
mance reasons, the copy-in/copy-out approach is still used
for messages smaller than 4KB. The same configuration
is applied to MPICH2: KNEM copy is enabled for large
message transfer (LMT). For inter-node communications,
the appropriate low level point-to-point transport module
is used, depending on the underlying hardware (Open IB,
TCP). For all MPI libraries, the process/core binding is the
default uniform “by-core” strategy, except when explicitly
mentioned. In this default strategy, sequential MPI ranks are
bound into adjacent processor cores until all slots of a node
have been used, then the same process is applied for the next
node in the list. To summarize, the underlying technology
used by our HierKNEM algorithm and all other collective
components to perform point-to-point operations is similar
and uses KNEM copies, similarly process placement is com-
parable; therefore any performance difference roots solely in
the proposed collective operation innovations.

The Intel MPI benchmark suite IMB-3.2 [19] is used to
assess the difference between the collective components on
a variety of collective operations. The ASP [20] problem is a
typical example of a parallel graph shortest path search algo-

rithm. It is used to illustrate how performance differences in
micro-benchmarks translate into applications improvement.

B. Pipeline Size
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In the HierKNEM collective component, both the Broad-
cast and the Reduce operations are pipelining algorithms,
in which messages are split into several smaller chunks.
Tuning an optimal size of a chunk is a key criterion of
every pipeline algorithm. Figure 1 presents the effect of the
pipeline size on the HierKNEM Broadcast execution time.
In this Broadcast test, 768 processes are spawned on the
Parapluie cluster. To ease figure clarity, the execution time
for all pipeline sizes is normalized to the runtime obtained
with a pipeline size of 64KB (tz/t64). One can see that the
pipeline size is indeed critical to the HierKNEM collective
performance, and a wrong selection of pipeline sizes leads
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Figure 3. Aggregate Broadcast bandwidth of collective modules on multicore clusters (768 processes, 24 cores/node).

to significant penalty. On one hand, a too small pipeline
size results in inefficient inter-node communication, as the
small message latency comes to dominate, preventing the
full point-to-point bandwidth from being leveraged; as an
example, the Broadcast with a pipeline size of 16KB is more
than 3 times slower than with 64KB. On the other hand, a too
large pipeline size results in long pipeline fan-in and fan-out
phases, where the pipeline algorithm is not at steady-state
efficiency. Experimentally, 64KB is the ideal pipeline size
for the Broadcast operation on the Parapluie cluster. We did
similar experiments for HierKNEM’s Broadcast and Reduce
on both the Parapluie and Stremi clusters. Table I shows the
best pipeline size for each operation on each type of clusters.
Both HierKNEM’s Broadcast and Reduce algorithms use the
pipeline size in Table I in the following tests.

Table I
BEST PIPELINE SIZE FOR BROADCAST AND REDUCE FOR DIFFERING

NETWORK CAPACITIES

Operation Parapluie (IB20G) Stremi (Ethernet)

Broadcast 64KB message size in [8KB,512KB) 16KB
message size in [512KB,∞) 32KB

Reduce 64KB message size in [2K, 16MB) 64KB
message size in [16MB,∞) 1MB

C. Allgather Algorithm Selection

Although the two level of algorithms are tightly inte-
grated, there are still a variety of combinations that are
possible, whose performance greatly varies depending on
hardware features and properties. In the case of the Allgather
algorithm, we identified two combinations of interest: both
use the pipelined Tuned collective module between nodes,
but the internal operation differs depending on the number
of cores between nodes. Between cores, the algorithm can
rely on the leader originating all messages simultaneously
(referred to as “leader-based” algorithm), but for large core
counts, this approach has the potential to result into heavy
traffic contention on the memory bus of the core hosting the
leader. For larger number of nodes, the ring algorithm has
more potential to even out the load on all cores. Figure 2

shows the aggregate bandwidth for the two algorithms
combinations, for a 512KB message’s Allgather operation
on Parapluie’s 32 nodes, when increasing the number of
processes per node from 2 to 24. The leader-based algorithm
has a slight performance advantage in dual-core or quad-
core nodes, as the parallel KNEM accesses overlap one
another. For larger setups, the bandwidth contention on the
leader core prevents aggregate bandwidth to scale, while
the ring algorithm, which proves more scalable thanks to
evenly distributing data access load across all memory links,
dominates. Results (not presented here) are similar for other
message size, and when using different inter-node networks
on Stremi and Parapluie clusters. In the following tests, we
use the ring algorithm as we mainly target large multicore
nodes.

