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Abstract

GPU-based heterogeneous clusters continue to draw attention from vendors and HPC users due to their
high energy efficiency and much improved single-node computational performance, however, there is little
parallel software available that can utilize all CPU cores and all GPUs on the heterogeneous system effi-
ciently. On a heterogeneous cluster, the performance of a GPU (or a compute node) increases in a much
faster rate than the performance of the PCI-Express connection (or the interconnection network) such that
communication eventually becomes the bottleneck of the entire system. To overcome the bottleneck, we
developed a multi-level partitioning and distribution method that guarantees a near-optimal communication
volume. We have also extended heterogeneous tile algorithms to work on distributed-memory GPU clus-
ters. Our main idea is to execute a serial program and generate hybrid-size tasks, and follow a dataflow
programming model to fire the tasks on different compute nodes. We then devised a distributed dynamic
scheduling runtime system to schedule tasks, and transfer data between hybrid CPU-GPU compute nodes
transparently. The runtime system employs a novel distributed task-assignment protocol to solve data de-
pendencies between tasks without coordination between processing units. The runtime system on each
node consists of a number of CPU compute threads, a number of GPU compute threads, a task generation
thread, an MPI communication thread, and a CUDA communication thread. By overlapping computation
and communication through dynamic scheduling, we are able to attain a high performance of 75 TFlops
for Cholesky factorization on the heterogeneous Keeneland system [24] using 100 nodes, each with twelve
CPU cores and three GPUs. Moreover, our framework can also attain high performance on distributed-
memory clusters without GPUs, and shared-system multiGPUs.
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1 Introduction

Based on the November 2011 Green500 list [21],
twenty-three out of the top thirty greenest supercom-
puters are GPU-based. However, there is little soft-
ware that can take advantage of the large-scale het-
erogeneous systems efficiently, especially to utilize
all CPU cores and all GPUs. Considering many op-
erations of scientific computing applications are car-
ried out through numerical linear algebra libraries,
we focus on providing fundamental linear algebra
operations on the new heterogeneous architectures.

A great amount of effort has gone into the im-
plementation of linear algebra libraries. LAPACK
[5], Intel MKL, AMD ACML, and PLASMA [4]
are mainly designed for shared-memory multicore
machines. ScaLAPACK [10] is intended for dis-
tributed memory CPU-based machines. CUBLAS
[19], MAGMA [23], and CULA [16] provide a sub-
set of the LAPACK subroutines but work on a single
GPU. So far these libraries do not support computa-
tions using multiple CPU cores and multiple GPUs
on a single node, not to mention distributed GPU-
based clusters. Moreover, with an increasing number
of cores on the host whose performance continues
to keep up with the GPU performance, new parallel
software should not ignore either GPUs or CPUs.

Our work aims to provide a unified framework
to solve linear algebra problems on any number
of CPU cores, any number of GPUs, and for ei-
ther shared-memory or distributed-memory systems.
Our solution consists of three essential components:
(1) a static multi-level data distribution method, (2)
heterogeneous tile algorithms, and (3) a distributed
dynamic scheduling runtime system. The solution
works as follows. Given a matrix input, we first split
it into tiles of hybrid sizes. Then we distribute the
tiles to host main memories and GPU device memo-
ries on a cluster with a static method. Each compute
node runs a runtime system (launched as an MPI pro-
cess) that schedules tasks within the node dynami-
cally. Different nodes communicate with each other
by means of MPI messages. Our runtime system fol-
lows the data-flow programming model and builds
a partial directed acyclic graph (DAG) dynamically,
where a completed task will trigger a set of new tasks
in the DAG.

We use a static multi-level distribution method to

allocate data to different hosts and GPUs. Each com-
pute node is heterogeneous since it has both CPUs
and GPUs, but different nodes have the same per-
formance. Therefore, we design a multi-level dis-
tribution method. On the top (i.e., inter-node) level,
we use a 2-D block cyclic distribution method. On
the second (i.e., intra-node between different GPUs)
level, we allocate a node’s local blocks to merely
GPUs with a 1-D or 2-D block cyclic method. On
the third (i.e., intra-node between CPUs and GPUs)
level, we cut a slice from each GPU’s local block and
put it to the host. The output of the multi-level distri-
bution method is that each matrix block is uniquely
assigned to the host or a GPU on a specific node.

We also use heterogeneous tile algorithms to han-
dle the difference between CPUs and GPUs. In the
algorithms, there are a great number of small tasks
for CPU cores, and a great number of large tasks for
GPUs, to compute concurrently at any time. While a
heterogeneous tile algorithm is based on tiles, it has
two types of tiles: small ones for CPU cores, and
large ones for GPUs. Our work combines the het-
erogenous tile algorithms and the multi-level distri-
bution method together so that the algorithms are ap-
plicable to heterogeneous clusters with hybrid CPUs
and GPUs.

We design a distributed scheduling runtime system
for heterogeneous clusters. Each compute node is ex-
ecuting a runtime system that can solve data depen-
dencies dynamically, and transfer data from a parent
task to its children transparently. All runtime sys-
tems (one per node) proceed in parallel, and execute
a task-assignment protocol to build subsets (or parti-
tions) of a DAG dynamically. There is no communi-
cation required when building the DAG. The proto-
col guarantees that all runtime systems make a unan-
imous decision without coordinating with each other
such that every task is computed by one and only one
processing unit (on a host or a GPU).

