
Enabling Application Resilience With and Without the MPI Standard

Wesley Bland
Innovative Computing Laboratory, University of Tennessee, Knoxville

wbland@eecs.utk.edu

Abstract—As recent research has demonstrated, it is be-
coming a necessity for large scale applications to have the
ability to tolerate process failure during an execution. As the
number of processes increases, checkpoint/restart fault toler-
ance approaches requiring large concurrent state checkpointing
become untenable and radically new methods to address fault
tolerance are needed. This work addresses these challenges by
proposing a novel approach to a minimalistic fault discovery
and management model. Such a model allows application to
run to completion despite fail-stop failures. As a proof of
concept, in addition to the proposed fault tolerance model,
an implementation in the context of the Open MPI library is
provided, evaluated and analyzed.

Keywords-Fault Tolerance, Message Passing Interface, Dis-
tributed Runtime

I. INTRODUCTION

Fault tolerance is an increasingly necessary consideration
in High Performance Computing (HPC). As machine sizes
increase past hundreds of thousands of computing cores1

into the millions of computing resources, the likelihood of
failures also increases. In 2007, Schroeder and Gibson [1]
announced a mean time between failure (MTBF) on some
of the machines at Los Alamos National Laboratory of 8
hours. More recently, Heien et. al. [2] observed failures
at a rate of between 1.8 and 3.6 failures per day on a
system of only 635 nodes. This research confirms what
has become an accepted reality of HPC going forward.
Failures will occur at an increasing rate and for large scale
applications to be useful, the failures will need to be handled
in software while allowing the applications to continue
running relatively uninterrupted.

The Open MPI Project is an open source MPI-2 imple-
mentation that is developed and maintained by a consortium
of academic, research, and industry partners 2. It has already
made strides to include some fault tolerance support by
developing checkpoint/restart and message logging frame-
works, allowing users to recover processes that fail by
reverting to a previously stored snapshot of the application.
While this method of fault tolerance is useful for many
applications, as the number of processes increases, the
overhead of saving the state of as many as millions of

1http://www.top500.org
2http://www.open-mpi.org

concurrent processes becomes untenable and other methods
of fault tolerance must be envisioned.

Our contribution in this area is to provide a resilient MPI
implementation which gives the users the familiarity of the
MPI standard which their applications already use, but also
to expand the capabilities of MPI to handle process failures
with as little intervention as possible from the application.
In order to meet this goal, our work is two-fold:

• Runtime Layer: The runtime layer of Open MPI is
the low level environment that supports the application
by providing a reliable communication library. It is
responsible for deploying applications and setting up
an efficient application’s communication topology. The
runtime layer needs to be able to detect a process
failure, notify other processes of the detected failure,
and perform local recovery techniques necessary for
the runtime layer to continue operation.

• MPI Layer: The MPI layer is the library which the ap-
plication uses directly. It provides all the MPI standard
calls while efficiently implementing communication
patterns, such as collective operations. In the MPI layer,
changes are necessary to notify the application of a pro-
cess failure so it may decide whether to abort, continue
without the failed process, replace the failed process or
any other failure model that may be envisioned.

We also created a model to describe the expected behavior
of our work. This model shows the efficiency of our work
and explains why the performance of our implementation
will never decrease because of a process failure.

In this paper, we will discuss of the work being done
to expand the capability of Open MPI to handle process
failures while allowing application developers to decide how
to proceed. In Section II, we will describe some of the other
resilient environments provided by the scientific community.
Section III will describe the work being done to improve the
Open MPI runtime to tolerate process failures. Section IV
will describe the current work and ongoing efforts to give
users a well-known MPI environment while causing minimal
disruptions following a failure. Section V will demonstrate
some of the preliminary results observed from this work and
lay out the model we have constructed to analyze our result.
Section VI will summarize the work being done and describe
some of the future work yet to be performed.

II. RELATED WORK

Many groups have worked on fault tolerant runtimes in
the past, each proposing different methods. Most of these
runtimes focus on employing checkpoint/restart, but a few
also use new ideas to recover from process failures.

Charm++ is an object-oriented parallel programming lan-
guage developed at the University of Illinois at Urbana-
Champaign [3]. In addition to message passing, it also
performs load balancing, process migration and other inter-
esting properties due to the fact that it treats each process as
an individual object, called “chares”, that can be saved and
moved at any time. This has lead to work which leverages
these chares to provide fault tolerance guarantees [4], in-
cluding an MPI implementation which uses Charm++ as its
runtime [5]. Our work diverges from Charm++ because they
focus primarily not on MPI, but a separate programming
environment of their own invention.

