
PAPI-V: Performance Monitoring for
Virtual Machines

Matt Johnson, Heike McCraw, Shirley Moore, Phil
Mucci, John Nelson, Dan Terpstra, Vince Weaver

Electrical Engineering and Computer Science Dept.
University of Tennessee

Knoxville, TN 37996

Tushar Mohan
Minimal Metrics

Abstract—This paper describes extensions to the PAPI hardware
counter library for virtual environments, called PAPI-V. The
extensions support timing routines, I/O measurements, and
processor counters. The PAPI-V extensions will allow application
and tool developers to use a familiar interface to obtain relevant
hardware performance monitoring information in virtual
environments.

Keywords-performance counters; virutal machines; performance
analsis; performance monitoring

I. INTRODUCTION
Cloud computing involves use of a hosted computational

environment that can provide elastic compute and storage
services on demand. Virtualization is a technology that allows
multiple virtual machines (VMs) to run on a single physical
machine and share its resources. Virtualization is increasingly
being used in cloud computing to provide economies of scale,
customized environments, fault isolation, and reliability. To
address performance concerns with the use of cloud computing
for scientific computing, the PAPI-V project is developing a
system for hardware performance monitoring in virtualized
environments to enable software developers to understand and
optimize system and application performance and adapt to
changing conditions. To accomplish this goal, the project is
extending the widely used Performance API (PAPI) cross-
platform library [PAPI] for accessing hardware performance
counters [1].

A common approach to observing performance on non-
virtualized (i.e., native) systems is to use the hardware
performance counters available on modern microprocessors.
The counters can be accessed using the portable PAPI library
interface [1] or by using one of the many end-user performance
analysis tools that use PAPI underneath (e.g., TAU [2],
PerfSuite [3], Vampir [4], Scalasca [5]). The counters can
provide a wide range of information about processor, cache,
and memory performance. Recently developed PAPI
components for off-processor counters can provide additional
performance information about other components of the
system, such as the file system, network, temperature and
power consumption, and GPUs [6]. In virtualized systems,
however, access to hardware performance counters has

typically not been available due to lack of support for counter
virtualization.

The PAPI-V project is addressing the following aspects:

1. Timing: The PAPI timing routines are being extended to
provide standard real and virtual timers across different Virtual
Machine Monitors (VMMs).

2. Component measurements: The existing PAPI I/O,
network, and other shared resource components are being
extended to provide relevant information in virtualized
environments.

3. Virtualization of selected processor hardware counters: A
selected set of processor counters considered to be most
relevant for application performance analysis and tuning in
virtualized environments is being implemented across VMMs.

4. Interpretation of data: A mechanism for defining metrics
that correctly quantify the contributions of various factors to
overall performance is under development.

The research results will be implemented in the publically
available and widely used PAPI library. The PAPI-V extension
will allow application and tool developers to use a familiar
interface to obtain relevant information for achieving the best
possible performance in cloud computing environments.

The remainder of this paper is organized as follows: Section
II discusses related work on performance monitoring in virtual
environments. Section III discusses timing issues and
describes the PAPI timing routines. Section IV discusses
issues with I/O performance in virtual environments and
describes a PAPI component developed to provide I/O
performance measurements. Section V describes a PAPI
component developed to provide access to pseudo-counters in
VMware environments. Section VI describes preliminary
work on providing access to processor counters in virtual
environments. Section VII concludes with the project status
and future work.

II. RELATED WORK
Xenoprof [7] is a profiler specifically designed for Xen [8],

a VMM based on paravirtualization. Based on OProfile [9],

Xenoprof takes samples, writes them to disk, and connects
samples to programs and ultimately source code. Sampling is
driven by performance counter hardware: the profiler programs
performance counters to count certain events, and interrupt
after a certain number of them has been counted. The interrupt
service routine takes a sample. Like OProfile, Xenoprof can
only be used in system-wide mode.

perfctr-xen is an infrastructure to provide direct access to
hardware performance counters in virtualized environments
that use the Xen hypervisor [10]. Perfctr-xen relies on the
cooperation of guest kernel and underlying hypervisor to
provide profiling tools running in the guest with access to
performance counters that is compatible with the APIs used in
native, unvirtualized environments. Consequently, frameworks
and libraries that rely on PAPI can now be used inside Xen.
The author modified both the Xen hypervisor as well as the
guest kernel running inside each virtual machine. Perfctr-xen
supports both paravirtualized mode as well as hardware
virtualization mode and exploits optimizations that avoid trap-
and-emulate overhead when possible.