D. Broadcast Performance

Figure 3 presents the aggregate Broadcast bandwidth
for HierKNEM, Open MPI’s Hierarch and Tuned modules,
and MPICH2 or MVAPICH2 on respectively the Ethernet
Stremi cluster or the Infiniband Parapluie cluster. On Stremi
(Figure 3(a)), for message size between 8KB and 256KB,
HierKNEM Broadcast provides a significant speedup, some-
times up to 30x, when compared with MPICH2 and
Open MPI default modules. Even compared with OpenṀPI’s
Hierarch Broadcast, our HierKNEM Broadcast can provide
more than twice the aggregate bandwidth in this message
size range.

For larger message sizes (superior to 512KB), the most
important tuning factors are process mapping and proper
pipelining to spreads evenly the workload across cores and
links. In the Tuned module, the “by core” binding luckily
happens, in this experiment, to match the hardware topology;
and the pipeline size selected by the tuned module to
optimize the network communications is suitable for core
communications. The Hierarchical module of Open MPI is
not as successful for large messages, because the intra-node
and inter-node layers do not cooperate to evenly spread the
load of the pipelining algorithm. The leader processes are
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Figure 4. Aggregate Reduce bandwidth of collective modules on multicore clusters (768 processes, 24 cores/node).

unavailable for long period of times when they take part in
the shared memory local operation, resulting in effectively
sequentializing the local and remote collective operations
without opportunity for overlap. With such a large core
count, the large intra-node overhead offsets the benefits
of the standard hierarchical algorithm. Contrasting, the Hi-
erKNEM algorithm obtains better performance in all cases,
thanks to taking explicitly into account process mapping
and using directional KNEM control to offload parts of the
operations onto the leaf processes, hence enabling intra and
inter-communications to overlap.

Similarly, on the Infiniband cluster (Figure 3(b)), in
most cases, the HierKNEM Broadcast still outperforms
other collective components. One major difference in the
results, when compared with the Ethernet case, is that
the performance of the classical hierarchical algorithm is
much better for small message sizes. On the Infiniband
network, the tuning parameters selected by the two non-
cooperating algorithms forming the hierarchical collective
are matching better. However, as one can see, the tuning
parameters for larger message size are not as lucky; the
performance for large messages drops, with the notable
exception of 8MB messages, for which the pipeline length
matches the balance for 32 processes and 24 cores. This
discrepancy illustrates the difficulty of tuning the behavior of
separate collective algorithms cooperating in a hierarchical
manner. Even with expert knowledge, it’s unrealistic to tune
Open MPI’s Tuned collectives on such a complex system
with so many hierarchies and diverse networks, when a small
variation in message size results in unexpected and dra-
matic performance consequences. Although the HierKNEM
module is not immune to the challenges of unpredictable
and unstable performance on varying hardware, the fact
that both algorithms select compatible tuning parameters,
that the outer collective operation can overlap imperfection
on the inner operation and that the collective topology is
constructed to match core hierarchies greatly alleviates this
difficulty, as illustrated by more stable results across the
message size range.

E. Reduction Performance

Figure 4 presents the aggregate Reduce bandwidth on
the Ethernet cluster (Figure 4(a)). For message sizes be-
tween 2KB and 32 KB, the HierKNEM Reduce competes
closely with Open MPI’s Hierarch Reduce. After 64KB, the
HierKNEM Reduce dominates other collective components,
thanks to a good overlapping between inter-node Reduce
and intra-node Reduce. Similarly with the Broadcast, the
Hierarch Reduce worsens for large messages due to the in-
creased intra-node Reduce overhead which can’t be dodged
by overlap. Again, the performance of the Tuned Reduce
improves for messages larger that 4MB, but is still 19%-
28% slower than the HierKNEM Reduce.

