
Hierarchical QR factorization algorithms
for multi-core cluster systems

Jack Dongarra1,2,3, Mathieu Faverge1, Thomas Herault1, Julien Langou4 and Yves Robert1,5

1. University of Tennessee Knoxville, USA
2. Oak Ridge National Laboratory, USA

3. Manchester University, UK
4. University of Colorado Denver, USA; supported by the National Science Foundation grant # NSF CCF 1054864.

5. Ecole Normale Supérieure de Lyon, France
{dongarra — mfaverge — therault}@eecs.utk.edu, Julien.Langou@ucdenver.edu, Yves.Robert@ens-lyon.fr

Abstract— This paper describes a new QR factorization
algorithm which is especially designed for massively parallel
platforms combining parallel distributed multi-core nodes.
These platforms represent the present and the foreseeable
future of high-performance computing. Our new QR factor-
ization algorithm falls in the category of the tile algorithms
which naturally enables good data locality for the sequential
kernels executed by the cores (high sequential performance),
low number of messages in a parallel distributed setting (small
latency term), and fine granularity (high parallelism). Each tile
algorithm is uniquely characterized by its sequence of reduction
trees. In the context of a cluster of multicores, in order to
minimize the number of inter-processor communications (aka,
“communication-avoiding”), it is natural to consider hierarchi-
cal trees composed of an “inter-cluster” tree which acts on top
of “intra-cluster” trees. At the intra-cluster level, we propose
a hierarchical tree made of three levels: (0) “TS level” for
cache-friendliness, (1) “low level” for decoupled highly parallel
inter-node reductions, (2) “coupling level” to efficiently resolve
interactions between local reductions and global reductions.
Our hierarchical algorithm and its implementation are flexible
and modular, and can accommodate several kernel types,
different distribution layouts, and a variety of reduction trees
at all levels, both inter-cluster and intra-cluster. Numerical
experiments on a cluster of multicore nodes (i) confirm that
each of the four levels of our hierarchical tree contributes
to build up performance and (ii) build insights on how
these levels influence performance and interact within each
other. Our implementation of the new algorithm with the
DAGUE scheduling tool significantly outperforms currently
available QR factorization softwares for all matrix shapes,
thereby bringing a new advance in numerical linear algebra
for petascale and exascale platforms.

Keywords-QR factorization; numerical linear algebra; hier-
archical architecture; distributed memory; cluster; multicore.

I. INTRODUCTION

Future exascale machines will likely be massively parallel
architectures, with 105 to 106 processors, each processor
itself being equipped with 103 to 104 cores At the node level,
the architecture is a shared-memory machine, running many
parallel threads on the cores. At the machine level, the ar-
chitecture is a distributed-memory machine. This additional

level of hierarchy, together with the interplay between the
cores and the accelerators, dramatically complicates the de-
sign of new versions of the standard factorization algorithms
that are central to many scientific applications. In particular,
the performance of numerical linear algebra kernels is at the
heart of many grand challenge applications, and it is of key
importance to provide highly-efficient implementations of
these kernels to leverage the impact of exascale platforms.

This paper investigates the impact of this hierarchical
hardware organization on the design of numerical linear
algebra algorithms. We deal with the QR factorization algo-
rithm which is ubiquitous in high-performance computing
applications, and which is representative of many numerical
linear algebra kernels. In recent years, the quest of efficient,
yet portable, implementations of the QR factorization algo-
rithm has never stopped [1], [2], [3], [4], [5], [6], [7], [8]. In
a nutshell, state-of-the-art software has evolved from block-
column panels to tile-based versions, and then to multi-killer
algorithms. We briefly review this evolution in the following
paragraphs.

First the LAPACK library [9] has provided Level 3 BLAS
kernels to boost performance on a single CPU. The SCALA-
PACK library [10] builds upon LAPACK and provides a
coarse-grain parallel version, where processors operate on
large block-column panels, i.e. blocks of b columns of the
original matrix. Here b is the block size, typically b = 200
or more, for Level 3 BLAS performance. Inter-processor
communications occur through highly tuned MPI send and
receive primitives. The factorization progresses panel by
panel. Once the current panel is factored, updates are applied
on all the following panels (remember that the matrix
operated upon shrinks as the factorization progresses). So-
phisticated lookahead versions of the algorithms factor the
next panel while the current updates are still being applied
to the trailing matrix.

Then, the advent of multi-core processors has led to a
major modification in the algorithms [4], [5], [7], [1]. Now
each processor should run several threads in parallel to keep
all cores within that processor busy. Tiled versions of the

algorithms have thus been designed: dividing large block-
column panels into several tiles allows for a decrease in
the granularity down to a level where many smaller-size
tasks are spawned. In the current panel, the diagonal tile, or
killer tile, is used to kill all the tiles below it in the panel.
Because the factorization of the whole panel is now broken
into the killing of several tiles, the update operations can also
be partitioned at the tile level, which generates many tasks
to feed all cores. However, the dependencies between these
tasks must be enforced, and the algorithms have become
much more complicated.

A technical difficulty arises with the killing operations
within the panel: these are sequential because the diagonal
tile is used for each of them, hence it is modified at each
killing operation. This observation applies to the updates
as well: in any trailing column, the update of a tile must
wait until the update of its predecessor tile is completed. To
further increase the degree of parallelism of the algorithms, it
is possible to use several killer tiles inside a panel. The only
condition is that concurrent killing operations must involve
disjoint tile pairs. Of course, in the end there must remain
only one non-zero tile on the panel diagonal, so that all
killers but the diagonal tile must be killed themselves later
on, using a reduction tree of arbitrary shape (e.g. serial, fully
binary, ...). The extra source for parallelism resides in the
fact that the whole matrix can be partitioned into domains,
with one killer per domain responsible for killing the tiles
local to the domain. In each domain, all these operations,
and the corresponding updates, are independent and can
run concurrently. Such multi-killer algorithms represent the
state-of-the-art for multi-core processors, but they are still
being refined, because the impact of the reduction trees
which are chosen is not fully understood, and also because
using many killers implies the use of different tile kernels,
called TT kernels, which are less-efficient than the TS-
kernels used with a single killer per panel.

The goal of this paper is to move a step forward and
to introduce a flexible and modular algorithm for clusters
of multi-core processors. Tackling such hierarchical archi-
tectures is a difficult challenge for two reasons. The first
challenge arises from the algorithmic perspective. Brand new
avenues must be explored to accommodate the hierarchical
nature of multi-core cluster systems. Concurrent killers allow
for more parallelism, but the reduction tree that follows
breaks the smooth pipelining of operations from one panel
to the next. With one domain per processor, we may have
not enough parallel operations to feed all the many-cores, so
we may need to have several domains per processor. The re-
duction operations involve inter-processor communications,
which are much slower than intra-processor shared memory
accesses. Limiting their number could be achieved with a
block row-distribution, but this would severely imbalance
processor loads. This small list is not exhaustive: good load-
balance, efficient pipelining, and memory locality are all

conflicting objectives. The main contribution of this paper
is to provide a novel algorithm that is fully aware of the
hierarchical nature of the target platform and squeezes the
most out of its resources.

The second challenge is at the programming level. Within
a multi-core processor, the architecture is a shared-memory
machine, running many parallel threads on the cores. But
the global architecture is a distributed-memory machine, and
requires MPI communication primitives for inter-processor
communications. A slight change in the algorithm, or in the
matrix layout across the processors, might call for a time-
consuming and error-prone process of code adaptation. For
each version, one must identify, and adequately implement,
inter-processor versus intra-processor kernels. This dramat-
ically complicates the task of the programmer if she relies
on a manual approach. We solve this problem by relying on
the DAGUE software [11], [8], so that we can concentrate
on the algorithm and forget about MPI sends and thread
synchronizations. Once we have specified the algorithm at
a task level, the DAGUE software will recognize which
operations are local to a processor (and hence correspond
to shared-memory accesses), and which are not (and hence
must be converted into MPI communications). Our exper-
iments show that this approach is very powerful, and that
the use of a higher-level framework does not prevent our
algorithms from outperforming all existing solutions.

