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Abstract—This paper describes extensions to the PAPI hardware 
counter library for virtual environments, called PAPI-V.  The 
extensions support timing routines, I/O measurements, and 
processor counters. The PAPI-V extensions will allow application 
and tool developers to use a familiar interface to obtain relevant 
hardware performance monitoring information in virtual 
environments. 
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I.  INTRODUCTION  
Cloud computing involves use of a hosted computational 

environment that can provide elastic compute and storage 
services on demand. Virtualization is a technology that allows 
multiple virtual machines (VMs) to run on a single physical 
machine and share its resources. Virtualization is increasingly 
being used in cloud computing to provide economies of scale, 
customized environments, fault isolation, and reliability.  To 
address performance concerns with the use of cloud computing 
for scientific computing, the PAPI-V project is developing a 
system for hardware performance monitoring in virtualized 
environments to enable software developers to understand and 
optimize system and application performance and adapt to 
changing conditions.  To accomplish this goal, the project is 
extending the widely used Performance API (PAPI) cross-
platform library [PAPI] for accessing hardware performance 
counters [1]. 

A common approach to observing performance on non-
virtualized (i.e., native) systems is to use the hardware 
performance counters available on modern microprocessors.  
The counters can be accessed using the portable PAPI library 
interface [1] or by using one of the many end-user performance 
analysis tools that use PAPI underneath (e.g., TAU [2], 
PerfSuite [3], Vampir [4], Scalasca [5]).  The counters can 
provide a wide range of information about processor, cache, 
and memory performance.  Recently developed PAPI 
components for off-processor counters can provide additional 
performance information about other components of the 
system, such as the file system, network, temperature and 
power consumption, and GPUs [6].  In virtualized systems, 
however, access to hardware performance counters has 

typically not been available due to lack of support for counter 
virtualization. 

The PAPI-V project is addressing the following aspects:  

1. Timing: The PAPI timing routines are being extended to 
provide standard real and virtual timers across different Virtual 
Machine Monitors (VMMs).  

2. Component measurements: The existing PAPI I/O, 
network, and other shared resource components are being 
extended to provide relevant information in virtualized 
environments.  

3. Virtualization of selected processor hardware counters: A 
selected set of processor counters considered to be most 
relevant for application performance analysis and tuning in 
virtualized environments is being implemented across VMMs.  

4. Interpretation of data:  A mechanism for defining metrics 
that correctly quantify the contributions of various factors to 
overall performance is under development. 

The research results will be implemented in the publically 
available and widely used PAPI library. The PAPI-V extension 
will allow application and tool developers to use a familiar 
interface to obtain relevant information for achieving the best 
possible performance in cloud computing environments. 

The remainder of this paper is organized as follows: Section 
II discusses related work on performance monitoring in virtual 
environments.  Section III discusses timing issues and 
describes the PAPI timing routines.  Section IV discusses 
issues with I/O performance in virtual environments and 
describes a PAPI component developed to provide I/O 
performance measurements.  Section V describes a PAPI 
component developed to provide access to pseudo-counters in 
VMware environments.   Section VI describes preliminary 
work on providing access to processor counters in virtual 
environments.  Section VII concludes with the project status 
and future work. 

II. RELATED WORK 
Xenoprof [7] is a profiler specifically designed for Xen [8], 

a VMM based on paravirtualization.  Based on OProfile [9], 



Xenoprof takes samples, writes them to disk, and connects 
samples to programs and ultimately source code. Sampling is 
driven by performance counter hardware: the profiler programs 
performance counters to count certain events, and interrupt 
after a certain number of them has been counted. The interrupt 
service routine takes a sample. Like OProfile, Xenoprof can 
only be used in system-wide mode.   

perfctr-xen is an infrastructure to provide direct access to 
hardware performance counters in virtualized environments 
that use the Xen hypervisor [10]. Perfctr-xen relies on the 
cooperation of guest kernel and underlying hypervisor to 
provide profiling tools running in the guest with access to 
performance counters that is compatible with the APIs used in 
native, unvirtualized environments.  Consequently, frameworks 
and libraries that rely on PAPI can now be used inside Xen.  
The author modified both the Xen hypervisor as well as the 
guest kernel running inside each virtual machine. Perfctr-xen 
supports both paravirtualized mode as well as hardware 
virtualization mode and exploits optimizations that avoid trap-
and-emulate overhead when possible. 