Performance counter virtualization for the hardware-
assisted KVM virtual machine monitor that is included in
recent versions of the Linux kernel is described in [11]. The
implementation uses a save-and-restore mechanism for PMU
registers. During inter-domain context switches, the hypervisor
saves and restores the PMU registers of a domain. The delivery
of overflow interrupts to a domain relies on hardware support
provided by architectural virtualization extensions. Such a full
virtualization approach has the advantage that it does not
require any changes to the guest kernel or user libraries, but it
will incur more overhead than a paravirtualization approach
since each instruction that changes a configuration register
requires a separate trap.

III. TIMING ROUTINES

A. Timing Issues
The PAPI-V project aims to use the best and most accurate

timers exposed by each VMM to implement a uniform timing
interface that can be used across VMMs. This timer
standardization will allow the same timing code to be used
from within an application regardless of which native or
virtualized environment it is running on. Some VMMs support
the notion of virtualized time, for example called “apparent
time” in VMware [12], whereby the virtual machine can have
its own idea of time. Some VMMs support a simple version in
which virtualized time is stored as a simple offset; whenever a
process requests the current time, the offset is added to the
current system time and the sum is returned. Other virtualized
time mechanisms, such as VMware’s, are more complicated,
allowing the virtual machine to fall behind and catch up as
needed. Even VMMs that support virtualized time have
exceptions that allow the guest operating system to access the
normal host system’s idea of time.

Most processors have a built-in hardware clock that allows
the operating system to measure real and process time. Real
time, also called elapsed or wall clock time, is the time

according to an external standard since some fixed point such
as the start of the life of a process. Process time is the amount
of the CPU time used by a process since it was created.
Process time is broken down into 1) user CPU time, as called
virtual time, which is the amount of time spent executing in
user mode; and 2) system CPU time, which the amount of time
spent executing in kernel mode. Measurement of process time
can be useful for evaluating the performance of a program,
including on a per-process or per-thread basis.

B. PAPI Timing Routines
 PAPI currently provides two basic timing routines:

PAPI_get_real_usec for wall clock time and
PAPI_get_virt_usec for process virtual time.

On modern Linux, PAPI uses the following POSIX timers:

• PAPI_get_real_usec(): uses
clock_gettime(CLOCK_REALTIME);

• PAPI_get_virt_usec() uses
clock_gettime(CLOCK_THREAD_CPUTIME_ID)

Figures 1 and 2 below show the results of measuring PAPI
real and virtual times for a naïve matrix-matrix multiply on
bare metal and on KVM, respectively, where the system is
overloaded with multiple processes doing busy work to
compete for CPU cycles. We obtained similar results using
VMware Workstation. In Figure 1, PAPI real time increases in
a stair-step fashion as more processes are added. PAPI virtual
time stays constant for the measured process, indicating that
time is only measured while the process of interest is scheduled
and running. Figure 2 shows these same measures for KVM
where multiple virtual machines are competing for physical
resources instead of multiple processes on a single machine. In
both cases real and virtual time are indistinguishable, since it
appears to PAPI that the measured process has full access to
the machine.

The real time is calculated on modern systems using the
highest resolution operating system timer available, augmented
with the timestamp counter if possible. The virtual time is
calculated by the scheduler. It records the time when a process
is scheduled in, then the time when it is scheduled out. Total
virtual time is a sum of all these intervals. If a virtual machine
is descheduled when a process is active, the descheduled time
appears to the scheduler as virtual time used by the process.
That is why virtual time is reported as the same as real time
under a VM – the scheduler is essentially is measuring wall
clock time as if it had sole access to the hardware.