In this paragraph, we briefly highlights our contribution
with respect to existing work (see Section III for a full
overview). Two recent papers [8], [2] have discussed tiled
algorithms for clusters of multicore. In [2], the authors use
a two-level hierarchical tree made of an inter-node binary
tree on top of an intra-node TS flat tree and use a 1D block
data layout. The limitations are: (1) the use of a flat tree at
the node level is not adapted when the local matrices are tall
and skinny; (2) the use of the 1D block data layout results
in serious load imbalance for square matrices. In [8], the
authors use a plain flat tree on top of a 2D block data layout.
The limitations are: (1) the use of a flat tree is not adapted
for tall and skinny matrices; (2) the flat tree with natural
ordering is not aware of the 2D data block cyclic distribution
and therefore performs many more communications than
needed. Our algorithm addresses all these issues while
keeping the positive features. At the intra-node level, we
propose a hierarchical tree made of three levels: (0) “TS
level” for cache-friendliness, (1) “low level” for decoupled
highly parallel inter-node reductions, (2) “coupling level” to
efficiently resolve interactions between local reductions and
global reductions. Finally (3) a “high level” tree is used for
the inter-node reduction. The use of the “high level” tree
enables a small number of interprocessor communications,
thereby making our algorithm “communication-avoiding”.
For the levels (1), (2) and (3) of the hierarchical algorithm,
the reduction can accommodate any tree. Our implementa-
tion is flexible and modular, and proposes several reduction

trees per level. This allows us to use those reduction trees
which are efficient for a given matrix shape. Finally the
“coupling level” – which operates within a node, and fits
in between the intra- and inter-cluster reductions – resolves
all interactions between the low level and high level trees,
in such a way that the low level tree (acting within a
cluster) becomes decoupled from the influence of the other
clusters. To summarize, our new algorithm is a tile QR
factorization which is (a) designed especially for massively
parallel platforms combining parallel distributed multi-core
nodes; (b) features a hierarchical four-level tree reduction;
(c) incorporates a novel coupling level; (d) is 2D block
cyclic aware; and (e) implements a variety of trees at each
level. The resulting properties of the algorithm are (i) cache-
efficiency at the core level, (ii) high granularity at the
node level, (iii) communication avoiding at the distributed
level, (iv) excellent load balancing overall, (v) nice coupling
between the inter-node and intra-node interactions, and (vi)
ability to efficiently handle any matrix shape.

The rest of the paper is organized as follows. We start with
a quick review of tiled QR algorithms (Section II). Then we
detail the key principles underlying the design of state-of-
the-art algorithms from the literature (Section III). The core
contributions of the paper reside in Section IV, where we
describe our new algorithm in full details, and in Section V,
where we provide experiments showing that we outperform
current state-of-the-art implementations.

Algorithm 1: Generic QR algorithm.

for k = 0 to min(m,n)− 1 do
for i = k + 1 to m− 1 do

elim(i, killer(i, k), k)

II. TILED QR ALGORITHMS

The general shape of a tiled QR algorithm for a tiled
matrix of m×n tiles, whose rows and columns are indexed
from 0, is given in Algorithm 1. Here i and k are tile indices,
and we have square b × b tiles, where b is the block size.
Thus the actual size of the matrix is M×N , with M = m∗b
and N = n ∗ b. The first loop index k is the panel index,
and elim(i, killer(i, k), k) is an orthogonal transformation
that combines rows i and killer(i, k) to zero out the tile
in position (i, k). Each elimination elim(i, killer(i, k), k)
consists of two substeps: (i) first in column k, tile (i, k)
is zeroed out (or killed) by tile (killer(i, k), k); and (ii) in
each following column j > k, tiles (i, j) and (killer(i, k), j)
are updated; all these updates are independent and can be
triggered as soon as the killing is completed. The algorithm
is entirely characterized by its elimination list, which is the
ordered list of all the eliminations elim(i, killer(i, k), k) that
are executed.

Algorithm 2: Elimination elim(i, killer(i, k), k).
GEQRT (killer(i, k), k)
TSQRT (i, killer(i, k), k)
for j = k + 1 to n− 1 do

UNMQR(killer(i, k), k, j)
TSMQR(i, killer(i, k), k, j)

(a) With TS (Triangle on top of square) kernels

GEQRT (killer(i, k), k)
GEQRT (i, k)
for j = k + 1 to n− 1 do

UNMQR(killer(i, k), k, j)
UNMQR(i, k, j)

TTQRT (i, killer(i, k), k)
for j = k + 1 to n− 1 do

TTMQR(i, killer(i, k), k, j)

(b) With TT (Triangle on top of triangle) kernels.

To implement an orthogonal transformation
elim(i, killer(i, k), k), we can use either TT kernels
or TS kernels, as shown in Algorithm 2. In a nutshell,
a tile can have three states: square, triangle, and zero.
Initially, all tiles are square. A killer must be a triangle, and
we transform a square into a triangle using the GEQRT
kernel. With a single killer, we start by transforming it into
a triangle (kernel GEQRT) before eliminating square tiles.
To kill a square with a triangle, we use the TSQRT kernel.
With several killers, we have several triangles, hence the
need for an additional kernel to eliminate a triangle (rather
than a square): this is the TTQRT kernel. The number of
arithmetic operations performed by a TSQRT kernel (to
kill a square) is the same as that of a GEQRT (transform
the square into a triangle) followed by a TTQRT (kill
a triangle). The same observations basically applies for
the corresponding updates, which can be decomposed in
a similar way (see Algorithm 2). The TS kernels can
only be used within a flat tree at the first tree level (so
that tiles are square). On the one hand, TT kernels offer
more parallelism than TS kernels. On the other hand, the
sequential performance of the TS kernels is higher (e.g.,
by 10% in our experimental section) than the one of the
TT kernels. We refer to [1] for more information on the
various kernels.

Any tiled QR algorithm used to factor a tiled matrix
of m × n tiles is characterized by its elimination list.
Obviously, the algorithm must zero out all tiles below the
diagonal: for each tile (i, k), i > k, 0 ≤ k < min(m,n),
the list must contain exactly one entry elim(i, ?, k), where
? denotes some row index killer(i, k) . There are two
conditions for a transformation elim(i, killer(i, k), k) to
be valid: • both rows i and killer(i, k) must be ready,
meaning that all their tiles left of the panel (of indices (i, k′)

and (killer(i, k), k′) for 0 ≤ k′ < k) must have already
been zeroed out: all transformations elim(i, killer(i, k′), k′)
and elim(killer(i, k), killer(killer(i, k), k′), k′) must pre-
cede elim(i, killer(i, k), k) in the elimination list • row
killer(i, k) must be a potential annihilator, meaning that
tile (killer(i, k), k) has not been zeroed out yet: the trans-
formation elim(killer(i, k), killer(killer(i, k), k), k) must
follow elim(i, killer(i, k), k) in the elimination list.

Assuming square b-by-b tiles and using a b3/3 floating
point operation unit, the weight of GEQRT is 4, UNMQR
6, TSQRT 6, TSMQR 12, TTQRT 2, and TTMQR 6. A
critical result is that no matter what elimination list is used,
or which kernels are called, the total weight of the tasks for
performing a tiled QR factorization algorithm is constant and
equal to 6mn2 − 2n3. Using M = m ∗ b, and N = n ∗ b,
we retrieve 2MN2 − 2/3N3 floating point operations, the
exact same number as for a standard Householder reflection
algorithm as found in LAPACK (e.g., [9]). In essence, the
execution of a tiled QR algorithm is fully determined by
its elimination list. Each transformation involves several
kernels, whose execution can start as soon as they are ready,
i.e., as soon as all dependencies have been enforced.