Our experiments with double-precision Cholesky
and QR factorizations, on the heterogeneous
Keeneland system [24] at the Oak Ridge National
Laboratory, demonstrate great scalability from one
to 100 nodes using all CPUs and GPUs. In addi-
tion, we apply our framework to the other two possi-
ble environments: clusters without GPUs, and shared
systems with multiple CPUs and multiple GPUs.
Compared with vendor-optimized and open source
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libraries (i.e., Intel MKL 10.3.5, and StarPU 0.9.1
[6]), our framework is able to provide better perfor-
mance thank Intel MKL by up to 75% on clusters
without GPUs, and up to 250% better performance
than StarPU on shared-system multiGPUs.

2 Background

We place greater emphasis on communications in
our framework design. On a host that is attached
with multiple GPUs through PCI-Express connec-
tions, the ratio of computation to communication on
the GPUs keeps increasing. Eventually the commu-
nication time on a PCI-Express connection will be-
come the bottleneck of the entire system.

Researchers often use dynamic scheduling meth-
ods to support heterogeneous systems, where each
CPU core or GPU picks up a ready task from task
queues independently whenever a processing unit be-
comes idle. At the beginning of our design, we have
also implemented a dynamic scheduling runtime sys-
tem. In our dynamic runtime system, all the CPU
cores and GPUs share a global ready task queue, and
each GPU owns a software cache on its device mem-
ory. Whenever a GPU reads a block of data from the
host, it stores the data to its software cache. All the
data in the GPUs’ software caches are also backed
up by the main memory on the host. We have used
two cache writing policies: write-through and write-
back. With the write-through policy, every modifica-
tion to the software cache must be updated to the host
main memory immediately. With the write-back pol-
icy, a modification to the software cache is updated to
the host main memory only when a different device
wants to access the modified data. To achieve the
best performance, our software cache size on each
GPU is configured as large as the input matrix size
to eliminate capacity cache misses.

Figure 1 shows our experiments with the double-
precision Cholesky factorization on a single node
of the Keeneland system using 12 cores and 3
Nvidia Fermi GPUs. In the figure, we compare
our software-cache based dynamic scheduling run-
time system, the generic dynamic scheduling run-
time system of StarPU [6], and our distributed-GPUs
framework that builds upon a static data distribution
method. By changing from the write-through pol-
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Figure 1: A comparison between dynamic schedul-
ing systems and our distributed-GPU framework.

icy to the write-back policy, we can improve the pro-
gram performance greatly due to reduced communi-
cations.

Differently, StarPU consists of profiling, perfor-
mance modeling, and sophisticated scheduling poli-
cies to achieve load balancing and to reduce data
transfers. However, since our static data distribu-
tion method can guarantee a near lower-bound com-
munication cost and has less scheduling overhead,
it is faster than StarPU by up to 250% for small to
medium matrix sizes. This has inspired us to em-
ploy a static data distribution method on GPU-based
clusters. Here we emphasize that despite its better
performance, our framework is intended for solving
dense linear algebra problems, while StarPU is more
generic and can support other applications.

3 Heterogeneous Tile Algorithms

Our previous work has designed a class of hetero-
geneous tile algorithm and applied them to shared-
system multiGPUs [22]. Here we mention it briefly
for completeness. In the algorithm, every task takes
several individual tiles as input and output. Also on
a heterogeneous system with CPUs and GPUs, we
create two different tiles.

Figure 2 shows a matrix that is stored in a tile
data layout with two different tiles. All the tasks
that modify small tiles are to be executed by CPU
cores, and those that modify large tiles are to be ex-
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Figure 2: An example of the heterogeneous tile algo-
rithm for Cholesky factorization.

ecuted by GPUs. Given a matrix with three tile rows
and six tile columns, Cholesky factorization can be
computed recursively as follows. At the first iter-
ation, (1) we solve Cholesky factorizations on tiles
A11, A21, and A31 in the first column. That is,
L11 ← Cholesky(A11), and Lij ← Aij(L

T
11)

−1;
(2) then we update the trailing submatrix located be-
tween the second and the last sixth column. That is,
Aij ← Aij − Li1Lj1. The Cholesky factorization
can be completed by recursively applying the above
two steps to the trailing submatrix that starts from
the j-th tile column. If a matrix has n tile columns,
the factorization takes n iterations to complete. The
same idea can be applied to other matrix factoriza-
tions (e.g., QR and LU factorizations). For more
details, please refer to our paper [22] for the exact
algorithms of Cholesky and QR factorizations.

3.1 Static Multi-Level Block Cyclic Data
Distribution

This section presents a new multi-level partitioning
scheme to create small and large tiles on distributed-
memory heterogeneous clusters. (1) At the top level,
we divide a matrix into p×p large tiles, each of which
is of size B×B. (2) We distribute the p×p large tiles
to a Pr × Pc process grid using a 2-D block cyclic
method. There is one process per node. (3) At the
bottom level (i.e., within each node), we vertically
cut every large tile of size B×B on each node into a
number of (s− 1) small tiles of size B × b, and one
remaining large tile of size B× (B− (s−1) · b). We
allocate the small tiles to the entire set of CPU cores
on the host, while allocate the remaining large tiles
to GPUs using a 1-D or 2-D block cyclic method. So
far we use a 1-D method because of the small number
of GPUs (i.e., ≤ 4) on each compute node.