FT-MPI extended the MPI semantics provided by the MPI
standard to include fault tolerance. This enabled application
developers to adapt their applications without the need to
rewrite them using an entirely different message passing
system [6]. FT-MPI could withstand n − 1 process failures
in a job of size n. This is similar to the work being done in
this paper as both are designed to recover from arbitrary fail-
stop failures. However, FT-MPI only provides this semantic
to the functions supported by the version 1.2 of the MPI
standard. Our work is built in conjunction with Open MPI,
which has ongoing development and includes support for
the most recent MPI standard (2.2).

The MPI forum is currently examining options for the
future direction of MPI for MPI-3. One of the workgroups is
dedicated to propose a standard form of MPI-supported fault
tolerance 3. The proposal outlines a method of run-through
stabilization which allows the application to acknowledge
and repair communications, both collectively and between
specific ranks in a point-to-point way [7]. The emphasis
of the proposal is a set of ”validation” functions which
the application is required to call to repair and re-enable
communication within an MPI communicator containing a
failed process. These functions give the MPI implementation
an opportunity to acknowledge failures and discover or
ensure that other MPI processes also acknowledge the same
failures. It also gives the MPI library a chance to repair
communication channels between remaining processes, opti-
mizing communication topologies if possible and necessary.

While this method of fault tolerance is sufficient for
Algorithmic Based Fault Tolerance, it is not without its
drawbacks. The calls necessary to recover from collectives
incur a non-trivial overhead even during the fault free
case. MPI COMM VALIDATE requires a distributed con-
sensus algorithm which is currently best implemented at log

3https://svn.mpi-forum.org/trac/mpi-forum-
web/wiki/FaultToleranceWikiPage

scale [8]. While this level of overhead might exhibit better
performance than the current state of the art of periodic
checkpointing, it still presents a significant cost that not all
applications want or need to pay Also, this proposal does
not yet include process recovery, which is left to a future
proposal to the MPI forum.

The work in this paper could be extended to implement the
proposal from the MPI forum if accepted. However, it also
includes more flexible options for the user when selecting a
behavior to handle failures.

III. RUNTIME

We present in this section how the Open MPI Runtime
Environment (ORTE) [9] has been modified to become
resilient as an example of the expected changes that need
to be undergone on other runtime environments to provide
resilient capabilities. We focus first on how the runtime
itself has been made fault tolerant; then on the additional
services that the runtime should provide to the MPI library or
any other fault-aware parallel environment: Failure Detection
and Notification.

A. Out-Of-Band Message Consistency Using Epochs

Before implementing process recovery, a way of tracking
the status of processes is necessary. A commonly used
method in literature is to add an epoch to the process naming
scheme. By incrementing the epoch every time the Head
Node Process (HNP) is notified of a failure, we can use it to
track the number of times an individual process has failed.
The runtime uses this epoch to prevent transient process
failures from introducing unexpected behavior by cutting
off a process with an epoch less than the most recent value
from interfering with the other processes. As each message
is processed by the communication library, it is checked
against the most recent known epoch for the originating
process. If the message’s epoch is less than the most recently
known epoch, the message is dropped and will need to be
retransmitted to the new version of the previously failed
process. This essentially imposes a fail-stop fault model [10]
upon the processes, simplifying error detection and recovery.

B. Fault Handling

Concurrently with the notification of failure throughout
the runtime, the HNP and the ORTE daemons (ORTEDs)
also perform fault handling tasks to stabilize the runtime and
allow processes to continue. The most noticeable portion
of the runtime that must be updated is the routing layer.
Most routing layers have some sort of underlying topology
that passes messages from one node to the next rather
than all messages being routed through a central entity,
or allowing direct communication between nodes for the
out-of-band messaging system. The latter would require n2

opened connections, imposing a huge load on the system.
This routing layer must be mended after any of the nodes

fail. One of the most common routing topologies is a tree.
When the fault is detected, the tree must remove the faulty
process and create connections from the failed process’s
parent to its children. This must also take into account any
subsequent failures so that if necessary, the routing layer will
continue to look upward or downward in the tree to find the
closest living neighbor and prevent any child from becoming
orphan due to a lack of connection to a living parent.