III. RELATED WORK

In this section, we survey tiled QR algorithms from the
literature, and we outline their main characteristics. We start
with several examples to help the reader better understand
the combinatorial space that can be explored to design such
algorithms.

A. Factoring the first panel

In this section we discuss several strategies for factoring
the first panel, of index 0, of a tiled matrix of m × n
tiles. When designing an efficient algorithm, individual panel
factorization should not be considered separately from the
rest of the factorization, but concentrating on a single panel
is enough to illustrate several important points.

Consider a panel with m = 12. All tiles except the
diagonal, tile 0, must be zeroed out. We also know that
in all algorithms, tile 0 will be used as the killer in the
last elimination. The simplest solution is to use a single
killer for the whole panel. If we do so, this single killer
has to be the diagonal tile. The eliminations will be all
sequentialized (because the killer tile is modified during each
elimination), but they can be performed in any order. In
Table I, we use an ordering from top to bottom. For each
tile, we give the index of its killer. We also give the step
at which it is zeroed out, assuming that each elimination
can be executed within one time unit. The elimination list is
then elim(0, 1, 0), elim(0, 2, 0), . . . , elim(0,m − 1, 0). The
corresponding reduction tree for panel 0 is a tree with
m leaves and m − 1 internal nodes, one per elimination.
Each internal node can also be viewed as the value of the
killer tile just after the elimination. Each internal node has

two predecessors, namely the two tiles used to perform the
elimination. In the example, internal nodes are arranged
along a chain, with original tiles being input sequentially,
see Figure 1. The tree of Figure 1 is called the flat tree. A
tile eliminated at step i in Table I is at distance S − i + 1
of the tree root, where S is the last time-step (S = 11 in
the example). Note that the reduction tree fully characterizes
the elimination list for the panel, since it provides both the
killer and the time-step for each elimination.

Row index Killer Step
0 ?
1 0 1
2 0 2
3 0 3
4 0 4
5 0 5
6 0 6
7 0 7
8 0 8
9 0 9

10 0 10
11 0 11

Table I: Flat tree reduction of panel 0.

0 1 2 3 4 5 6 7 8 9 10 11

Figure 1: Flat tree for panel 0.

With a single killer, all eliminations in the panel must
be executed one after the other. The only source of paral-
lelism resides in the possibility to execute the updates of
some previous eliminations while zeroing out the next tile.
However, parallel eliminations are possible if we conduct
these on disjoint pairs of rows. In the beginning, we can
have as many killers as half the number of rows. And the
next step, half of the remaining non-zero rows can be killed.
Iterating, we reduce the panel with a binary tree instead
of a flat tree, as illustrated in Figure 2. The elimination
list is elim(2i, 2i + 1, 0), i = 0, . . . , dm−22 e, followed by
elim(4i, 4i + 4, 0), i = 0, . . . , dm−54 e, and so on. The last
elimination is elim(0, 2dlog2 me−1, 0).

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2: Binary tree for panel 0.

With several killers, we have to use TT elimination
kernels, which are less efficient than TS kernels. This
relative inefficiency of the TT kernels is a first price to
pay for parallelism. A second price to pay arises from
locality issues. In a shared-memory environment, re-using
the same killer several times allows for better cache reuse.
This is even more true in distributed-memory environments,
where the cost of communications can be much higher than
local memory accesses. In such environments, we have to
account for the data distribution layout. Assume that we
have p = 3 clusters P0, P1 and P2. Here we use the term
cluster to denote either a single processor, or a shared-
memory machine equipped with several cores. There are two
classical ways to distribute rows to clusters, by blocks, or
cyclically. (In the general case one would use a 2D grid, but
we use a 1D grid for simplicity in this example). These two
distributions are outlined below:

Clusters Matrix rows (block) Matrix rows (cyclic)
P0 0, 1, 2, 3 0, 3, 6, 9
P1 4, 5, 6, 7 1, 4, 7, 10
P2 8, 9, 10, 11 2, 5, 8, 11

In our example, the block distribution nicely fits with
the flat tree reduction. With this combination of block/flat,
the ordering of the eliminations is such that the diagonal
tile is communicated only once from one cluster to the
next one. Adding a last communication to store the tile
back in P0 gives a count of p communications. On the
contrary, the cyclic distribution is communication-intensive
for the flat tree reduction, since we obtain as many as
m communications, one per elimination and one for the
final storage operation. However, there are two important
observations to make:

1) With any data layout, one can always re-order the
eliminations so as to perform only p communications
with a flat tree. The killer can perform all local
eliminations before being sent to the next cluster.
With the cyclic/flat combination in the example, we
eliminate rows 3, 6, 9, then rows 1, 4, 7, 10, and
finally rows 2, 5, 8, 11.

2) There is a downside to fewer communications, namely
higher start-up times. The cyclic/flat combination en-
ables each cluster to become active much earlier (start-
ing the updates) while the re-ordering dramatically
increases waiting times. Note that waiting times are
also high for the block/flat combination.

We make similar observations for the binary tree. In the
example, the cyclic distribution requires many more inter-
cluster eliminations than the block one, which requires only
two, namely the last two eliminations. But this is an artifact
of the example (take p = 4 instead of p = 3 to see
this). In fact, for both distributions, a better solution may
be to use local flat trees: within each cluster, a single tile
acts as the killer for all the local tiles. These flat trees are

0 1 2 3 4 5 6 7 8 9 10 11

Figure 3: Flat/binary tree for panel 0.

independent from one cluster to another, and the eliminations
proceed in parallel. Then a binary tree of size p is used
to eliminate p − 1 out of the p remaining tiles (one per
cluster). Communications are then reduced to a minimum.
And because the local trees operate in parallel, there are
no more high waiting times at start-up, contrarily to the
case with a single global killer given priority to local tiles.
This flat/binary reduction is illustrated in Figure 3. In this
example, the local killers are rows 0, 1 and 2, and the binary
tree has only 3 leaves, one per cluster. Note that the tree is
designed with a cyclic distribution in mind: with a block
distribution, the local killers would be rows 0, 4 and 8.

Further refinements can be proposed. The flat/binary strat-
egy may suffer from not exhibiting enough parallelism at
the cluster level: local trees do execute in parallel, but each
with a single killer. Parallelizing local eliminations may be
needed when the cluster is equipped with many cores. The
idea is then to partition the rows assigned to each cluster into
smaller-size domains. Each domain is reduced using a flat
tree, but there are more domains than clusters. This domain
tree reduction is illustrated in Figure 4 with two domains per
cluster. In the example each domain is of size 2, hence the
corresponding flat tree is reduced to a single elimination,
but there are two domains, hence two killers, per cluster.
The next question is: how to reduce these six killers? We
can use a binary tree, as shown in Figure 4. But there is
a lot of flexibility here. For instance we may want to give
priority to local eliminations, hence to reduce locally before
going inter-cluster. This amounts to using a local reduction
tree to eliminate all domain killers but one within a cluster,
and then a global reduction tree to eliminate all remaining
killers but one within the panel. Let m = p× d× a, where
a is the domain size and p the number of clusters. There
are d domains per cluster, hence each local reduction tree
is of size d, while the global reduction tree is of size p.
Note that these two trees may well be of different nature,
all combinations are allowed! In the example, there are only
d = 2 domains per cluster, so the local tree is unique, and
using a binary tree for the global tree leads to the same
elimination scheme as using a single binary tree for the six

killers, as in Figure 4.

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4: Domain tree for panel 0, with two domains per
cluster.