After the multi-level block cyclic data distribution,
each node is assigned to a number of p

Pr
× p·s

Pc
rectan-

gular tiles. Given a tile indexed by [I, J], we first map
it to node Ni then to device Dj , where D0 denotes
the host, and Dj≥1 denotes the j-th GPU located on
node Ni. Assuming each node has G GPUs, we can
calculate node Ni (0 ≤ i ≤ PrPc-1), and device Dj

as follows:

Ni = (I mod Pr) · Pc + (
J

s
mod Pc),

Dj =

{
0 : (J mod s) < s− 1

(J/sPc
mod G) + 1: (J mod s) = s− 1

In other words, Step (2) distributes the large tiles
across Pr × Pc nodes (for Ni). Next, within each
node, the tile columns whose indices are multiples
of (s−1) are mapped to the node’s G GPUs in a 1-D
cyclic way, and the rest of the columns are mapped to
all CPUs on the host (for Dj). Although small tasks
are assigned to all the CPUs, each CPU core can pick
up any small task independently (i.e., not in a fork-
join manner). We also tune the tile sizes of B and
b to achieve the highest performance. Appendix A.1
describes how we choose the best tile sizes.

4 Our Framework Overview

We design a distributed dynamic scheduling runtime
system for the heterogeneous GPU-based clusters.
Given a cluster with P nodes, we launch P MPI pro-
cesses (one process per node), each of which exe-
cutes an instance of the runtime system. We also as-
sume a matrix is stored in the hybrid tile data layout
that uses two different tile sizes.

Not only do we distribute data to hosts and GPUs
on different nodes statically, but also we distribute
tasks to hosts and GPUs statically. We require that
the location of a task be the same as the location
of the task’s output. Although a task’s allocation is
static, we schedule tasks dynamically within a host
or GPU in order to reduce synchronization points and
overlap computation with communication.

Our runtime system follows a dataflow pro-
gramming model and is essentially data-availability
driven. Whenever a parent task completes, it triggers
its child tasks immediately. The runtime system can
identify data dependencies between tasks and unroll
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a Directed Acyclic Graph (DAG) dynamically. Note
that a DAG has never been created and stored in our
runtime system explicitly. A parallel program starts
with an entry task and finishes with an exit task of
the DAG, respectively. The runtime system is also
responsible for transferring data from a parent task
to its children transparently.

Each runtime system instance is multi-threaded.
It creates five types of threads: a task-generation
thread, a set of CPU compute threads for CPU cores,
a set of GPU management threads for GPUs, an
inter-node MPI communication thread, and an intra-
node CUDA communication thread. If a machine is
not distributed, the MPI communication thread is not
created. Similarly, if there is no GPU, the CUDA
communication thread is not created.

A task-generation thread create tasks (similar to
a CPU issuing instructions) and drives the execu-
tion of a user program. There are actually P task-
generation threads running on P compute nodes. All
the task-generation threads execute the same serial
program independently and create task instances for
the program without communication. They execute
a distributed task-assignment protocol. Based on the
common knowledge of the static multi-level distri-
bution, each task-generation thread is able to decide
by itself which task it should compute and where the
task’s children are located without exchanging any
messages.

5 The Framework Implementation

As shown in Fig. 3, our runtime system consists
of seven components that are listed as follows. (1)
Task window: a fixed-size task queue that stores
all the generated but not finished tasks. (2) Ready
task queues: a number of ready task lists. (3) Task-
generation thread: a single thread that executes a
serial program and generates new tasks. (4) CPU
compute threads: there is a compute thread running
on each CPU core. (5) GPU management (or com-
pute) threads: there is a GPU management thread for
each GPU. (6) MPI communication thread: a single
thread that transfers data between different nodes.
(7) CUDA communication thread: a single thread
that transfers data among the host and multiple GPUs
within the same node using cudaMemcpyAsync.

Task-generation thread 

... Task window: 

... 

... 

mbox: 

Ready 
tasks: Ready 

tasks: 
Ready 
tasks: 

Ready 
tasks: 

Multicore Host GPU1 GPU2 GPUn 

MPI mbox: mbox: mbox: 
GPUDirect V2.0 

HPC Network 
Compute threads 

MPI thread 

CUDA thread 

Figure 3: The runtime system architecture on each
hybrid CPU-GPU compute node.

5.1 Different Task Queues

A task window stores generated tasks in a single-
linked list. It also keeps the original sequential order
between tasks. Each task consists of the informa-
tion of a task’s input and output. Based on the input
and output information, when a task modifies its out-
put, the runtime system can scan the list to search for
the tasks who are waiting for the output. However,
a global task list is often too long to search and can
result in severe contention between threads.

To make accesses to the task window faster, we
use 2-D task lists to implement the task window. As
illustrated in Fig. 4, each tile in a matrix has its own
task list. If a task’s input or output is tile [I, J], the
runtime system will add an instance of the task to [I,
J]’s task list. When a matrix is distributed to different
compute nodes, we partition the 2-D task lists into
different nodes according to the location of the tiles.
That is, if tile [I, J] is allocated to node Pk, tile [I, J]’s
task list is also assigned to node Pk.

A ready task queue stores “ready-to-go” tasks
whose inputs are all available. If a task writes to a
tile that belongs to the host or a GPU, it is added to
that host or GPU’s ready task queue correspondingly.
Task stealing has not been implemented to avoid un-
necessary data transfers and to increase data reuse. In
addition, a ready task in our implementation is sim-
ply a pointer that points to a task stored in the task
window.
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5.2 Solving Data Dependencies

A tile’s task list keeps the serial semantic order be-
tween tasks that either read or write the tile. When-
ever two tasks access the same tile and one of them is
write, the runtime system detects a data dependency
and stalls the successor till the predecessor is fin-
ished. Here we only consider the true dependency
RAW (read after write), and use renaming to elimi-
nate the WAR (write after read) and WAW (write af-
ter write) dependencies. Figure 5 shows an example
of a task list that is used for tile A[i, j], where tasks
1-3 are waiting for task 0’s output.