C. Failure Detection

Failure detection is accomplished using the existing detec-
tors in ORTE. The primary detection method is to monitor
the status of communication channels. If a connection fails,
the ORTE error handler begins the process of managing the
fault as detailed in Section III-B. In the future, when an MPI
layer will be placed on top of the runtime, it will need to
send errors to the runtime to allow errors to be handled in a
consistent way. The current method of handling failures in
Open MPI is to abort as soon as possible after detecting an
error. By passing the error information to the runtime rather
than acting within the MPI layer, that singular method of
handling faults can be improved and the application may
survive the fault.

D. Failure Notification

When a failure occurs, ORTE quickly attempts to stabilize
the runtime system to allow the surviving processes to
continue. The first step in this process is to notify the
HNP. The HNP is responsible for maintaining the state of
the application and notifying all runtime processes of any
changes to which they need to respond. Once the HNP has
received the message from the ORTEDs who detected the
failure, it broadcasts this information to all other daemons.
While some of them might already know about the failure,
because they detected it via the direct connections between
daemons, by including the epoch of the failed process they
can prevent duplicate or out-of-order handling of the faults.
At this point, the runtime would notify the MPI layer of the
error, therefore allowing the MPI processes themselves to
decide how the parallel application will react to the fault.

IV. MPI

The current MPI standard does not provide much guidance
for applications in presence of faults. According to the
standard, when implementing a high-quality MPI library, the
application should regain control following a process failure.
This control gives the application the opportunity to save its
state and exit gracefully, rather than the usual behavior of
being aborted by the MPI implementation itself. This makes
continuing meaningful execution very difficult and usually
requires the application to restart itself from a previously
saved checkpoint.

Our work deviates from the current standard to provide a
more flexible suite of tools to implement fault tolerance. If

a process failed during an MPI call, the call will return an
error code to reflect the failure. This allows the application
to know that a process has failed and to perform any internal
recovery operations necessary. Once the application has been
alerted via the MPI return code, the application will not
receive another notification until a new process fails. By not
requiring an acknowledgment from the remaining processes,
our method of fault tolerance imposes as little burden on the
applications as possible and allows failure free executions to
incur the minimum amount of overhead.

As most of the MPI applications take advantage, in
addition from point-to-point message, of collective com-
munications, we took a particular interest in providing a
clear semantic of how fault can integrate with collective
communications. We are implementing fault tolerant collec-
tive operations which allow the application to run collec-
tives over MPI Communicators including failed processes.
For collectives which do not include any data, such as
MPI Barrier, this is simple enough operation. For collectives
which require data combination, such as MPI Gather or
MPI Reduce, this can be a slightly more complicated task.
However, all of the MPI collective operations can eventually
be simplified to a communicator pattern with some amount
of data, which may or may not be combined with or without
an operation in the process. When determining how many
processes to include in the collective operation, our MPI
library does not include the failed processes. Also, when a
process fails during a collective, the operation is updated
to remove the failed process. Once the participating group
is determined, we can continue the MPI collective as if no
failures occurred.

This work will also eventually include process recovery
which will allow the application to decide to recreate the
failed process by launching a new MPI rank on a fault free
node. The user will be responsible for bringing the new
rank back to the point of the failure, but this will support
another set of applications which require a specific number
of processes to continue in the presence of a process failure.
The specifics of the process recovery techniques are not yet
ready for publication.

V. PERFORMANCE DISCUSSION

In this section we describe the results of our work to this
point. First we present a model to describe the expected
results of our resilient runtime’s failure notification method.
Second, we will demonstrate the observed values derived
from our tests performed on a 64 node cluster within
Grid5000. 4

4Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under the IN-
RIA ALADDIN development action with support from CNRS, RE-
NATER and several Universities as well as other funding bodies (see
https://www.grid5000.fr)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 10

 20

 30

 40

 50

 60

T
i
m
e

(
m
s
)

H
o
p
s

Token

Hops
Failure Time
No Failure Time

(a) One Process failing at a time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 10

 20

 30

 40

 50

 60

T
i
m
e

(
m
s
)

H
o
p
s

Token

Hops
Failure Time
No Failure Time

(b) Two concurrently failing processes

Figure 1. Token Roundtrip Time with Evenly Failing Processes

 10

 20

 30

 40

 50

 60

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
a
n
k

Time of notification (s)

Epoch Change Line

(a) Detection Time for Failures

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

T
i
m
e

(
m
s
)

Token

(b) Overhead Introduced by Changes

Figure 2. Overheads of the Resilient Runtime

A. Performance Model

We devised a model of the expected failure detection
behavior of our runtime system. Let T be the initial routing
topology of the system. Let LT (d, f,H) be the time it takes
process d to notice a failure of process f , knowing that
∀q ∈ H , q is also failed (potentially before f). We call
LT (d, f,H) the latency of detection of d for f knowing H .