In order to improve the accuracy of CPU time accounting
on virtual systems, the mechanism must be able to not only
distinguish between real and virtual CPU time but also
recognize being in involuntary wait states. These wait states are
referred to as steal time. Starting with kernel version 2.6.11,
Linux KVM/Xen added support for steal time accounting that
allows the scheduler to report the actual time running properly.
This is a sort of a paravirtualized virtual time that gets
information from the hypervisor on how often a VM was
scheduled out. We plan to use this feature to implement
compensation for steal time into the PAPI_get_virt_usec
routine.

We have added a steal time component to the PAPI 5.0
development version that allows measuring system-wide steal
time under KVM. These measurements can be used to adjust
timing measurement to compensate for time stolen by other
jobs, as shown in Figure 3. Currently, Linux and KVM only
provide system-wide steal time values; per-process values will
be needed to automatically and completely adjust PAPI virtual
time measurements.

Figure 1. Expected results on bare hardware

Figure 2. Virtual time on KVM affected by other guests

running on system

Figure 3. Virtual time adjustment using steal time

measurements

IV. I/O PERFORMANCE
Variable I/O performance has been found to significantly

impact application performance in virtual environments [13-
15]. We have developed an initial version of a PAPI
component, called Application I/O, or appio, for measuring IO

performance at application level in virtual environments. In its
current forms, appio has the following features:

• Intercepts read, write, fread and fwrite
• Supported events: READ_BYTES, READ_CALLS,

READ_ERR, READ_SHORT, READ_EOF,
READ_BLOCK_SIZE, READ_USEC,
WRITE_BYTES, WRITE_CALLS, WRITE_ERR,
WRITE_SHORT, WRITE_BLOCK_SIZE,
WRITE_USEC

• Works for 32-bit and 64-bit Linux
• Threads-safe (but no aggregation across threads)

We have been testing the appio component against IOZone
[16], a standard I/O benchmark, comparing I/O performance in
virtual environments with performance on bare metal. Results
are shown in Figures 4 through 7. The IOzone graphs provide
visual verification that the disk read and write subsystems in
these two physical and virtual machines are behaving as
expected. Data for the bare metal measurements were
collected using Ubuntu Linux on a dual Intel Xeon X5550
(Nehalem-EP) with 4 cores per chip clocked at 2.67 GHz and
8 MB of L3 cache. The virtual measurements were collected
using a Ubuntu Linux guest hosted by VMware ESX 5.0 on a
dual Intel Xeon X7550 (Nehalem-EX) with 8 cores per chip
clocked at 2.00 GHz and 18 MB of L3 cache. Because of these
differences, the measurements should not be compared
numerically, except for the general shapes of the measurement
surfaces.

 Table 1 compares the read and write rates for a single point
on the surfaces shown in Figures 4 through 7. As can been
seen, appio generally reports higher throughput than IOzone,
but the difference between the two measures is small,
particularly for the bare metal case. The differences for
VMware are somewhat larger, but still less than 10%. From
this data we conclude that appio can be used effectively to
measure and compare application I/O performance in both
virtual and physical systems.

Figure 4. IOzone read performance on bare metal

Figure 5. IOzone read performance on VMware ESX

Figre 6. IOzone write performance on bare metal

Figure 7. IOzone write performance on VMware ESX

Table 1. Comparison of read and write rates as measured by
IOzone and appio

Bare Metal VMware
Metric Type Rate Diff Metric Type Rate Diff

IOzone: Read
7.1
GB/s ---------- IOzone: Read

3.0
GB/s ----------

Write
2.7
GB/s --------- Write

1.3
GB/s ----------

appio: Read
7.3
GB/s 2.80% appio: Read

3.1
GB/s 3.30%

Write
2.7
GB/s ~ .001 % Write

1.4
GB/s 7.70%

V. NETWORK PERFORMANCE
One of the promises of Component PAPI is the ability to read
performance data from hardware beyond the CPU, such as

network interfaces. An example of such a network component
is the PAPI Infiniband component. A goal of this project is to
extend this functionality to virtual space. This effort has
proved to be more time consuming than originally thought,
both because of the learning curve involved and because of the
need to identify and configure resources for testing. To date
we have properly configured two systems with Infiniband and
VMware ESX 4 and 5. The ESX 4 system uses the VMware
virtualized Infiniband driver and the ESX 5 system uses the
DirectPath Infiniband driver. Initial throughput measurements
for these two approaches to Infiniband connectivity are shown
in Figures 8 and 9.