There are two operations to access a task list:
FIRE and APPEND. After a task completes and mod-
ifies its output tile [I, J], the FIRE operation searches
[I, J]’s task list for those tasks that want to read [I, J].
It scans the list from the just completed task to find
which tasks are waiting for [I, J]. The scan process
will exit when confronting a task that wants to write
to [I, J]. If a task is visited before the scan process
exits, the FIRE operation marks the task’s input as
“ready”. When all the inputs of a task become ready,
the task evolves into a ready task.

The APPEND operation is invoked only by the
task-generation thread. After generating a new task,
the generation thread inspects every input and out-
put of the task. Given an input that reads tile [I, J],
before appending the input task instance, APPEND
scans [I, J]’s task list from the list head to find if there
exists a task that writes to tile [I, J]. If none of them
writes to [I, J], the input task instance is marked as
“ready”. Otherwise, it is “unready”. By contrast,
given an output [I, J], APPEND puts an output task
instance to the end of [I, J]’s task list immediately.

list of tasks

Figure 4: The 2-D task window implementation.
Each tile has its own task list whose tasks either read
or write the tile.

5.3 Computation Component

Each CPU core has a CPU compute thread. When-
ever a CPU compute thread becomes idle, it picks up
a ready task from the host’s shared ready task queue
and computes it on its own. After finishing the task,
it invokes the FIRE operation to determine which
tasks are the children of the finished task, and moves
them to a ready task queue if possible.

Similarly, each GPU has a GPU compute thread.
A GPU compute thread is essentially a GPU man-
agement thread, which is running on the host but
can start GPU kernels quickly. For convenience, we
think of the GPU management thread as a powerful
compute thread. If a node has g GPUs and n CPU
cores, our runtime system will launch g GPU com-
pute threads to represent (or manage) the g GPUs,
and (n − g − 2) CPU compute threads to represent
the remaining CPU cores. The remaining number of
CPU cores is not equal to (n − g) since we use one
CPU core for MPI communication and another one
for CUDA memory copies.

5.4 Communication Component

There are two types of communications on a GPU-
based cluster: communication between nodes, and
communication within a node. On each node, we
launch a thread to perform MPI operations to transfer
data between different nodes, and another thread to
copy memories among the host and different GPUs
on the same node.

The technique of CUDADirect V2.0 supports di-
rect memory copies between GPUs on the same
node. It may also send or receive GPU buffers on dif-
ferent nodes directly if an MPI library supports CU-
DADirect. To make our framework more portable,
we choose to move data from GPU to the host on the
source node first, then send it to a destination node.

R1: *
R2: *
W: A[i,j]

R1: A[i,j]
R2: *
W: *

R1: A[i,j]
R2: *
W: *

R1: *
R2: A [i,j]
W: *

R1: *
R2: *
W: A [i,j]

Task 0 Task 1 Task 2 Task 3 Task 4

Figure 5: Solving data dependencies for a set of tasks
that read or write tile A[i, j]. The completion of Task
0 will fire Tasks 1-3 that want to read A[i,j].
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After the destination host receives the data, it copies
the data from its host to one or more of its GPUs.

An MPI communication thread runs on a dedi-
cated CPU core. It calls nonblocking MPI point-to-
point operations to send and receive messages. At
the beginning, the thread posts an MPI Irecv oper-
ation and an MPI Isend operation. Next, it checks
whether the pending receive or send operation has
finished with busy-polling. Whenever an operation
is finished, it posts a new operation to replace the
finished one so that there are always two operations
(one receive and one send) ongoing at the same time.
Figure 9 in Appendix A shows our pseudocode to im-
plement the MPI communication thread. In the code,
wait4send and wait4recv indicate if there ex-
ists a pending send or receive operation.

A CUDA communication thread also uses a ded-
icated CPU core on the host. Each GPU has two
mail boxes: out mbox and in mbox. The mes-
sages in an out mbox are intended from the GPU to
other devices, and the messages in an in mbox are
intended from other devices to the GPU itself. We
create two streams for each GPU: one for outgoing
traffic and the other for incoming traffic. Similar
to the MPI communication thread, the CUDA com-
munication thread tries to start one incoming mem-
ory copy and one outgoing memory copy for each
GPU simultaneously. If there are a number of g
GPUs, there will be 2g cudaMemcpyAsync opera-
tions happening concurrently in which each GPU has
two operations. To implement the CUDA communi-
cation thread, wait4send and wait4recv have
been changed to bitsets, where the i-th bit denotes
the status of the i-th GPU. We have also implemented
select GPU streams to substitute MPI Test
so that we can test in which GPU streams the asyn-
chronous cudaMemcpy operations have finished.

5.5 Data Storage and Management

The host and each GPU have an indirect data struc-
ture to store matrices. Given a matrix with p×q tiles,
the indirect structure consists of p × q pointers each
pointing to a tile. A pointer is null if the correspond-
ing tile is not stored in the host or GPU. We store a
GPU’s indirect data structure to the host memory, but
the pointers in the GPU’s indirect structure actually
point to GPU device memories. By using the indi-

rect data structure, a GPU compute thread can sim-
ply look up the structure and pass correct arguments
(i.e. GPU device pointers) to launch GPU kernels.

Our runtime system can transfer data from a par-
ent task to its children automatically, however, it does
not know how long the data should persist in the
destination device. We provide programmers with a
special function of Release Tile() to free data.
Release Tile does not free any memory, but sets up
a marker in the task window. The marker tells the
runtime system that the tile will not be needed by
any future tasks (i.e., tasks after the marker), and it
is safe to free the tile whenever possible. When a
programmer writes a sequential program, he or she
can add Release Tile() to the program just like call-
ing the ANSI C function free. The task-generation
thread keeps track of the expected number of visits
for each tile. Meanwhile the compute threads count
the actual number of visits for each tile. The runtime
system will free a tile if and only if: i) Release Tile
has been called to mark the tile, and ii) the actual
number is equal to the expected number of visits to
the tile. In essence, this is an asynchronous deallo-
cation method with which a dynamic runtime system
can decide when it is safe to free data.