LT (d, f,H) ≤ α0 + γDT\H∪{f}(f, d)

Where α0 is the time taken by an immediate neighbor
of f to detect its failure, γ is the point-to-point message
latency, and DT\H∪{f}(f, d) is the distance (in number of
hops) between f and d in the routing topology, T\H

⋃
{f}.

Note that this distance could shrink as processes between f
and d in the routing topology fail.

Whatever the history of failures H , if |T | = n, then
DT\H(s, d) ≤ log2(n). This is true because the routing

layer we use is a binomial tree, which has a maximum
depth of log2(n). Also, when repairing the routing tree
after a failure, the routing layer does not add new hops,
it only mends the routes by removing failed processes from
the topology and creating links between the next surviving
neighbors both above and below f . Thus, for system Bin(n)
with n processes initially, with a fault tolerant binomial tree
routing layer,

∀d, f ∈ Bin(n),∀H ⊆ Bin(n),

LBin(n)(d, f,H) ≤ α0 + γ log2(n)

This shows that our improved routing topology should
perform no worse than a fault free one following a process
failure.

B. Performance Data
When validating the runtime work described in Sec-

tion III, our goal was to devise a test that would confirm its

correctness while being simple to describe and understand.
It should be emphasized that this is not necessarily repre-
sentative of a specific application, but it does demonstrate
that the improved runtime would be able to support a full
application in the presence of a process failure. It is designed
to show that the runtime can heal its routing layers following
multiple and catastrophic process failures. Once a resilient
MPI layer is built on top of the runtime, a full application
could be tested with MPI semantics.

Our test is a ring test which dispatches multiple tokens
from process 0. These tokens are passed around the ring
in increasing sequential order until they reach process 0
again where various measurements are made. This is a
simplistic test and therefore not designed to demonstrate
the recovery of a lost token, however the test could easily
be modified to demonstrate that behavior as described by
Hursey [11]. Process 0 generates 4000 tokens and passes
them along. As the tokens are passed around the ring, the
test generates failures at predetermined times to give an idea
of the behavior of the runtime with different failure patterns.
The loss of tokens gives an idea of how long the routing
layer took to patch itself and continue sending tokens to the
next living process.

Figure 1 shows the round trip time of each of the tokens
as the failures are generated within the system. Each graph
shows both the time from a failure free run and a run with
a specific failure pattern. The graphs also show how many
hops each token traversed while traveling around.

In Figure 1(a), processes fail one at a time in evenly
spaced intervals until only 2 processes remain. As each
process fails, the round trip time decreases linearly. This
is the expected behavior as each token must traverse fewer
processes until it reaches process 0 again. The number of
hops decreases slowly as each process fails, but the round
trip time with failures actually decreases at a greater rate
temporarily. This is because the buffers at the first few
processes become full at the beginning of the run when the
tokens are still being generated. As the buffers clear the first
few processes, the round trip time stabilizes.

In Figure 1(b), processes fail in groups of two. This shows
that the runtime can withstand larger groups of processes
failing at roughly the same time. The gaps in the graph show
the points at which some tokens are lost. This is expected
as the application makes no attempt to recover or regenerate
tokens temporarily hosted by failed processes, and simply
continues to run with whatever tokens return back to the
originating process.

Our runtime is also able to handle failure rates much
higher than one or two processes at a time. In other tests,
we were able to handle rates of n/2 or n− 2 simultaneous
failures. This is encouraging as it shows that the runtime can
withstand any number of failures at any time. The failures
can occur concurrently or consecutively without requiring a
“cooling off” period between failures.