Figure 8. Infiniband throughput in ESX 4.0 with DirectPath

disabled

Figure 9. Infiniband throughput in ESX 5.0 with DirectPath

enabled

These graphs show a roughly 10-fold difference in throughput
with DirectPath enabled. Of course that throughput increase
comes at the price of dedicating a network connection to a
single virtual machine. In ongoing work we intend to extend
the functionality of our existing Infiniband component to both
versions of Infinband on VMware and to use these

components to measure network performance characteristics
on a variety of benchmarks across physical and virtual
environments.

VI. VMWARE COMPONENT
The PAPI VMware component is the first PAPI component

designed specifically for virtualized environments. This
component is available, experimentally, in the current PAPI
release. Using VMware’s Guest SDK[17], the PAPI team was
able to create a component, in a relatively short period of time,
that reports both software events and what VMware calls
“pseudo performance” counters [12]. VMware makes pseudo
performance counters available through an rdpmc instruction to
obtain fine-grained time from within the virtual space.
However, the monitoring flag on the host machine must be set
in order for this to be made available. Therefore, these three
timing routines are disabled by default and can be activated
dynamically at runtime through an environment variable,
PAPI_VMWARE_PSEUDOPERFORMANCE.

The counters made available to PAPI via the VMware
Guest SDK are of the type that provides virtual machine
statistics such as upper limit of the clock frequency, in MHz,
available to the virtual machine, and the minimum clock
frequency allocated to the virtual machine. These can give
valuable information when evaluating the performance of a
virtual machine as it is sharing the CPU with other VMs, as the
clock frequency affects peak performance calculations.

VII. VIRTUALIZED PROCESSOR COUNTERS
The performance monitoring unit (PMU) of a processor

typically includes:
• A set of performance counter registers that count the

frequency or duration of specific processor events

• A set of performance event select registers used to
specify the events that are tracked by the performance
counter registers

• A hardware interrupt that can be generated when a
counter overflows

• A time stamp counter (TSC) that can be used to count
processor clock cycles

The registers used in support of performance monitoring
are model-specific registers (MSRs). Each performance
counter can be configured to count one event, or measure the
duration of one event, at a time. For event counting, the
processor increments the counter whenever the event occurs
(e.g., a cache miss). For duration measurement, the processor
counts the number of processor clock cycles required to
complete an event (e.g., the latency of a cache miss). The TSC
may be affected by power management events, such as
processor frequency changes.

Processor counters are widely used in the scientific
computing community for application performance analysis,
modeling, and tuning. Events of interest include instruction
counts and measurements of cache, memory, and TLB
behavior.

We currently have KVM in-guest performance counters
working from PAPI. We used a 3.3 kernel on the host, a 3.2
kernel in the guest, and the current git-snapshot of qemu. We
exported the "native" CPU inside the guest. The current
development version of PAPI compiles and runs fine. PAPI
can correctly detect that it is running inside KVM. All of the
PAPI acceptance tests pass except for profiling and overflow,
as overflow isn't implemented. Most numbers agree between
bare metal and KVM, but we are investigating why virtual
usec/cycles are higher on KVM.

We installed VMware Workstation Technology Preview
2012, and after resolving some license key issues we
successfully ran it on our SandyBridge-EP machine. We were
able to successfully compile PAPI from within VMware. The
PAPI utilities show that we can properly detect that we are
running inside of VMware and also the setup of the virtual
hardware (number of virtual CPUs, number of virtual cores
per CPUs). Compared to KVM, we don't see the same
discrepancy between virtual cycles and seconds on the
physical platform versus the virtual platform as we
encountered with KVM. The ratio of virtual cycles to virtual
seconds on physical hardware is fairly consistent to what we
get from within VMware.