6 Distributed Task Assignment
Protocol

Numerous runtime systems (one per node) execute
the same code and generate the same set of tasks so
that a task may be duplicated on each node. We de-
sign a protocol to guarantee that a task is computed
by one and one one processing unit (CPU or GPU),
and an input is sent to a waiting task only once.

Given a task with k1 inputs, all the runtime sys-
tems across the cluster will generate k1 input task
instances in total. It is exactly k1 instances because
each input belongs to exactly one node and only that
node will claim ownership of the input. Also we de-
fine that the first output of a task is the main output,
and the rest outputs are minor outputs.

Our runtime system generates eight types of task
instances using a set of rules. The rational behind
the rules is that when all runtime systems look at
the same input or output, they should make a unan-
imous decision merely based on a predefined distri-
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bution (i.e., the multi-level block cyclic distribution)
without any communication. Note that the following
rules of 1, 2-4 and 5-8 are used to generate a task’s
main output, inputs, and minor-outputs, respectively.

1. Owner. Each runtime system looks at a newly
generated task’s main output. If the main output
is assigned to the host or a GPU on nodei based
upon a static data distribution, only nodei’s run-
time system will create an owner task instance.
An owner task instance stores the complete in-
formation of the task (i.e., input, output, the
ready status of each input).

2. Native input. Each input of a new task will be
checked by every runtime system. If the input
and the task’s main output are assigned to the
same host or GPU (e.g., on nodei), only nodei’s
runtime system will create a native-input task
instance. The native-input instance stores a
pointer pointing to the task’s owner instance.

3. Intra-node alien input. Unlike Rule 2, if the
input and the task’s main output belong to
the same node (e.g., on nodei) but on differ-
ent devices, the runtime system on nodei will
create an intra-node alien-input task instance.
The intra-node alien-input instance also stores
a pointer pointing to the task’s owner instance.

4. Inter-node alien input. Unlike Rule 3, if the
input and the task’s main output belong to dif-
ferent nodes, and suppose the input belongs to
nodei, the runtime system on nodei will cre-
ate an inter-node alien-input task instance. The
inter-node alien-input instance stores the loca-
tion of the task’s main output.

5. Native minor-output. Every runtime system
looks at each minor output of a newly generated
task. If the minor output and the task’s main
output belong to the same host or GPU (e.g., on
nodei), the runtime system on nodei will create
a native minor-output task instance. The task’s
owner instance stores a pointer pointing to the
native minor-output instance.

6. Sink minor-output. Unlike Rule 5, if the minor
output and the main output belong to different
devices (regardless of nodes), and suppose the

minor output is assigned to nodej , the runtime
system on nodej will create a sink minor-output
task instance. The sink instance is expecting its
correponding source to send data to it.

7. Intra-node source minor-output. If the minor
output and the main output belong to different
devices but on the same node (e.g., nodei), the
runtime system on nodei will create an intra-
node source minor-output task instance. The
intra-node source minor-output stores a pointer
pointing to its corresponding sink instance (gen-
erated by Rule 6) on the same node.

8. Inter-node source minor-output. If the minor
output and the main output belong to differ-
ent nodes, and suppose the main output is as-
signed to nodei, the runtime system on nodei
will create an inter-node source minor-output
task instance. The inter-node source minor-
output stores the location of its corresponding
sink instance on a remote node.

Since we require the location of an owner task
instance be where the task computation occurs, our
runtime systems is designed to support linking a
task’s input instances, minor-output instances, and
owner instance together so that the availability of an
input triggers the owner. In our runtime system, the
linking information is either a pointer or the location
of the owner task instance. Also by distinguishing
intra-node from inter-node, the runtime system can
decide if it needs to copy data to a different device,
or even send an MPI message to a different node in
order to fire a child task.

A distinctive feature of the protocol is that all the
runtime systems can follow the same rules to gener-
ate tasks and solve data dependencies in an embar-
rassingly parallel manner without any communica-
tion (except for the actual data transfers).

7 Performance Evaluation

We conducted experiments with the Cholesky and
QR factorization in double precision on the heteroge-
neous Keeneland system [24] at the Oak Ridge Na-
tional Laboratory. The Keeneland system has 120
nodes and is connected by a Qlogic QDR InfiniBand

7
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Figure 6: Weak scalability on distributed GPUs. (a) and (b) show the overall performance, while (c) and (d)
show the performance-per-node for the Cholesky and QR factorizations (in double precision), respectively. Every
experiment uses all 12 CPU cores and 3 GPUs on each node.

network. Each node on the system runs CentOS 5.5,
and has two Intel Xeon 2.8 GHz 6-core processors
and three Nvidia Fermi 1.15 GHz M2070 GPUs. The
host on each node has 24 GB memories, and each
GPU has 6 GB device memories. There is a full PCI-
Expresse bandwidth to every GPU on the system. All
the nodes have installed CUDA 4.0, Intel Compilers
12.0, Intel MKL 10.3.5, and OpenMPI 1.5.1.

In the following experiments, we perform weak
scalability experiments to measure the capability of
our programs to solve potentially larger problems
if there are more computing resources. While we
are focused on clusters with distributed GPUs, our
framework is also able to achieve high performance
in the other two environments: multicore clusters
without GPUs, and shared-system multiGPUs (i.e.,
a node with both CPUs and GPUs).