On the Infiniband cluster (Figure 4(b)), the HierKNEM
Reduce clearly dominates for message size between 2KB
and 32KB. When message size is bigger than 64KB, al-
though HierKNEM Reduce still achieves significant speedup
when compared with Open MPI’s Hierarch and Tuned Re-
duce, it cannot match MVAPICH2 performance. By profiling
a 64KB message’s Reduction operation with 32 processes
on Parapluie’s 32 nodes (no multicore or hierarchies), we
discovered that the Open MPI Tuned Reduction suffers from
a serious performance limitation on the Infiniband network,
even performing worse than on Gigabit Ethernet; mean-
while MVAPICH2 enjoys very good performance (515µs
for Open MPI compared to 281µs for MVAPICH2). As our
HierKNEM composite algorithm reuses the original Tuned
module for inter-node communications, it suffers from the
same defect and cannot compete with MVAPICH2, until the
Open MPI community addresses this issue.

F. Allgather Performance

Figure 5 presents the aggregate Allgather bandwidth. The
HierKNEM Allgather is enabled only when the message
size is larger than 8KB. The biggest message size is 1MB,
because of the large amount of memory required for this all-
to-all operation between 768 processes exhausting available
system memory for larger sizes. On both clusters, the
HierKNEM Allgather adopts a ring algorithm, as described
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Figure 5. Aggregate Allgather bandwidth of collective modules on multicore clusters (768 processes, 24 cores/node).
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Figure 6. Impact of process mapping: aggregate Broadcast and Allgather bandwidth of the collective modules for two different process-core bindings: by
core and by node (Parapluie cluster, IB20G, 768 processes, 24 cores/node).

in section III-D. The Open MPI Hierach module is not
presented for this collective operation, as it has not been
implemented.

On the Infiniband cluster (Figure 5(b)), both HierKNEM
and Tuned Allgather operations outperform MVAPICH2’s
Allgather. In this message range, Open MPI’s Tuned All-
gather adopts a similar ring algorithm and the “by core”
binding strategy used in this test coincidentally maps the
logical ring of the Tuned Allgather correctly to the un-
derlying hardware topology. As a consequence, Tuned and
HierKNEM are actually running the same algorithm, but
Tuned does not have to pay for the extra cost of detecting
the physical distance between processes. In future works, we
intend to have HierKNEM build the topological map of the
cores only once, at communicator creation, hence relieving
that performance overhead.

On the Ethernet cluster (Figure 5(a)), the HierKNEM
Allgather outperforms all other collective components for
all message sizes. While adopting a similar ring algorithm
for large messages, the Tuned Allgather on this Ethernet
cluster suffers a up to 50% performance loss. We are still
working on investigating possible reasons.

G. Impact of Process Placement

It is well known that process placement can have a major
impact on collective operations performance. Approaches
such as MPIPP [5] have been designed, to detect com-
munication pattern during a “tuning run”, whose result is
used to hint process placement to decrease long distance
communication volume during subsequent production runs.
However, this approach is not practical in many cases, as
it requires being able to run smaller problems that exhibit
similar communication patterns; but the selected collective
algorithm and its topology depend deeply on the message
and communicator size. Another difficulty is that oftentimes,
one might want to optimize for the pattern of point-to-point
operations explicitly realized at the application level (such
as the typical hypercube topology found in many CG imple-
mentations), which means that the process placement may
or may not fit the expectations of the collective modules. As
a consequence, the default deployment approach is usually
less elaborate and simply allocates ranks sequentially on the
available resources. In the “by core” binding, processes are
scheduled on a node until all of its available cores are used
before proceeding to the next node. In the “by node” binding,
a single process is bound onto each node in a round-robin
fashion until all processes have been bound; nodes whose



  0

  10

  20

  30

  40

  50

  60

  70

  80

6 12 18 24

B
W

(G
B

y
te

s/
s)

Number of cores per node

HierKNEM

OMPI−Hier

OMPI−Tuned

MPICH2

(a) Stremi (Ethernet)

  0

  20

  40

  60

  80

  100

  120

6 12 18 24

B
W

(G
B

y
te

s/
s)

Number of cores per node

HierKNEM

OMPI−Hier

OMPI−Tuned

MVAPICH2

(b) Parapluie (IB20G)

Figure 7. Core per node scalability: aggregate bandwidth of Broadcast for 2MB messages on multicore clusters (32 nodes).

unbound cores have been exhausted in previous iterations
are skipped.