B. Factoring several panels

We have reviewed several strategies to factor the first
panel of the m×n tile matrix. But the whole game amounts
to factoring min(m,n) panels, and efficiently pipelining
these factorizations is critical to the performance of the QR
algorithm. This section aims at illustrating several trade-offs
that can be made.

A striking observation is that using a flat tree reduction
in each panel provides a perfect pipelining, while using a
binary tree reduction in each panel provokes “bumps” in the
schedule, as illustrated with 3 panels in Tables II and III.
This explains that flat trees have been predominantly used
in the literature, until the advent of machines equipped with
several cores. Such architectures called for using several
killers in a given panel, hence for binary trees, and later
domain trees.

Row index Panel 0 Panel 1 Panel 2
Killer Step Killer Step Killer Step

0 ? ? ?
1 0 1 ? ?
2 0 2 1 3 ?
3 0 3 1 4 2 5
4 0 4 1 5 2 6
5 0 5 1 6 2 7
6 0 6 1 7 2 8
7 0 7 1 8 2 9
8 0 8 1 9 2 10
9 0 9 1 10 2 11

10 0 10 1 11 2 12
11 0 11 1 12 2 13

Table II: Flat tree reduction for the first 3 panels.

The inefficient pipelining of binary trees has only been
identified recently. To remedy this problem while keeping
several killers inside a panel, one can use the GREEDY re-
duction outlined in Table IV. The GREEDY algorithm nicely
combines intra-panel parallelism and inter-panel pipelining.
In fact, under the simplifying assumption of unit-time elim-
inations (hence regardless of their number of updates), it
has been shown [12], [13] that no algorithm can proceed
faster! At each step, the GREEDY algorithm eliminates as

Row index Panel 0 Panel 1 Panel 2
Killer Step Killer Step Killer Step

0 ? ? ?
1 0 1 ? ?
2 0 2 1 3 ?
3 2 1 1 4 2 5
4 0 3 3 4 2 7
5 4 1 1 5 4 6
6 4 2 5 3 2 9
7 6 1 5 4 6 5
8 0 4 7 5 6 8
9 8 1 1 6 8 7

10 8 2 9 3 2 10
11 10 1 9 4 10 5

Table III: Binary tree reduction for the first 3 panels.

many tiles as possible in each column, starting with bottom
rows. The pairing for the eliminations is done as follows: to
kill a bunch of z consecutive tiles at the same time-step, the
algorithm uses the z rows above them as killers, pairing them
in the natural order. For instance in Table IV, the bottom six
tiles in column 1 are simultaneously killed during the first
step, using the six tiles above them as killers.

Row index Panel 0 Panel 1 Panel 2
Killer Step Killer Step Killer Step

0 ? ? ?
1 0 4 ? ?
2 1 3 1 6 ?
3 0 2 2 5 2 8
4 1 2 2 4 3 7
5 2 2 3 4 4 6
6 0 1 3 3 5 6
7 1 1 4 3 5 5
8 2 1 5 3 6 5
9 3 1 6 2 7 4

10 4 1 7 2 8 4
11 5 1 8 2 10 3

Table IV: Greedy reduction for the first 3 panels.

Recall from the study with a single panel that locality
issues are very important in a distributed-memory envi-
ronment, i.e. with several clusters. The previous GREEDY
algorithm is not suited to a matrix whose rows have been
distributed across clusters, and two levels of reduction, local
then global, are still highly desirable. But in addition to
locality, a new issue arises when factoring a full matrix
instead of a single panel: because the number of active rows
decreases from one panel to the next, block distributions
are no longer equivalent to cyclic distributions: the former
induces a severe load imbalance (clusters become inactive
as the execution progresses) while the latter guarantees that
each cluster receives a fair share of the work until the very
end of the factorization.

Finally, we point out that dealing with a coarse-grain
model where each elimination requires one time unit, as
in all previous tables and figures, is a drastic simplification.
Tiled algorithms work at the tile level: after each zero-ing
out, as many update tasks are generated as there are trailing

columns after the current panel. The total number of tasks
that are created during the algorithm is proportional to the
cube of the number of tiles, and schedulers must typically
set priorities to decide which tasks to execute among those
ready for execution. Still, the coarse-grain model allows us
to understand the main principles that guide the design of
tiled QR algorithms.

C. Existing tiled QR algorithms

While the advent of multi-core machines is somewhat
recent, there is a long line of papers related to tiled QR
factorization. Tiled QR algorithms have first been introduced
in Buttari et al. [4], [14] and Quintana-Ortı́ et al. [5] for
shared-memory (multi-core) environments, with an initial
focus on square matrices. The sequence of eliminations pre-
sented in these papers is analogous to SAMEH-KUCK [15],
and corresponds to reducing each panel with a flat tree: in
each column, there is a unique killer, namely the diagonal
tile.

The introduction of several killers in a given column dates
back to [15], [16], [17], although in the context of traditional
element-wise (non-blocked) algorithms.

In the context of a single tile column, the first use of
a binary tree algorithm (working on tiles) is due to da
Cunha et al. [18]. Demmel et al. [6] present a general
tile algorithm where any tree can be used for each panel,
while Langou [19] explains the tile panel factorization as a
reduction operation.

For shared-memory (multi-core) environments, recent
work advocates the use of domain trees [7] to expose more
parallelism with several killers while enforcing some locality
within domains. Another recent paper [1] introduces tiled
versions of the Greedy algorithm [12], [13] and of the
Fibonacci scheme [16], and shows that these algorithms are
asymptotically optimal. In addition, they experimentally turn
out to outperform all previous algorithms for tall and skinny
matrices.

Preliminary hierarchical two-level trees has been pre-
sented by Agullo et al. in the context of grid computing
environment [3] (binary on top of binary, for tall and
skinny matrices), Agullo et al. in the context of multicore
platform [7] (binary on top of flat, for any matrix shapes),
and Demmel et al. in the context of multicore platform [20]
(binary on top of flat, for tall and skinny matrices).

In this paper, we further investigate the impact of the
Greedy and Fibonacci schemes, but for distributed-memory
environments. There are two recent works for such environ-
ments. The approach of [3] uses a hierarchical approach: for
each matrix panel, it combines two levels of reduction trees:
first several local binary trees are applied in parallel, one
within each cluster, and then a global binary tree is applied
for the final reduction across clusters. Because [3] focuses
on tall and skinny matrices, it uses a 1D block distribution
for the matrix layout (hence a 1D cluster grid). The approach

of [2] also uses a hierarchical approach, and also uses a
1D block distribution. The main difference is that the first
level of reduction is conducted with a flat tree within each
cluster. We point out that the block distribution is suited
only for tall and skinny matrices, not for general matrices.
Indeed, with an m × n matrix and p clusters, the cyclic
distribution is perfectly balanced (neglecting lower order
terms), while the speedup attainable by the block distribution
is bounded by p(1 − n

3m): this is acceptable if n � m but
a high price to pay if, say, m = n. However, it is quite
possible to modify the algorithm in [2] so as to use a cyclic
distribution, at the condition of re-ordering the eliminations
to give priority to local ones over those that require inter-
cluster communications. In fact, the hierarchical algorithm
introduced in this paper can be parametrized to implement
either version, the original algorithm in [2] as well as the
latter variant with cyclic layout.

IV. HIERARCHICAL ALGORITHM

This section is devoted to the new hierarchical algorithm
that we introduce for clusters of multicores. We outline the
general principles (Section IV-A) before working out the
technical details through an example (Section IV-B). Then
we briefly discuss the implementation within the DAGUE
framework in Section IV-C.

A. General description

Here is a high-level description of the features of the
hierarchical algorithm, HQR:
• Use a 2D cyclic distribution of tiles along a virtual p×q

cluster grid. The 2D-cyclic distribution is the one that
best balances the load across resources.