7.1 Distributed GPUs

We did experiments on Keeneland using all twelve
CPU cores and all three GPUs on each node. Figure
6 shows how our distributed-GPU framework scales
as we increase the number of nodes and the matrix
size simultaneously. Although there are 120 nodes
on Keeneland, its batch scheduler only allows a job
to use 110 nodes in maximum. Considering one or
two nodes are unavailable sometimes, we use a num-
ber of nodes from one to 100. As the number of
nodes is increased by k, we increase the matrix size
by
√
k. The single-node experiment takes an input

matrix of size 34,560.
In our experiments, we measure the total num-

ber of TeraFlops to solve the Cholesky factorization

and the QR factorization, shown in Figure 6 (a) and
(b), respectively. To display the possible maximum
performance (i.e., upper bound) of our programs,
we also depict the curves of DGEMM and DSS-
RFB that are the dominant computational kernels of
Cholesky factorization and QR factorization, respec-
tively. We calculate an upper bound by the follow-
ing formula: kernel UB = serial cpu kernel perf
× #cores + gpu kernel perf × #gpus. To show the
benefits of using GPUs, we also present the perfor-
mance of the Intel MKL 10.3.5 ScaLAPACK library
which uses CPUs only. In (a), the overall perfor-
mance of our distributed-GPU Cholesky factoriza-
tion reaches 75 TFlops on 100 nodes, while MKL
ScaLAPACK reaches 6.3 TFlops. In (b), the overall
performance of our distributed-GPU QR factoriza-
tion reaches 40 TFlops on 100 nodes, while MKL
ScaLAPACK reaches 9.2 TFlops.

Figure 6 (c) and (d) show another view (i.e., Per-
formance Per Node) for the same experiments as dis-
played in (a) and (b). That is, TFlops-Per-Node =
Overall TF lops
NumberNodes on a given number of nodes. Ideally,

the performance-per-node is a constance number in
a weak scalability experiment. From (c), we can
see that our distributed-GPU Cholesky factorization
does not lose any performance from one node to 100
nodes. In (d), our distributed-GPU QR factorization
scales well again from four nodes to 100 nodes. The
performance-per-node on four nodes drops from 0.44
TFlops to 0.41 TFlops because the four-node experi-
ment uses a 2× 2 process grid and has a larger com-
munication overhead than a process grid with Pr = 1
(Appendix A.2 analyzes the related communication
cost).
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Figure 7: Weak scalability on clusters with CPUs only. Every experiment uses 12 CPU cores on each node.

7.2 Clusters without GPUs

We did another set of experiments to test whether
our framework is capable of delievering high per-
formance if a system is a conventional cluster with-
out GPUs. We only use the 12 CPU cores on each
Keeneland node to do the experiments, and compare
our Cholesky and QR factorization implementation
with the Intel MKL 10.3.5 ScaLAPACK library.

We performed weak scalability experiments again,
where the input size increases by

√
2 whenever we

double the number of nodes. In Fig. 7 (a), the
overall performance of our Cholesky factorization
is faster than the ScaLAPACK Cholesky factoriza-
tion by 75% on 100 nodes. In (b), our QR factor-
ization and the ScaLAPACK QR factorization have
comparable overall performance. Figure 7 (c) and
(d) show the performance per node. In (c), our CPU-
only Cholesky factorization scales well from 2 to 100
nodes. Its curve has a dip from one to two nodes
since our runtime system on each node uses a ded-
icated core to do MPI communication (i.e., 1

12 less
computing power) if there are more than one node.
Similar to Cholesky factorization, in (d), our QR fac-
torization scales well from 4 to 100 nodes. Because
of its good scalability, our QR program eventually
outperforms the Intel MKL ScaLAPACK QR factor-
ization by 5% when the number of nodes is greater
than 32. Note that we use 11 out of 12 cores on each
node to do the real computation, while ScaLAPACK
uses all 12 cores, however we are still 5% faster.

7.3 Shared-System MultiGPUs

To evaluate our framework on a shared-system with
multicore CPUs and multiple GPUs, we compare our
Cholesky factorization to StarPU 0.9.1 [6] on a single
node of the Keeneland system.
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Figure 8: Cholesky factorization (in double preci-
sion) on a shared-system with 12 cores and 3 GPUs.

StarPU uses a dynamic scheduling runtime system
to assign tasks to CPUs and GPUs to keep load bal-
ancing and reduce data transfers. The StarPU imple-
mentation of Cholesky factorization uses the same
computational kernels as ours, which calls subrou-
tines from the Intel MKL 10.3.5, CUBLAS 4.0, and
MAGMA 1.0 libraries. With the help from one of the
StarPU developers, we ported the StarPU Cholesky
factorization to Keeneland and also tuned its perfor-
mance thoroughly. Porting the StarPU QR factoriza-
tion to Nvidia Fermi GPUs is not successful so far
due to numerical errors in the result.

Figure 8 shows the overall performance of our
framework and StarPU 0.9.1 to solve double-
precision Cholesky factorizations. All the StarPU
experiments use 9 CPU cores and 3 GPUs to do the
real computation, and use the remaining three cores
to manage the three GPUs. By contrast, our imple-
mentation uses 8 CPU cores and 3 GPUs to do the
real computation since we also use an additional core
to do CUDA communications. The performance data
shows that our framework can rise to high perfor-
mance more quickly than the StarPU program. When
the input size is not too large, our framework is faster
than StarPU (i.e., 250% faster when N ≤ 7680, and
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100% faster when N ≤ 12480). When the input size
is sufficiently large (i.e., N ≥ 26,880), StarPU starts
to be close to our framework.