Performance counter virtualization for the hardware-
assisted KVM virtual machine monitor that is included in 
recent versions of the Linux kernel is described in [11].  The 
implementation uses a save-and-restore mechanism for PMU 
registers. During inter-domain context switches, the hypervisor 
saves and restores the PMU registers of a domain. The delivery 
of overflow interrupts to a domain relies on hardware support 
provided by architectural virtualization extensions. Such a full 
virtualization approach has the advantage that it does not 
require any changes to the guest kernel or user libraries, but it 
will incur more overhead than a paravirtualization approach 
since each instruction that changes a configuration register 
requires a separate trap.  

III. TIMING ROUTINES 

A. Timing Issues 
The PAPI-V project aims to use the best and most accurate 

timers exposed by each VMM to implement a uniform timing 
interface that can be used across VMMs.  This timer 
standardization will allow the same timing code to be used 
from within an application regardless of which native or 
virtualized environment it is running on. Some VMMs support 
the notion of virtualized time, for example called “apparent 
time” in VMware [12], whereby the virtual machine can have 
its own idea of time.  Some VMMs support a simple version in 
which virtualized time is stored as a simple offset; whenever a 
process requests the current time, the offset is added to the 
current system time and the sum is returned.  Other virtualized 
time mechanisms, such as VMware’s, are more complicated, 
allowing the virtual machine to fall behind and catch up as 
needed.  Even VMMs that support virtualized time have 
exceptions that allow the guest operating system to access the 
normal host system’s idea of time. 

Most processors have a built-in hardware clock that allows 
the operating system to measure real and process time.  Real 
time, also called elapsed or wall clock time, is the time 

according to an external standard since some fixed point such 
as the start of the life of a process.  Process time is the amount 
of the CPU time used by a process since it was created.  
Process time is broken down into 1) user CPU time, as called 
virtual time, which is the amount of time spent executing in 
user mode; and 2) system CPU time, which the amount of time 
spent executing in kernel mode.  Measurement of process time 
can be useful for evaluating the performance of a program, 
including on a per-process or per-thread basis. 

B. PAPI Timing Routines 
 PAPI currently provides two basic timing routines: 

PAPI_get_real_usec for wall clock time and 
PAPI_get_virt_usec for process virtual time. 

On modern Linux, PAPI uses the following POSIX timers: 

• PAPI_get_real_usec(): uses 
clock_gettime(CLOCK_REALTIME); 

• PAPI_get_virt_usec() uses 
clock_gettime(CLOCK_THREAD_CPUTIME_ID) 

Figures 1 and 2 below show the results of measuring PAPI 
real and virtual times for a naïve matrix-matrix multiply on 
bare metal and on KVM, respectively, where the system is 
overloaded with multiple processes doing busy work to 
compete for CPU cycles. We obtained similar results using 
VMware Workstation. In Figure 1, PAPI real time increases in 
a stair-step fashion as more processes are added. PAPI virtual 
time stays constant for the measured process, indicating that 
time is only measured while the process of interest is scheduled 
and running. Figure 2 shows these same measures for KVM 
where multiple virtual machines are competing for physical 
resources instead of multiple processes on a single machine. In 
both cases real and virtual time are indistinguishable, since it 
appears to PAPI that the measured process has full access to 
the machine. 

The real time is calculated on modern systems using the 
highest resolution operating system timer available, augmented 
with the timestamp counter if possible. The virtual time is 
calculated by the scheduler.  It records the time when a process 
is scheduled in, then the time when it is scheduled out. Total 
virtual time is a sum of all these intervals. If a virtual machine 
is descheduled when a process is active, the descheduled time 
appears to the scheduler as virtual time used by the process. 
That is why virtual time is reported as the same as real time 
under a VM – the scheduler is essentially is measuring wall 
clock time as if it had sole access to the hardware. 

In order to improve the accuracy of CPU time accounting 
on virtual systems, the mechanism must be able to not only 
distinguish between real and virtual CPU time but also 
recognize being in involuntary wait states. These wait states are 
referred to as steal time. Starting with kernel version 2.6.11, 
Linux KVM/Xen added support for steal time accounting that 
allows the scheduler to report the actual time running properly. 
This is a sort of a paravirtualized virtual time that gets 
information from the hypervisor on how often a VM was 
scheduled out.  We plan to use this feature to implement 
compensation for steal time into the PAPI_get_virt_usec 
routine.   



We have added a steal time component to the PAPI 5.0 
development version that allows measuring system-wide steal 
time under KVM.  These measurements can be used to adjust 
timing measurement to compensate for time stolen by other 
jobs, as shown in Figure 3.  Currently, Linux and KVM only 
provide system-wide steal time values; per-process values will 
be needed to automatically and completely adjust PAPI virtual 
time measurements. 