Figure 6 shows the impact of two typical process place-
ments on the performance of the Broadcast and Allgather
operations. The goal of this experiment set is to investigate
the sensitivity of the hierarchical approaches to variations in
the process placement. As such, more than raw performance,
it is the difference between the same algorithm on different
mappings that is of interest here. Hierarch has been trimmed
from the figure, because it does not feature an Allgather
operation, and uses a similar topology as HierKNEM for the
Broadcast (hence similar performance trends). Considering
the Broadcast (Figure 6(a)), one can witness that hierarchical
approaches (HierKNEM and MVAPICH2 both feature a
hierarchical algorithm) reach more stable performance. The
Tuned algorithm exhibit very unstable performance trends,
for some message sizes the bynode binding reaches better
performance, while it is the contrary for larger messages. For
messages smaller than 256KB, the performance difference
between HierKNEM Broadcast on different process map-
pings is larger than expected, this is because the IMB bench-
mark changes the root at every iteration of the benchmark
sequentially. In the by-core binding, the next root process is
located on the same node, hence the send buffer is fully
loaded in cache. In the by-node binding, a new node is
selected as the root at every iteration, disabling completely
cache reuse.

Figure 6(b) further displays the importance of considering
hierarchical features to enable portability of performance
across varied process mappings. In this algorithm, the Hi-
erKNEM algorithm demonstrates very stable performance
when changing from bycore to bynode process mappings.
The performance variation between two bindings is less
than 18%, which is very small when compared to the
tremendous performance penalty suffered by non hierarchi-
cal algorithms, commonly more than 6× and sometimes up
to 14× increased communication time. In the “by node”
binding, the Tuned Allgather uses a ring algorithm for large
messages; every edge of the logical ring (768 edges in this

case) passes through inter-node links (Infiniband), causing
a serious traffic congestion on the Infiniband network. This
clearly illustrates the penalty suffered by topology-unaware
algorithms when considering irregular process-core bind-
ings. Although our HierKNEM collective pays an overhead
due to constructing the internal topology (about 25% for
16KB messages and less than 10% for large messages),
it provides stable performance independently of process
placement. Such a flexible process placement is a desirable
feature to enable deeper optimization of the hard-coded
point-to-point communication patterns and ensure maximum
performance with default settings on complex architectures.

H. Core per Node Scalability

In the next experiment, we investigate the trend of aggre-
gate bandwidth when varying the number of cores per node.
The total number of nodes is left unchanged (32 nodes),
but the number of processes per node is increasing for each
experiments, up to reaching the maximum of 24 processes
per node. The message size is kept constant at 2MB.
Processes on each node are bound to cores sequentially.

On the Ethernet cluster (Figure 7(a)), the aggregate band-
width of HierKNEM Broadcast achieves a linear speedup
when more cores per node are involved, because our Hi-
erKNEM Broadcast can dodge the intra-node communica-
tion overhead by overlapping it with the inter-node message
forwarding. Increasing processes (cores) per node does not
increase the overall Broadcast completion time on this
platform. This linear speedup can be achieved until the time
necessary to perform the entire intra-node communication (a
KNEM Broadcast) exceeds the inter-node forwarding time
of the network.

The scalability experiment on the Infiniband cluster (Fig-
ure 7(b)) exactly illustrates that behavior. Starting from 12
cores per node, the time to perform the entire intra-node
Broadcast competes with the time to perform the inter-
node forwarding, because the faster network dramatically
reduces the later. While the linear algorithm adopted in our
intra-node Broadcast avoids the pitfalls of overwhelming the



leader’s process memory link, even with the help of one-
sided operations (KNEM), the intra-node Broadcast ring has
a runtime linear with the number of intra-node participants.
Our HierKNEM Broadcast is nonetheless the best collective
component to reach potential peak performance, and one has
to consider that 24 cores per node and only 32 nodes are not
typical expected figures for leadership class computing plat-
forms in the future; the node count should be much larger,
leading to a better balance of time taken for intra and inter
communications. Overall, this experiment demonstrates that
an efficient intra-node collective solution plays an important
role in enabling future manycore clusters interconnected by
faster networks to reach peak performance.