8 Related Work

There are a number of runtime systems developed to
support multiple GPU devices on a shared-memory
system. StarPU develops a dynamic scheduling run-
time system to execute a sequential code on the host
CPUs and GPUs in parallel [6], and has been applied
to the Cholesky, QR, and LU factorizations [3, 2, 1].
SuperMatrix is another runtime system that supports
shared-memory systems with multiple GPUs [20].
It uses several software-cache schemes to maintain
the coherence between the host RAM and the GPU
memories. While SuperMatrix requires that GPUs
take most of the computations, our framework uti-
lizes all CPU cores and all GPUs on both shared-
memory and distributed-memory systems.

StarSs is a programming model that uses direc-
tives to annotate a sequential source code to execute
on various architectures such as SMP, CUDA, and
Cell [7]. A programmer is responsible for specifying
which piece of code should be executed on a GPU.
Its runtime then executes the annotated code in par-
allel on the host and GPUs. It is also possible to use
the hybrid MPI/SMPSs approach to support clusters
with multicore CPUs [18].

There is research work that supports scientific
computations on distributed GPUs. Fatica [14] uses
CUDA to accelerate the LINPACK Benchmark [13]
on heterogeneous clusters by modifying the origi-
nal source code slightly. The revised code inter-
cepts every DTRSM or DGEMM call, and splits it
into two calls to execute on both CPUs and GPUs,
respectively. Those calls to CPUs rely on setting
OMP NUM THREADS to utilize all CPU cores on the
host. Differently, our distributed GPU framework
allows every CPU core to compute tasks indepen-
dently. On the other hand, we use one MPI process
per node, instead of one MPI process per GPU.

Fogué et al. ported the PLAPACK library to
GPU-accelerated clusters [15]. They require that
CPUs compute the diagonal block factorizations
while GPUs compute all the remaining operations.
They also store all data in GPU memories to reduce

communication. In our method, we distribute a ma-
trix across the host and GPUs, and can utilize all
CPU cores and all GPUs. Note that it is possible that
the computational power of a host may be greater
than that of a GPU such that the host needs to com-
pute most of the work.

Many researchers have studied the static data
distribution strategies on heterogeneous distributed
memory systems. Dongarra et al. designed an algo-
rithm to map a set of uniform tiles to a 1-D collection
of heterogeneous processors [11]. Robert et al. pro-
posed a heuristic 2-D block data allocation to extend
ScaLAPACK to work on heterogeneous clusters [9].
Lastovetsky et al. developed a static data distribu-
tion strategy that takes into account both processor
heterogeneity and memory heterogeneity for dense
matrix factorizations [17]. Our work targets clusters
of nodes that consist of multicore CPUs and multi-
ple GPUs, and uses a novel static multi-level block
cyclic strategy.

9 Conclusion and Future Work

As the trend of adding more GPUs to each node to
deliver high performance continues, it is important
to start to design new parallel software on the hetero-
geneous architectures. We present a new framework
to solve dense linear algebra problems on large-scale
GPU-based clusters. To attain scalable performance,
we focus our design on minimizing communication,
maximizing the degree of task parallelism, accom-
modating processor heterogeneity, hiding communi-
cation, and keeping load balance. The framework
essentially consists of a static multi-level partition-
ing and distribution method, heterogeneous tile algo-
rithms, and a distributed scheduling runtime system.

Our experiments with the Cholesky and QR fac-
torizations on the heterogeneous Keeneland sys-
tem demonstrate great scalability in various environ-
ments: clusters with or without GPUs, and shared-
systems with multi-GPUs. Our future work along
this line is to apply the approach to two-sided factor-
izations and sparse matrices. Another future work is
to add NUMA support to our runtime system to im-
prove performance on each node that has hundreds
or even thousands of CPU cores as well as a great
number of NUMA memory nodes.
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wait4send = wait4recv = 0;
while(!is_done || wait4send) {

if(!is_done && !wait4recv) {
call MPI_Irecv(recv_buf, MPI_ANY_SOURCE,

&recv_req);
wait4recv = 1;

}
if(!wait4send) {

msg = get_msg(host’s out_mbox);
call MPI_Isend(msg->data, msg->dst_pid,

&send_req);
wait4send = 1;

}
if(wait4send) {

call MPI_Test(&send_req);
if(success) wait4send = 0;

}
if(wait4recv) {

call MPI_Test(&recv_req);
if(success) {

store recv_buf to the host memory;
wait4recv = 0;

}
}

}

Figure 9: Pseudocode of the MPI communication
thread in our distributed runtime system.

A Appendix

A.1 Tile Size Auto-Tuning

We adjust the ratio of the small tiles on the host to the large
tiles on GPUs to keep load balancing between CPUs and
GPUs within each node. Meanwhile the load balancing
between nodes is attained automatically by the 2-D block
cyclic distribution method.

Given a tile of size B × B, we partition it into two
parts: B×Bh and B×Bg , where Bh+Bg = B. We also
suppose Bh = b(s−1), where b is a sub-tile size. The left
partition of size B × Bh is allocated to the host, and the
right partition of size B × Bg is allocated to a GPU. We
let T (m× n) denote the number of floating operations to
compute a matrix of size m×n. fcore and fgpu denote the
speed (i.e., flop/s) on a CPU core or GPU, respectively.

In a block cyclic data distribution (1-D or 2-D), a num-
ber of G tiles are allocated to a number of G GPUs such
that each GPU has one tile and it takes T (B × Bg)/fgpu
time to compute. Differently, the CPU cores on the
host receive G small partitions (each is of size B × Bh)
from the G tiles, and it takes G × T (B × Bh)/(fcore ×
NumCores) time to compute.