• Use domains of a tiles, and use TS kernels within
domains. Thus, within each cluster, every a-th tile
sequentially kills the a − 1 tiles below it. The idea is
to benefit from the arithmetic efficiency of TS kernels.
Note that if a = 1, the algorithm will use only TT
kernels.

• Use intra-cluster reduction trees within clusters. Here,
the idea is to locally kill as many tiles as possible,
without inter-processor communication. These intra-
cluster trees depend upon the internal degree of par-
allelism of the clusters: we can use a binary tree or a
GREEDY reduction for clusters with many cores, or a
flat tree reduction if more locality and CPU efficiency is
searched for. Note that these reductions are necessarily
based upon TT kernels, because they involve killer
tiles from the domains.

• Use inter-cluster reduction trees across clusters (again,
necessarily based upon TT kernels). The inter-cluster
reduction trees are of size p, because for each panel they
involve a single tile per cluster. Here also, the trees can
be freely chosen (flat, binary, greedy).

There are many parameters to explore: the arithmetic
performance parameter a, the shape p× q of the virtual grid
if we are given C1 physical clusters with C2 cores each, and
the shape of the intra- and inter- cluster reduction trees. In
fact, there are two additional complications:

• Consider a given cluster: ideally, we would like to kill
all tiles but one in each panel, i.e., we would like to
reduce each cluster sub-matrix to a diagonal, and then
proceed with inter-cluster communications to finish up
the elimination. Unfortunately, because of the updates,
it is not possible to locally kill “in advance” so many
tiles, and one needs to wait for the inter-processor
reduction to progress significantly to be able to perform
the last local eliminations. This scheme is explained in
Section IV-B below.

• The actual (physical) distribution of tiles to clusters
needs not obey the virtual p×q cluster grid. In fact, we
can always use another grid to map tiles to processors.
This additional flexibility allows us to execute all
previously published algorithms simply by tuning the
actual distribution parameters. For instance, to run the
algorithm of [2] on a m×n tiled matrix, using a block
distribution on r processors, we take a virtual grid value
p = 1 with domains of size a = m/r, and we let the
actual data distribution be CYCLIC (r).

(a) Global (b) Local

Figure 5: Views of the tile labels.

B. Working out an example
Consider a m×n tiled matrix, with m = 24 and n = 10.

We use a p × q virtual grid with p = 3 and q = 1, and an
arithmetic parameter a = 2. Thus we have a unidimensional
grid with p = 3 clusters. A global view of the matrix is
given in Figure 5(a), while local distributions within each
cluster are shown in Figures 5(b). In both figures, tiles are
colored according to their assigned processor (red for P0,
yellow for P1 and green for P2). The label inside each tile
characterizes its level of reduction, as explained below.

Level 0 tiles–: we have domains of size a = 2, so that
in essence every second tile is killed by a TS kernel, and
the killer is always the tile above it in the local view of the
figure 5(b). However, as shown in Figure 5(b), this holds
true only for even-numbered tiles that are below the local
diagonal. This local diagonal is a line of slope 1 in the local
view, hence of slope p in the global view. If the matrix is
tall and skinny, the proportion of level 0 tiles tends to be
one half, but it is much less for square matrices.

Level 1 tiles–: level 1 tiles are the local killers of level 0
tiles that lie strictly below the local diagonal. Such tiles can
be killed locally, without any inter-cluster communication.
In other words, it is possible to kill all tiles of level 0 and 1
locally, in parallel on each cluster, before needing any inter-
cluster communication. At the end of this local elimination,
all tiles lying in the lower triangle below the local diagonal
have been killed, and the last killer on each panel is the
tile on the local diagonal (e.g., tile (6, 2) for panel 2 in
cluster P0). The elimination of the lower triangle can be
conducted using various types of reduction trees, flat, binary
or GREEDY.

Level 3 tiles–: consider the panel of index k, and a
cluster Pq . Consider the top tile on or below the matrix
diagonal, i.e., the first tile in column k whose row index is
at least k. If this tile has row index k, it is the diagonal tile;
otherwise, if its row index is greater than k, it will be the last
tile killed in this panel. There are p such top tiles, one per
cluster, and they are located on the first p diagonals of the
matrix. Reducing the p top tiles for a given panel induces
inter-cluster communications. Within each panel, this high-
level reduction tree is of size p, and be freely chosen as flat,
binary or GREEDY.

Level 2 tiles–: these are the “domino” tiles. In each
panel, using the local view within a cluster, they are located
between the top tile (not included) and the local diagonal tile
(included). Their number increases together with the panel
index, since level 2 tiles lie between a line of slope 1/p and
one of slope 1 in the local view. While level 0 and level 1
tiles are killed independently within each cluster, level 2 tiles
can only be killed after some inter-cluster communication
has taken place. The goal of the coupling level tree is to
efficiently resolve interactions between local reductions and
global reductions, and to kill all level 2 tiles as soon as
possible. To see the coupling level tree in action, consider

the first level 2 tile, in position (4, 1) and assigned to P1.
Tile (4, 1) is killed by tile (1, 1), the top tile of P1 for
panel 1: this corresponds to the elimination elim(4, 1, 1),
which is intra-cluster (within P1). But tile (1, 1) is not
ready to kill tile (4, 1) until it has been updated for the
elimination elim(1, 0, 0), which is inter-cluster: level 3 tile
(0, 0) kills level 3 tile (1, 0), and tile (1, 1) is updated during
this elimination. As soon as the update ends, elim(4, 1, 1)
is triggered, and tile (4, 1) is killed. A similar sequence
takes place on to P2, where the update of tile (2, 1) during
elim(2, 0, 0) (inter-cluster) must precede the killing of level
2 tile (5, 1) (during elim(5, 2, 1), intra-cluster). In fact,
we see that inter-cluster eliminations in the high-level tree
successively trigger eliminations in the coupling tree, like a
domino that ripples in the area of level 2 tiles.

Execution scheme–: with an infinite number of re-
sources, the execution would progress as fast as possible.
The elimination list of the algorithm is the composition of
the reduction trees at all the different levels. All killers
are known before the execution. Each component of an
elimination is triggered as soon as possible, i.e. as soon as
all dependencies are satisfied: first we have the killing of
the tile, and then the updates in the trailing panels. Note
that the overall elimination scheme is complex, and mixes
the killing of tiles at all levels. With a fixed number of
resources, it is necessary to decide an order of execution of
the tasks, hence to schedule them: this is achieved through
the DAGUE environment.

C. Implementation with DAGUE

DAGUE is a high-performance fully-distributed schedul-
ing environment for systems of micro-tasks. It takes as
input a problem-size-independent, symbolic representation
of a Direct Acyclic Graph of tasks, and schedules them
at runtime on a distributed parallel machine of multi-cores.
Data movements are expressed implicitly by the data flow
between the tasks in the DAG representation. The runtime
engine is then responsible for actually moving the data
from one machine (cluster) to another, using an underlying
communication mechanism, like MPI. A full description of
DAGUE, and the implementation of classical linear algebra
factorizations in this environment, can be found in [11], [8].

To implement the generic QR algorithm in DAGUE, it
is sufficient to give an abstract representation of all the
tasks (eliminations and updates) that constitute the QR
factorization, and how data flows from one task to the
other. Since a tiled QR algorithm is fully determined by its
elimination list, this basically consists only into providing
a function that the runtime engine is capable of evaluating,
and that computes this elimination list. The DAGUE object
obtained this way is generic: when instantiating a DAGUE
QR factorization, the user sets all parameters that define this
elimination list (p, q, a, the shape of the local and high-level
trees), defining a new DAG at each instantiation.