I. Application Performance

We have asserted the maximum possible performance
improvement by solely executing synthetic benchmarks over
the modified operations. It is now needed to evaluate how
much of this improvement results in improved performance
for applications. To evaluate the impact of the HierKNEM
collective algorithms on real application performance, we
consider a typical parallel graph application: ASP [20]. This
application unfolds the parallel Floyd-Warshall algorithm to
solve the all pairs shortest path problem. At the beginning
of each iteration the master process broadcasts a row of the
square matrix representing edges weight to all peers in the
communicator, in order to distribute the workload. The outer
loop of the algorithm iterates on rows, until the entire matrix
is treated. Overall, for a matrix of size N , the algorithm
performs N broadcasts, with a message size of column num
× type size. As a consequence, MPI Bcast contributes to
the majority of the runtime of the ASP’s MPI usage.

Table II
ASP APPLICATION EXECUTION RUNTIME EXECUTION BREAKDOWN

ON STREMI (ETHERNET, 768 PROCESSES, 24 CORES/NODE).

Problem
Size

HierKNEM Tuned Hierarch MPICH2
Bcast Total Bcast Total Bcast Total Bcast Total

16K 20.3s 97.4s 229s 308s 31.7s 109s 128s 204s
32K 79s 711s 929s 1560s 173s 806s 417s 1020s

Table II compares the overall execution time and com-
munication time (mostly MPI Bcast) of the ASP applica-
tion on the Stremi cluster when using different collective
modules. By subtracting the communication time from the
overall execution time, one can assert that ASP’s computa-
tional part remains generally constant for a given problem
size, independently of the communication setup. The major
performance difference between these four setups comes
from the communication overhead (MPI Bcast). The cost
of communications occupies 21% of the overall application
runtime for the HierKNEM collective, while it rises to 74%
when using Open MPI’s default collective. Even considering
the hierarchical broadcast, the HierKNEM ability to overlap

between inter and intra communications shows a significant
improvement in this application.

V. CONCLUSION

In this paper, we described a kernel-assisted topology-
aware collective framework: HierKNEM, which enables
efficient combinations of multiple layers of collective al-
gorithms, to tackle collective communication on clusters of
many-core nodes. The algorithms are built reusing mod-
ular combinations of existing collective algorithms (such
as the Tuned and the KNEM components in Open MPI).
The main contributions of this paper are: (1) propose an
adaptive hierarchical collective framework to enable tight
collaboration between the collective algorithms pertaining
to different layers of the hierarchy, (2) combine offloading
and pipelining techniques into the hierarchical framework
to release leader processes from intra-node data movement,
hence maximizing the overlap between inter- and intra-node
communications, and (3) build internal collective topologies
to form a mapping between the runtime process-core binding
and the hardware features, which means stable collective
performance independently of process placement.

We demonstrated the benefits of this approach by de-
vising three hierarchical integrated collective algorithms,
one of the most useful for each major type of collective
communication (one-to-many: Broadcast, many-to-one: Re-
duce, and many-to-many: Allgather). Experimental results
demonstrate that our approach outperforms not only non
hierarchy aware state-of-art MPI implementations (MPICH2
and Tuned Open MPI), although these are setup to benefit
from kernel assisted memory copies as well (KNEM), but
also significantly outperforms approaches that account for
the hierarchy (MVAPICH2 Broadcast, Hierarch component
in Open MPI). A simple leader based algorithm that does not
enable pipeline coordination and intra-node copies offload
under-performs compared to our HierKNEM approach that
introduces these features. The performance improvement is
visible not only in synthetic benchmark, but translates into
up to a tenfold performance improvement when compared
to the default non hierarchy aware strategy, and still feature
twofold improvements when compared to other hierarchical
strategies.
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