VIII. PROJECT STATUS AND FUTURE WORK
We are in the first year of a three-year project to implement

PAPI for virtual environments. The initial implementations of
the I/O and VMware components can be obtained from the
PAPI website at http://icl.eecs.utk.edu/papi/. Timing routines
and access to process counters will be provided as soon as we
can ensure reliable and validated results.

We have completed a series of redesigns and modifications
of the PAPI library to refactor it to support virtual
environments. One such change is simply exposing the
existence of a virtual machine environment to the user space
application. Another is refactoring operating system
dependencies away from CPU dependencies to make the
architecture more robust. These changes will be released as
PAPI 5.0 (PAPI-V) sometime in the summer of 2012, once
final feature implementation and testing are complete. We
anticipate that further enhancements related to virtual
environments will be incorporated into the library as we and
the user community gain experience with this release.

 We welcome comments and suggestions from the
community on desired functionality for hardware performance
monitoring in virtual environments, as well as feedback on our
initial implementations.

ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grant No. CCF-1117058 and by
VMware.

REFERENCES
[1] Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P. "A Scalable

Cross-Platform Infrastructure for Application Performance Tuning

Using Hardware Counters," Proceedings of SuperComputing 2000
(SC'00), Dallas, TX, November 2000.

[2] Shende, S. and A.D. Malony, The TAU Parallel Performance System.
International Journal of High Performance Computing Applications,
2006. 20(2): p. 287-311.

[3] 12. Kufrin, R., PerfSuite: An Accessible, Open Source Performance
Analysis Environment for Linux, in 6th International Conference on
Linux Clusters: The HPC Revolution (LCI 2005), April 2005: Chapel
Hill, NC.

[4] 13. Brunst, H., et al., Tools for scalable parallel program analysis:
Vampir NG, MARMOT, and DeWiz. International Journal of
Computational Science and Engineering, 2009. 4(3): p. 149-161.

[5] 14. Wolf, F., et al., Automatic analysis of inefficiency patterns in
parallel applications. Concurrency and Computation: Practice and
Experience, 2007. 19(11): p. 1481-1496.

[6] Terpstra, D., et al., Collecting Performance Data with PAPI-C, in Tools
for High Performance Computing, 2009: Dresden, Germany. p. 157-173.

[7] Menon, A., et al., Diagnosing Performance Overheads in the Xen
Virtual Machine Environment, in First ACM/USENIX Conference on
Virtual Execution Environments (VEE'05), June 2005.

[8] Barham, P., et al., Xen and the Art of Virtualization, in 19th ACM
Symposium on Operating Systems Principles (SOSP'03), 2003, ACM:
Bolton Landing, NY. p. 164-177.

[9] OProfile website. Available from: http://oprofile.souceforge.net/.

[10] Nikolaev, R. and G. Back, Perfctr-Xen: A Framework for Performance
Counter Virtualization, in 2011 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2011), March
2011: Newport Beach, CA.

[11] Du, J., N. Sehrawat, and W. Zwaenepoel, Performance Profiling of
Virtual Machines, in 2011 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE 2011), March
2011, ACM: Newport Beach, CA.

[12] Timekeeping in VMware Virtual Machines, 2010, VMware, Inc.: Palo
Alto, CA.

[13] Nanos, A., G. Goumas, and N. Koziris, Exploring I/O Virtualization
Data Paths for MPI Applications in a Cluster of VMs: A Networking
Perspective, in 5th Workshop on Virtualization in High Performance
Cloud Computing (VHPC'10), 2010: Naples, Italy.

[14] Kim, H., et al., Task-aware Virtual Machine Scheduling for I/O
Performance, in ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE'09), 2009: Washington, DC.

[15] Ongaro, D., A.L. Cox, and S. Rixner, Scheduling I/O in Virtual Machine
Monitors, in International Conference on Virtual Environments, 2008:
Seattle, WA.

[16] IOzone Filesystem Benchmark, http://www.iozone.org/
[17] VMware, vSphere Guest SDK Documentation, http://www.vmware.

com/support/developer/guest-sdk/