At runtime, tasks executions trigger data movements, and
create new ready tasks, following the dependencies defined
by the elimination list. Tasks that are ready to compute
are scheduled according to a data-reuse heuristic: each core
will try to execute close successors of the last task it ran,
under the assumption that these tasks require data that was
just touched by the terminated one. This policy is tuned by
the user through a priority function: among the tasks of a
given core, the choice is done following this function. To
balance load between the cores, tasks of a same cluster in
the algorithm (reside on a same shared memory machine) are
shared between the computing cores, and a NUMA-aware
job stealing policy is implemented. The user is responsible
for defining the affinity between data and tasks, and to
distribute the data between the computing nodes. Thus, she
defines which task execute on which node, and remains
responsible for this level of load balancing. In our case,
the data distribution is a p × q grid of b × b tiles, with a
cyclic distribution CYCLIC (1) of tiles across both grid
dimensions.

V. EXPERIMENTS

A. Experimental Conditions

The purpose of this performance evaluation is to high-
light the features of the proposed algorithm, and to com-
pare its efficiency with state-of-the-art QR factorization
implementations. We use edel, a parallel machine hosted
by the Grid’5000 experimental platform [21], to support
the experiments. These experiments feature 60 multi-core
machines, each equipped with 8 cores, and an Infiniband
20G interconnection network. The machines feature two
NUMA Nehalem Xeon E5520 at 2.27GHz (hyperthreading
is disabled), with 12GB of memory (24GB per machine).
The system is running the Linux 64bit operating system,
version 2.6.32-5-amd64 (Debian 2.6.32-35). The software is
compiled with Gcc version 4.4.5, and GFortran 4.4.5 when
applicable. BLAS kernels were provided by the MKL library
from the Intel compiler suite 11.1. The DAGUE software
from the mercurial repository revision 3130 uses Open MPI
version 1.4.3 as network backend. All experiments have been
run at least 5 times, and the average value is presented,
together with the standard deviation. We use whiskers to
represent standard deviation on all of our figures. For each
experiment, we compute the Q factor of the QR factorization
(by applying the reverse trees to the identity) and check (a)
that Q has orthonormal columns and (b) that A is equal to
Q∗R. All checks were satisfactory up to machine precision.

The theoretical peak performance of this machine for
double-precision is 9.08 GFlop/s per core, 72.64 GFlop/s
per node, and 4.358 TFlop/s for the whole machine. The
best performance for running the dTSMQR operation in a
single core, has been measured at 7.21 GFlop/s (79.4% of
the theoretical peak), and the dTTMQR operation has been
measured at 6.28 GFlop/s (69.2% of the theoretical peak).

 0

 500

 1000

 1500

 2000

 2500

4480 8960 17920 35840 71680 143360 286720

P
e
rf

o
rm

a
n
c
e
 (

G
F

lo
p
/s

)

M

High-Level Tree
a=1, greedy
a=4, greedy

a=8, greedy
a=1, binary

a=4, binary
a=8, binary

(a) low-level tree set to Greedy

 0

 500

 1000

 1500

 2000

 2500

4480 8960 17920 35840 71680 143360 286720

P
e
rf

o
rm

a
n
c
e
 (

G
F

lo
p
/s

)

M

High-Level Tree (continued)
a=1, flat
a=4, flat

a=8, flat
a=1, fibonacci

a=4, fibonacci
a=8, fibonacci

(b) low-level tree set to Flat

Figure 6: Performance of the HQR algorithm on a M × 4, 480 matrix. (Domino optimization not activated). Influence of
the TS level (a value), low level and high level trees.

Depending on the a value chosen, these numbers can be
seen as practical peaks. For example, if a = 1, most of the
flops are in dTTMQR (69.2% of the theoretical peak). As
a gets larger, more flops shift to dTSMQR (79.4% of the
theoretical peak).

Our implementation of HQR operates on a virtual grid
p×q set to 15×4, it feature a TS level with parameter a (set
a to 1 for no TS, and a = m/p for full TS on the node), a
choice of four different TT trees for the low level (GREEDY,
BINARYTREE, FLATTREE, FIBONACCI), the coupling level
can be activated or not. When it is activated, the domino
TT tree is used by default, and there is a choice of four
different TT trees for the high level (GREEDY, BINARY-
TREE, FLATTREE, FIBONACCI). Tiles of size b×b are used.
The DAGUE engine offers several data distribution and
automatically handles the data transfers when needed. As
a consequence, our DAGUE implementation would operate
on any DAGUE-supported data distribution. For HQR, we
focus on 2D block cyclic distribution using a p× q process
grid mapping the algorithm virtual grid.

We compare our algorithm to [BBD+10] [8],
[SLHD10] [2], and SCALAPACK [10]. Since [SLHD10]
is a sub-case of the HQR algorithm (see Section IV-A),
we use our DAGUE-based implementation of HQR to
execute it. [SLHD10] for a m × n tiled matrix, using
a block distribution on p processors, corresponds to the
HQR algorithm with the following parameters: virtual
grid value p = 1, domains of size a = m/p, data
distribution CYCLIC (a), low-level binary tree. (Since
p = 1, neither the coupling level nor the high level are
relevant.) [BBD+10] corresponds to the QR operation
currently available in DAGUE, which implements the
Tile QR factorization described in [8]. SCALAPACK
experiments use the SCALAPACK implementation of the

QR factorization found in the MKL libraries. The MKL
number of threads was set to 8, and one MPI process was
launched per node. For all other setups (that are DAGUE
based), the binary was linked with the sequential version
of the MKL library, and DAGUE was launched with 8
computing threads and an additional communication thread
per node. All threads are bound to a different core, except
the communication thread that is allowed to run on any
core.

In all experiments, we used 60 nodes (480 cores), and
the data was distributed along a 15 × 4 process grid for
HQR, [BDD+10], and SCALAPACK, and a 60×1 1D block
distribution for [SLHD10].

All HQR runs use a virtual cluster grid exactly mapping
the process grid used for data distribution. The coupling-
tree, whenever activated, is implemented with the so-called
domino scheme. We fix the tile size parameter b in our
experiments as being the block size which renders the best
sequential performance for the sequential TS update kernel.
More tuning could be done for HQR with respect to the tile
size and to the process grid shape parameters. In particular,
b directly influences at least two key performance metrics,
namely the number of messages sent and the granularity of
the algorithm. We have fixed these parameters for the whole
experiment set. Choosing b = 280 and a process grid p× q
of 15 × 4 leads to values that consistently provide good
performance.

B. Evaluation of HQR

HQR is a highly modular algorithms. The design space
offers by its parameters is large. The goal of this section
is to confront our intuition of HQR with experimental data
in order to build up understanding on how these parameters
influence the overall performance of HQR. In Section V-C,

we use this newly acquired understanding to set up the
parameters for various fixed-parameters experiments. We
note that, overall, HQR is an intrinsically better algorithm
than what has been proposed in the past. Although we
explain in this section that some significant performance
gains can be obtained by tuning the parameters, setting some
default values is enough to outperform the current state of
the art.

Figure 6 presents the performance of the Hierarchical QR
algorithm, HQR, for different matrix sizes, different trees
and different values of the a parameter. The matrix size
varies from a square matrix of 16 × 16 tiles to a tall and
skinny matrix of 1, 024 × 16 tiles. Since we are working
on a 15 × 4 process grid, this means that local matrices
range from 1 × 4 tiles to 68 × 4 tiles. In order to first
focus only on the influence of the TS level, low level and
high level trees, the domino coupling optimization is not
yet activated. Subfigure 6(a) presents the performance for
all possible high-level trees with a low-level tree set to
GREEDY, while Subfigure 6(b) presents the same with a
low-level tree set to FLATTREE. Figures with a low-level
tree set to BINARYTREE or FIBONACCI are omitted due to
lack of space; however they exhibit a behavior similar to
Figure 6(a) (GREEDY). Figure 7 presents the performance
of the HQR algorithm, for the same set of matrices, with a
fixed value a = 4, and a high-level tree set to FIBONACCI.
Measurements were done alternatively turning on or off the
domino optimization presented in Section IV-B.