To achieve load balancing, we determine Bh by the fol-
lowing formula:

T (B ×Bg)

fgpu
=

G× T (B ×Bh)

fcore ×NumCores

⇒ T (B ×Bh)

T (B ×Bg)
=

fcore ×NumCores

fgpu ×G

⇒ Bh = B × fcore ×NumCores

fcore ×NumCores+ fgpu ×G

In practice, fcore or fgpu denotes the maximum perfor-
mance of the dominant computational kernel in an algo-
rithm. In addition, we fine-tune the value of Bh automat-
ically. We start from the estimated size Bh and search for
an optimal B∗h near Bh. We wrote a script to execute a
matrix factorization with an input of size N = c0 ·B ·G,
where we set c0 = 3 to reduce the tuning time. The script
adjusts the value of Bh to search for the minimum dif-
ference between the CPU and the GPU computation time.
Note that Bh is dependent only on the number of CPU
cores and the number of GPUs, assuming the machine and
the computational kernels have not changed.

The large tile size B is also critical for the GPU per-
formance. To determine the best B, we search for the
minimal matrix size that provides the best performance
for the dominant GPU kernel in an algorithm (e.g., GEMM
for Cholesky factorization). Our search ranges from 256
to 2048, and is performed only once for every new com-
putational library and every new GPU architecture.

A.2 Communication Cost Analysis

We count the number of messages and the number of
words communicated by a process that has the most com-
munication among all processes. Assume there are P
processes (one process per node), and the broadcast be-
tween processes is implemented by a tree topology. We
use Pr and Pc to denote a Pr × Pc process grid, where
P = Pr · Pc. In a multi-level block cyclic data distribu-
tion, we use n, B, s to denote the matrix size, the top-level
tile size, and the number of partitions of each top-level
tile, respectively.

A.2.1 Distributed Heterogeneous Tile Cholesky
Factorization

For each iteration, we first broadcast the diagonal block
down the panel (i.e. logPr messages), next each pro-
cess that owns data on the panel broadcasts to Pc +
Pr processes that are waiting for the panel data (i.e.
#rows
BPr

log(Pc +Pr) messages, where #rows=n−b jscB
at the j-th iteration). The number of messages is expressed
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as follows:

msgchol =

n
B s−1∑
j=0

logPr +
n− b jscB

BPr
log(Pc + Pr)

=
ns

B
logPr +

n2s

2B2Pr
log(Pc + Pr)

=
ns

2B
logP +

n2s

4B2
√
P

logP +
n2s

2B2
√
P

And the number of words is:

wordchol =
nB

4
logP +

n2

4
√
P

logP +
n2

2
√
P

A.2.2 Distributed Heterogeneous Tile QR
Factorization

In the tile QR factorization, we can stack up v adjacent
tiles to form a virtual tile, which is always allocated to the
same host or GPU. At the j-th iteration, each process has
n−b js cB
(vB)Pr

× n−b js cB
BPc

virtual tiles of size (vB) × B. Since
one B × B tile out of every virtual tile will be sent down
to its below process as a message (there is no message if
Pr=1), and every tile on the panel will be broadcast right
to Pc processes, the number of messages is expressed as
follows:

msgqr =

n
B s−1∑
j=0

n− b jscB
vBPr

·
n− b jscB

BPc
+

n− b jscB
BPr

logPc

=

n
B s−1∑
j=0

(n− b jscB)2

vB2P
+ (n− bj

s
cB)

logPc

BPr

=
1

vB2P

n3s

3B
+

n2s

2B2Pr
logPc

=
n3s

3vB3P
+

n2s

4B2
√
P

logP

And the number of words is:

wordqr =
n3

3vBP
+

n2

4
√
P

logP

= (
n

3vB
√
P logP

+
1

4
)
n2

√
P

logP

If we set the virtual tile size v as n/B/Pr, (vB
√
P ) is equal

to n. Therefore, msgqr = n2s
3B2
√
P

+ n2s
4B2
√
P
logP , and

wordqr = ( 1
3 logP + 1

4 )
n2
√
P
logP .

A.2.3 Comparison with ScaLAPACK

Table 1 compares our distributed-version heterogeneous
tile algorithms with the communication lower bound

(LB), and the ScaLAPACK subroutines regarding the
number of words (i.e., communication volume) and the
number of messages. From the table, we can see that the
heterogeneous tile Cholesky factorization has attained the
communication volume lower bound to within a logarith-
mic factor. The communication volume of the heteroge-
neous tile QR factorization is greater than its lower bound
by a factor of ( n

3vB
√
P

+ 1
4 logP ). Note that we could

increase v to minimize the heterogeneous tile QR’s com-
munication volume to reach its lower bound to within a
factor of ( 13 + 1

4 logP ).

Table 1: Communication cost of the distributed het-
erogeneous tile algorithms. We assume square ma-
trices, and Pr = Pc =

√
P .

#words #messages

Cholesky LB [[8]] Ω( n2
√

P
) Ω(

√
P )

PDPOTRF [[8]] ( nb
4

+ n2
√

P
) log P 3n

2b
log P

Hetero. Cholesky ( 1
4

log P + 1
2

) n2
√

P

n2s

4B2
√

P
(log P + 2)

QR LB [[12]] Ω( n2
√

P
) Ω(

√
P )

PDGEQRF [[12]] ( 3
4

n2
√

P
+ 3

4
nb) log P ( 3

2
+ 5

2b
)n log P

Hetero. QR ( n

3vB
√

P log P
+ 1

4
) n2
√

P
log P n3s

3vB3P
+ n2s

4B2
√

P
log P
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