 
Figure 1. Expected results on bare hardware 

 
Figure 2.  Virtual time on KVM affected by other guests 

running on system 

 
Figure 3.  Virtual time adjustment using steal time 

measurements 

IV. I/O PERFORMANCE 
Variable I/O performance has been found to significantly 

impact application performance in virtual environments [13-
15].  We have developed an initial version of a PAPI 
component, called Application I/O, or appio, for measuring IO 

performance at application level in virtual environments. In its 
current forms, appio has the following features: 

• Intercepts read, write, fread and fwrite 
• Supported events: READ_BYTES, READ_CALLS, 

READ_ERR, READ_SHORT, READ_EOF, 
READ_BLOCK_SIZE, READ_USEC, 
WRITE_BYTES, WRITE_CALLS, WRITE_ERR, 
WRITE_SHORT, WRITE_BLOCK_SIZE,  
WRITE_USEC 

• Works for 32-bit and 64-bit Linux 
• Threads-safe (but no aggregation across threads) 

We have been testing the appio component against IOZone 
[16], a standard I/O benchmark, comparing I/O performance in 
virtual environments with performance on bare metal. Results 
are shown in Figures 4 through 7. The IOzone graphs provide 
visual verification that the disk read and write subsystems in 
these two physical and virtual machines are behaving as 
expected. Data for the bare metal measurements were 
collected using Ubuntu Linux on a dual Intel Xeon X5550 
(Nehalem-EP) with 4 cores per chip clocked at 2.67 GHz and 
8 MB of L3 cache. The virtual measurements were collected 
using a Ubuntu Linux guest hosted by VMware ESX 5.0 on a 
dual Intel Xeon X7550 (Nehalem-EX) with 8 cores per chip 
clocked at 2.00 GHz and 18 MB of L3 cache. Because of these 
differences, the measurements should not be compared 
numerically, except for the general shapes of the measurement 
surfaces. 

 Table 1 compares the read and write rates for a single point 
on the surfaces shown in Figures 4 through 7. As can been 
seen, appio generally reports higher throughput than IOzone, 
but the difference between the two measures is small, 
particularly for the bare metal case. The differences for 
VMware are somewhat larger, but still less than 10%. From 
this data we conclude that appio can be used effectively to 
measure and compare application I/O performance in both 
virtual and physical systems.  

 

 
Figure 4.  IOzone read performance on bare metal 

 



 
Figure 5.  IOzone read performance on VMware ESX 

 

 
Figre 6.  IOzone write performance on bare metal 

 

 
Figure 7.  IOzone write performance on VMware ESX 

Table 1. Comparison of read and write rates as measured by 
IOzone and appio 

Bare Metal VMware
Metric Type Rate Diff Metric Type Rate Diff

IOzone: Read
7.1 
GB/s ---------- IOzone: Read

3.0 
GB/s ----------

Write
2.7 
GB/s --------- Write

1.3 
GB/s ----------

appio: Read
7.3 
GB/s 2.80% appio: Read

3.1 
GB/s 3.30%

Write
2.7 
GB/s ~ .001 % Write

1.4 
GB/s 7.70%  

V. NETWORK PERFORMANCE 
One of the promises of Component PAPI is the ability to read 
performance data from hardware beyond the CPU, such as 

network interfaces. An example of such a network component 
is the PAPI Infiniband component. A goal of this project is to 
extend this functionality to virtual space. This effort has 
proved to be more time consuming than originally thought, 
both because of the learning curve involved and because of the 
need to identify and configure resources for testing. To date 
we have properly configured two systems with Infiniband and 
VMware ESX 4 and 5. The ESX 4 system uses the VMware 
virtualized Infiniband driver and the ESX 5 system uses the 
DirectPath Infiniband driver. Initial throughput measurements 
for these two approaches to Infiniband connectivity are shown 
in Figures 8 and 9. 

 
Figure 8. Infiniband throughput in ESX 4.0 with DirectPath 

disabled 

 
Figure 9. Infiniband throughput in ESX 5.0 with DirectPath 

enabled 
 

These graphs show a roughly 10-fold difference in throughput 
with DirectPath enabled. Of course that throughput increase 
comes at the price of dedicating a network connection to a 
single virtual machine. In ongoing work we intend to extend 
the functionality of our existing Infiniband component to both 
versions of Infinband on VMware and to use these 



components to measure network performance characteristics 
on a variety of benchmarks across physical and virtual 
environments. 