Influence of a. Looking at Subfigure 6(a), we see that,
for small values of M , the value a = 1 is best. This is
because a higher value of a negatively impacts the degree
of parallelism of the algorithm when we use the low level
GREEDY tree on small matrices. When M increases, the
number of tasks increases, and we end up with abundant
parallelism. Consequently, we can safely increase the value
of a up to 4 or 8. For large M , we see that the speedup
between a = 1 and a = 4, 8 is about 10% which is the
speedup between TT update kernels and TS update kernels.
When the low level tree is FLATTREE, (Subfigure 6(b)), we
have a different story. Adding a flat tree (TS kernels) beneath
a low-level flat tree in the tall and skinny case (large M)
actually increases the parallelism. In effect, the TS flat trees
divide the length of the pipeline created by the low level
flat tree by a factor a. So there are two benefits for tall and
skinny matrices in adding a flat tree TS beneath a flat tree
TT: (1) faster kernels; (2) better parallelism. This explains
why the speedup for a = 4 or a = 8 with respect to a = 1 is
way above 10% for large M . Altogether, we conclude that
significant gain can be obtain by tuning the parameter a for
various matrix shapes, number of processors and TT vs TS
ratio.

Influence of the low level tree. For tall and skinny matri-
ces, GREEDY is better than FLATTREE. In the 286, 720 ×
4, 480 case, the low level tree performs on a 68× 16 matrix

 0

 500

 1000

 1500

 2000

 2500

 3000

17920 35840 71680 143360 286720

P
e
r
f
o
r
m
a
n
c
e

(
G
F
l
o
p
/
s
)

M

Low-Level Tree
w/o domino: flat

fibonacci
greedy
binary

w/ domino: flat
fibonacci

greedy
binary

Figure 7: Performance of the HQR algorithm, on a M ×
4, 480 matrix. High-level set to Fibonacci and a = 4.
Influence of the low-level tree and the domino optimization.

(m/p × n), and in that case the critical path length of flat
tree is approximately 2.6x the one of greedy (((68 + 2 ∗
16)/(log2(68) + 2 ∗ 16)) [1]). Looking at Subfigures 6(a)
and 6(b), we see a speedup of about 2x when the low
level tree changes from flat tree to greedy in the a = 1
case. When a increases, the low level trees affect fewer tiles
and, consequently, its influence on the overall algorithm is
reduced. See also Figure 7, where we have set a = 4, and
we observe that all low level trees perform more or less
similarly.

Influence of the high level tree. We observe similar perfor-
mances for all variants, although Fibonacci is slightly better
than its competitors.

Influence of the coupling level tree (domino optimization).
In Figure 7, we see the positive effect of the domino
optimization in the case of tall and skinny matrices. When
activated, for a tall and skinny matrices, it never significantly
deteriorates the performance and can have significant impact.
The domino optimization is all the more important when a
good coupling between the local tree and the distributed tree
is critical. This is illustrated best with the case of low level
FLATTREE. Indeed, this optimization enables look-ahead
on the local panels as explained in Section IV-B, thereby
increasing the degree of parallelism. Although not reported
in this manuscript, we note that domino optimization have a
negative impact when the matrix becomes large and square.

C. Comparison

Figures 8 and 9 compare the performance of the DAGUE
implementation of the HQR algorithm with the DAGUE
implementation of [BBD+10] and [SLHD10], and with the
MKL implementation of the SCALAPACK algorithm.
N fixed, M varies from square to tall and skinny. In

Figure 8, we evaluate the performance on various matrices,

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50000 100000 150000 200000 250000 300000

P
e
rf

o
rm

a
n
c
e
 (

G
F

lo
p
/s

)

M (N=4,480)

Theoretical Peak: 4358.4 GFlop/s

Scalapack
[BBD+10]
[SLHD10]

HQR

Figure 8: Comparison of performance for different algo-
rithms, on a M × 4, 480 matrix.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000 70000

P
e
rf

o
rm

a
n
c
e
 (

G
F

lo
p
/s

)

N (M=67,200)

Theoretical Peak: 4358.4 GFlop/s

Scalapack
[BBD+10]
[SLHD10]

HQR

Figure 9: Comparison of performance for different algo-
rithms, on a 67, 200×N matrix.

from a square 16 × 16 tiled matrix to a tall and skinny
1, 024 × 16 tiled matrix. This is the same matrix set as
Figure 6 and Figure 7. We need low and high level trees
adapted for tall and skinny matrices so we set both level trees
to FIBONACCI. The TS level trades off some parallelism in
the intra-level reduction to enable the use of TS sequential
kernels which are more efficient than the TT sequential
kernels. Since, in this experiment, the local matrices have
a large number of rows with respect to the number of
cores on the node, there is enough intra-node parallelism
within a column reduction to afford a TS level, so we set
a = 4. Finally in the tall and skinny case, we really want
a coupling level in order to decouple the low level tree
from the inter-processor communication, so we activate the
domino optimization. HQR scores 2,505 GFlop/s (57.5% of
peak).

The algorithm in SCALAPACK is not “tiled”, so it is
not “communication avoiding”. The algorithm performs one
parallel distributed reduction per column, this contrasts with

a tiled algorithm which performs one parallel distributed
reduction per tile. As a consequence, there is a factor of b
in the latency term between both algorithms. For a tall and
skinny matrix, the algorithm in SCALAPACK is indeed not
compute-bounded but latency-bounded and obtains at best
277 GFlop/s (6.4% of peak).

The main performance bottleneck for [BDD+10] is the
use of FLATTREE. FLATTREE has a long start-up time to
initiate the first column, it operates sequentially on the tiles
along the first tile column so that there are as many TS
kernels pipelined the one after the other as there are tiles
in a column (that is m,.e.g, =1024 in the largest example
considered here). This is not suitable when there are only
n = 16 tile columns to amortize the pipeline startup cost.
Another issue with [BDD+10] is that the algorithm does not
take into account the 2D block cyclic distribution of the data.
This has a secondary negative impact on the performance.
For a tall and skinny matrix, the algorithm in [BDD+10]
suffers from a long pipeline on the first tile column. The
length of this pipeline is m the number of row tiles or
the whole matrix. the algorithms scores at best 798 GFlop/s
(18.3% of peak).

[SLHD10] has been specially designed for tall and skinny
matrices [2]. The negative load imbalance that occurs by
using a 1D block data distribution instead of a 2D block
cyclic distribution is not significant for tall and skinny
matrices. At the inter-node level, the use of BINARYTREE is
a good solution. Yet, the use of TS FLATTREE at the intra-
node level is not appropriate when the local matrices have
many rows. As in [BDD+10], a long pipeline is instantiated.
A better tree is needed at the intra-node level. For a tall and
skinny matrix, the algorithm in [SLHD10] suffers from a
long pipeline on the first tile column. The length of this
pipeline is m/p, the number of row tiles held by a node
(which is an improvement with respect to [BDD+10] but
yet too much). The algorithms scores at best 1,897 GFlop/s
(43.5% of peak).

M fixed, N varies from tall-skinny to square. In Figure 9,
we evaluate the performance from a tall and skinny 240× 4
tiles matrix to a square 240 × 240 tiles matrix. The high-
level tree is set to FLATTREE, while the low-level tree
is set to FIBONACCI. Depending on the value of N , we
choose different values for a: a = 1 for small values of
N , and a = 4 for larger values. Similarly, the domino
coupling optimization is de-activated once the parallelism
due to the number of columns of tiles is sufficient enough to
avoid starvation, and the efficiency of the kernels becomes
more important. The choice of the FLATTREE high-level
tree is guided by the same reason: once the parallelism is
high enough to avoid starvation, the FLATTREE ensures a
significantly smaller number of inter-node communications.