Figure 2(a) shows the detection and notification time for
each failure. It uses the same case as figure 1(a) where fail-
ures occur evenly throughout the lifetime of the application.
Each line represents the detection time of each epoch among
all the processes, collected using the ad-hoc fault handler.
When the line is straight, it demonstrates that the latency
of detection and notification is relatively low among all
the remaining process. This figure shows that the detection
time for the all processes is very tight, demonstrating that
all processes can maintain a consistent view of the current
epoch. The earlier epochs have a slightly varying detection
time as the notification messages have further to travel
through the routing layer, but as the tree becomes smaller
as it is repaired, the oscillations decrease, demonstrating a
much smaller window of time for each epoch.

Figure 2(b) shows the overhead that was introduced
by modifying the Open MPI source code. It compares the
runtime of a fault-free case using both our implementation
of the Open MPI runtime, and the revision 24614 of the
Open MPI trunk. The overhead was measured on a local
8 node development cluster with minimal system noise to
eliminate outside effects on the data. We subtract the round
trip time for each token in the resilient version of Open MPI
from the same test using the trunk version of Open MPI.
The results show that the changes made to the code actually
had little impact on performance in the fault-free case.
Variations can be explained by the network jitter and the
small increase in the header size of the messages due to the
epoch algorithm.

VI. CONCLUDING REMARKS & FUTURE WORK

This work has outlined some of the improvements being
performed within Open MPI to create a fault tolerant en-
vironment in order to allow applications to continue their
execution in the face of process failures. Our work re-
quires modifications to the runtime environment to stabilize
message routing and provide reliable fault detection and
notification.

These improvements provide the tools necessary for ap-
plication developers to implement algorithms that can run
reliably at a larger scale than is currently possible due to
the inability to handle the inherent failures which occur at
such extreme scales. Developers have new and more diverse
options to allow them to choose the appropriate resilience
method for their application.

In the near future a system for process recovery will
be included to allow applications not only to stabilize
themselves after a process failure, but to replace the failed
process with a new one. Such a process can use other forms
of fault tolerance (checkpointing, message logging, etc.) to
recover lost data and continue with minimal interruption to
the living processes.

REFERENCES

[1] B. Schroeder and G. Gibson, “Understanding failures in petas-
cale computers,” in Journal of Physics: Conference Series,
vol. 78. IOP Publishing, 2007, p. 012022.

[2] E. Heien, D. Kondo, A. Gainaru, D. LaPine, B. Kramer,
and F. Cappello, “Modeling and tolerating heterogeneous
failures in large parallel systems,” in Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 45:1–45:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063444

[3] L. V. Kale and S. Krishnan, “CHARM++: A Portable Con-
current Object Oriented System Based On C++,” in In Pro-
ceedings of the Conference on Object Oriented Programming
Systems, Languages and Applicaions, 1993, pp. 91–108.

[4] G. Zheng, L. Shi, and L. V. Kale, “FTC-Charm++: an in-
memory checkpoint-based fault tolerant runtime for Charm++
and MPI,” in Cluster Computing, 2004 IEEE International
Conference on, 2004, pp. 93–103.

[5] C. Huang, G. Zheng, and L. V. Kale, “Supporting Adaptivity
in MPI for Dynamic Parallel Applications,” Tech. Rep. 07-08,
2007.

[6] G. Fagg and J. Dongarra, “FT-MPI: Fault tolerant MPI,
supporting dynamic applications in a dynamic world,” Eu-
roPVM/MPI, 2000.

[7] J. Hursey, R. L. Graham, G. Bronevetsky, D. Buntinas,
H. Pritchard, and D. G. Solt, “Run-through stabilization: An
MPI proposal for process fault tolerance,” in EuroMPI 2011:
Proceedings of the 18th EuroMPI Conference, Santorini,
Greece, September 2011.

[8] J. Hursey, T. Naughton, G. Vallee, and R. L. Graham, “A log-
scaling fault tolerant agreement algorithm for a fault tolerant
MPI,” in EuroMPI 2011: Proceedings of the 18th EuroMPI
Conference, Santorini, Greece, September 2011.

[9] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres,
B. Barrett, and G. E. Fagg, “The Open Run-Time Environ-
ment (OpenRTE): A transparent multicluster environment for
high-performance computing,” Future Generation Computer
Systems, vol. 24, pp. 153–157, 2008.

[10] M. Fischer and N. Lynch, “Impossibility of distributed con-
sensus with one faulty process,” Journal of the ACM (JACM),
1985.

[11] J. Hursey and R. Graham, “Building a Fault Tolerant
MPI Application: A Ring Communication Example,” Paral-
lel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pp.
1549–1556, 2011.