VI. VMWARE COMPONENT 
The PAPI VMware component is the first PAPI component 

designed specifically for virtualized environments. This 
component is available, experimentally, in the current PAPI 
release.  Using VMware’s Guest SDK[17], the PAPI team was 
able to create a component, in a relatively short period of time, 
that reports both software events and what VMware calls 
“pseudo performance” counters [12]. VMware makes pseudo 
performance counters available through an rdpmc instruction to 
obtain fine-grained time from within the virtual space. 
However, the monitoring flag on the host machine must be set 
in order for this to be made available. Therefore, these three 
timing routines are disabled by default and can be activated 
dynamically at runtime through an environment variable, 
PAPI_VMWARE_PSEUDOPERFORMANCE.  

The counters made available to PAPI via the VMware 
Guest SDK are of the type that provides virtual machine 
statistics such as upper limit of the clock frequency, in MHz, 
available to the virtual machine, and the minimum clock 
frequency allocated to the virtual machine. These can give 
valuable information when evaluating the performance of a 
virtual machine as it is sharing the CPU with other VMs, as the 
clock frequency affects peak performance calculations.  

VII. VIRTUALIZED PROCESSOR COUNTERS 
The performance monitoring unit (PMU) of a processor 

typically includes: 
• A set of performance counter registers that count the 

frequency or duration of specific processor events 

• A set of performance event select registers used to 
specify the events that are tracked by the performance 
counter registers 

• A hardware interrupt that can be generated when a 
counter overflows 

• A time stamp counter (TSC) that can be used to count 
processor clock cycles 

The registers used in support of performance monitoring 
are model-specific registers (MSRs).  Each performance 
counter can be configured to count one event, or measure the 
duration of one event, at a time.  For event counting, the 
processor increments the counter whenever the event occurs 
(e.g., a cache miss).  For duration measurement, the processor 
counts the number of processor clock cycles required to 
complete an event (e.g., the latency of a cache miss). The TSC 
may be affected by power management events, such as 
processor frequency changes.   

Processor counters are widely used in the scientific 
computing community for application performance analysis, 
modeling, and tuning.  Events of interest include instruction 
counts and measurements of cache, memory, and TLB 
behavior. 

We currently have KVM in-guest performance counters 
working from PAPI. We used a 3.3 kernel on the host, a 3.2 
kernel in the guest, and the current git-snapshot of qemu. We 
exported the "native" CPU inside the guest. The current 
development version of PAPI compiles and runs fine.  PAPI 
can correctly detect that it is running inside KVM.  All of the 
PAPI acceptance tests pass except for profiling and overflow, 
as overflow isn't implemented.  Most numbers agree between 
bare metal and KVM, but we are investigating why virtual 
usec/cycles are higher on KVM. 

We installed VMware Workstation Technology Preview 
2012, and after resolving some license key issues we 
successfully ran it on our SandyBridge-EP machine. We were 
able to successfully compile PAPI from within VMware. The 
PAPI utilities show that we can properly detect that we are 
running inside of VMware and also the setup of the virtual 
hardware (number of virtual CPUs, number of virtual cores 
per CPUs). Compared to KVM, we don't see the same 
discrepancy between virtual cycles and seconds on the 
physical platform versus the virtual platform as we 
encountered with KVM. The ratio of virtual cycles to virtual 
seconds on physical hardware is fairly consistent to what we 
get from within VMware.  

VIII. PROJECT STATUS AND FUTURE WORK 
We are in the first year of a three-year project to implement 

PAPI for virtual environments.  The initial implementations of 
the I/O and VMware components can be obtained from the 
PAPI website at http://icl.eecs.utk.edu/papi/.  Timing routines 
and access to process counters will be provided as soon as we 
can ensure reliable and validated results.  

We have completed a series of redesigns and modifications 
of the PAPI library to refactor it to support virtual 
environments. One such change is simply exposing the 
existence of a virtual machine environment to the user space 
application. Another is refactoring operating system 
dependencies away from CPU dependencies to make the 
architecture more robust. These changes will be released as 
PAPI 5.0 (PAPI-V) sometime in the summer of 2012, once 
final feature implementation and testing are complete. We 
anticipate that further enhancements related to virtual 
environments will be incorporated into the library as we and 
the user community gain experience with this release. 

 We welcome comments and suggestions from the 
community on desired functionality for hardware performance 
monitoring in virtual environments, as well as feedback on our 
initial implementations.   
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