[BDD+10] performs well on square matrices, however
it suffers from its more demanding communication pattern
than the HQR algorithm (since it does not take into account

the 2D block cyclic distribution of the data). [SLHD10]
performs better on tall and skinny matrices, however the
1D data distribution implies a load imbalance that becomes
paramount when the matrix becomes square. This is il-
lustrated by the ratio of performance between HQR and
[SLHD10]: on the square matrix, HQR reaches 3TFlop/s,
while [SLHD10] reaches 2TFlop/s, thus 2/3 of the perfor-
mance, as predicted in Section III-C. Likewise, when N =
M/2, [SLHD10] reaches 2.4TFlop/s, and HQR 2.9TFlop/s,
and 2.4/2.9 ≈ 5/6, as predicted by the model. Although the
performance of SCALAPACK is lagging behind the perfor-
mances of the other tile based algorithms, SCALAPACK
builds performance as M increases and score a respectable
1,925 GFlops/sec (44.2% of peak) on a square matrix.

VI. CONCLUSION

We have presented HQR, a hierarchical QR factorization
algorithm which introduces several innovative components
to squeeze the most out of clusters of multicores. On the
algorithmic side, we have designed a fully flexible algorithm,
whose many levels of tree reduction each significantly
contributes to improving state-of-the-art algorithms. A key
feature is that the high level specification of the algorithm
makes it suitable to an automated implementation with the
DAGUE framework. This greatly alleviates the burden of
the programmer who faces the complex and concurrent
programming environments required for massively parallel
distributed-memory machines.

On the experimental side, our algorithm dramatically
outperforms all competitors, which can be seen as a major
achievement given (i) the ubiquity of QR factorization in
many application domains; and (ii) the vast amount of efforts
that have been recently devoted to numerical linear algebra
kernels for petascale and exascale machines. Our implemen-
tation of the new algorithm with the DAGUE scheduling
tool significantly outperforms currently available QR factor-
ization softwares for all matrix shapes, thereby bringing a
new advance in numerical linear algebra for petascale and
exascale platforms. More specifically, our experiments on
the Grid’5000 edel platform show the following gains at
both ends of the matrix shape spectrum:
• On tall and skinny matrices, we reach 57.5% of theoret-

ical computational peak performance, to be compared
with 6.4% for SCALAPACK (9.0x speedup), 18.3%
for [BDD+10] (3.1x), and 43.5% for [SLHD10] (1.3x)

• On square matrices, we reach 68.7% of theoretical
computational peak performance, to be compared with
44.2% for SCALAPACK (1.6x), 62.2% for [BDD+10]
(1.1x), and 46.7% for [SLHD10] (1.5x).

Future work includes several promising directions. From
a theoretical perspective, we could compute critical paths
and assess priorities to the different elimination trees. This
is a very promising but technically challenging direction,
because it is not clear how to account for the different

architectural costs, and because of the huge parameter space
to explore. From a more practical perspective, we could
perform further experiments on machines equipped with
accelerators (such as GPUs): again, the flexibility of the
DAGUE software will dramatically ease the design of HQR
on such platforms, and will enable us to explore a wide
combination of reduction trees and priority settings.

REFERENCES

[1] H. Bouwmeester, M. Jacquelin, J. Langou, and Y. Robert,
“Tiled QR factorization algorithms,” in SC’2011, the
IEEE/ACM Conference on High Performance Computing
Networking, Storage and Analysis. ACM Press, 2011.

[2] F. Song, H. Ltaief, B. Hadri, and J. Dongarra, “Scalable
tile communication-avoiding QR factorization on multicore
cluster systems,” in SC’10, the 2010 ACM/IEEE conference
on Supercomputing. IEEE Computer Society Press, 2010.

[3] E. Agullo, C. Coti, J. Dongarra, T. Herault, and J. Langou,
“QR factorization of tall and skinny matrices in a grid
computing environment,” in IPDPS’10, the 24st IEEE Int.
Parallel and Distributed Processing Symposium, 2010.

[4] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “Parallel
tiled QR factorization for multicore architectures,” Concur-
rency Computat.: Pract. Exper., vol. 20, no. 13, pp. 1573–
1590, 2008.

[5] G. Quintana-Ortı́, E. S. Quintana-Ortı́, R. A. van de Geijn,
F. G. V. Zee, and E. Chan, “Programming matrix algorithms-
by-blocks for thread-level parallelism,” ACM Transactions on
Mathematical Software, vol. 36, no. 3, 2009.

[6] J. W. Demmel, L. Grigori, M. Hoemmen, and J. Langou,
“Communication-avoiding parallel and sequential QR and
LU factorizations: theory and practice,” LAPACK Working
Note, Tech. Rep. 204, 2008. [Online]. Available: http:
//www.netlib.org/lapack/lawnspdf/lawn204.pdf

[7] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, “Tile QR
factorization with parallel panel processing for multicore
architectures,” in IPDPS’10, the 24st IEEE Int. Parallel and
Distributed Processing Symposium, 2010.

[8] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar,
T. Herault, J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief,
P. Luszczek, A. YarKhan, and J. Dongarra, “Flexible develop-
ment of dense linear algebra algorithms on massively parallel
architectures with DPLASMA,” in 12th IEEE International
Workshop on Parallel and Distributed Scientific and Engi-
neering Computing (PDSEC’11), 2011.

[9] S. Blackford and J. J. Dongarra, “Installation guide for
LAPACK,” LAPACK Working Note, Tech. Rep. 41, Jun.
1999, originally released March 1992. [Online]. Available:
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf

[10] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK
Users’ Guide. SIAM, 1997.

[11] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra, “DAGuE: A generic
distributed DAG engine for high performance computing,”
in 16th International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS’11), 2011.

[12] M. Cosnard, J.-M. Muller, and Y. Robert, “Parallel QR
decomposition of a rectangular matrix,” Numerische Math-
ematik, vol. 48, pp. 239–249, 1986.

[13] M. Cosnard and Y. Robert, “Complexity of parallel QR
factorization,” Journal of the A.C.M., vol. 33, no. 4, pp. 712–
723, 1986.

[14] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore archi-
tectures,” Parallel Computing, vol. 35, pp. 38–53, 2009.

[15] A. Sameh and D. Kuck, “On stable parallel linear systems
solvers,” J. ACM, vol. 25, pp. 81–91, 1978.

[16] J. Modi and M. Clarke, “An alternative Givens ordering,”
Numerische Mathematik, vol. 43, pp. 83–90, 1984.

[17] A. Pothen and P. Raghavan, “Distributed orthogonal factoriza-
tion: Givens and Householder algorithms,” SIAM J. Scientific
Computing, vol. 10, no. 6, pp. 1113–1134, 1989.

[18] R. da Cunha, D. Becker, and J. Patterson, “New parallel
(rank-revealing) QR factorization algorithms,” in Euro-Par
2002. Parallel Processing: Eighth International Euro-Par
Conference, Paderborn, Germany, August 27–30, 2002.

[19] J. Langou, “Computing the R of the QR factorization of tall
and skinny matrices using MPI Reduce,” arXiv, Tech. Rep.
1002.4250, 2010.

[20] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick,
“Minimizing communication in sparse matrix solvers,” in
SC’09, the 2009 ACM/IEEE conference on Supercomputing.
IEEE Computer Society Press, 2009, pp. 1–12.

[21] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou,
S. Lanteri, N. Melab, R. Namyst, P. Primet, O. Richard,
E. Caron, J. Leduc, and G. Mornet, “Grid’5000: A large scale,
reconfigurable, controlable and monitorable grid platform,”
in Proc. 6th IEEE/ACM Int. Workshop on Grid Computing
(Grid’2005). IEEE Computer Society Press, 2005.

