
A Proposal for User-Level Failure Mitigation in

the MPI-3 Standard

Wesley Bland George Bosilca Aurelien Bouteiller
Thomas Herault
Jack Dongarra

{bland, bosilca, bouteill, herault, dongarra } @ eecs.utk.edu
Innovative Computing Laboratory,

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville

February 24, 2012

Abstract

This chapter describes a flexible approach, providing process fault tol-
erance by allowing the application to react to failures, while maintaining a
minimal execution path in failure-free executions. The focus is on return-
ing control to the application by avoiding deadlocks due to failures within
the MPI library. No implicit, asynchronous error notification is required.
Instead, functions are provided to allow processes to invalidate any com-
munication object, thus preventing any process from waiting indefinitely
on calls involving the invalidated objects. We consider the proposed set of
functions to constitute a minimal basis, which allows libraries and applica-
tions to increase the fault tolerance capabilities by supporting additional
types of failures, and build other desired strategies and consistency models
to tolerate faults.

1.1 Introduction

Long running and large scale applications are at increased risk of encountering
process failures during normal execution. This chapter introduces the MPI
features that support the development of applications and libraries that can
tolerate process failures. The approach described in this chapter is intended
to prevent the deadlock of processes while avoiding impact on the failure-free
execution of an application.

The expected behavior of MPI in case of a process failure is defined by
the following statements: any MPI call that involves a failed process must not
block indefinitely, but either succeed or raise an MPI error (see Section 1.2);
An MPI call that does not involve the failed process will complete normally,

unless interrupted by the user through provided functions. Asynchronous failure
propagation is not required by the MPI standard. If an application needs global
knowledge of failures, it can use the interfaces defined in Section 1.3 to explicitly
propagate locally detected failures.

Advice to users. Many of the operations and semantics described in this chap-
ter are only applicable when the MPI application has replaced the default
error handler MPI ERRORS ARE FATAL on, at least, MPI COMM -
WORLD. (End of advice to users.)

1.2 Failure Notification

This section specifies the behavior of an MPI communication call when failures
occur on processes involved in the communication. A process is considered as
involved in a communication if any of the following is true:

1. the operation is a collective call and the process appears in one of the
groups on which the operation is applied;

2. the process is a named or matched destination or source in a point-to-point
communication;

3. the operation is an MPI ANY SOURCE receive operation and the failed
process belongs to the source group.

Therefore, if an operation does not involve a failed process (such as a point
to point message between two non-failed processes), it must not return a process
failure error.

Advice to implementers. It is a legitimate implementation to provide failure de-
tection only for processes involved in an ongoing operation, and postpone
detection of other failures until necessary. Moreover, as long as an imple-
mentation can complete operations, it may choose to delay returning an
error. Another valid implementation might choose to return an error to
the user as quickly as possible. (End of advice to implementers.)

Note for the Forum. The text of Page 65, lines 28-33, must be changed to al-
low MPI IPROBE to set flag=true and return the appropriate status if
an error is detected during an MPI IPROBE. MPI PROBE is defined as
behaving as MPI IPROBE so it should be sufficient. Similarly, the same
effort should be done for MPI MPROBE and MPI MRECV.

Non-blocking operations must not return an error about process failures
during initialization. All process failure errors are postponed until the corre-
sponding completion function is called.

2

1.2.1 Point-to-Point and Collective Communication

When a failure prevents the MPI implementation from successfully completing
a point-to-point communication, the communication is marked as completed
with an error of class MPI ERR PROC FAILED. Further point-to-point com-
munication with the same process on this communicator must also return MPI -
ERR PROC FAILED.

MPI libraries can not determine if the completion of an unmatched reception
operation of type MPI ANY SOURCE can succeed when one of the potential
senders has failed. If the operation has matched, it is handled a named receive.
If the operation has not yet matched and worked on a request allocated by a
nonblocking communication call, then the request is still valid and pending and
it is marked with an error of class MPI ERR PENDING. In all other cases the
operation must return MPI ERR PROC FAILED. To acknowledge a failure and
discover which processes failed, the user should call MPI COMM FAILURE -
ACK.

Advice to users. It should be noted that a nonblocking receive from MPI ANY -
SOURCE could return one of three error codes due to process failure.
MPI SUCCESS indicates no failure. MPI ERR PROC FAILED indicates
the request has been internally matched and cannot be recovered. MPI -
ERR PENDING indicates that while a process has failed, the request is
still pending and can be continued. (End of advice to users.)

When a collective operation cannot be completed because of the failure of
an involved process, the collective operation eventually returns an error of class
MPI ERR PROC FAILED. The content of the output buffers is undefined.

Advice to users. Depending on how the collective operation is implemented and
when a process failure occurs, some participating alive processes may raise
an error while other processes return successfully from the same collective
operation. For example, in MPI Bcast, the root process is likely to succeed
before a failed process disrupts the operation, resulting in some other
processes returning an error. However, it is noteworthy that for non-
rooted collective operations on an intracommunicator, processes which do
not enter the operation due to failure provoke all surviving ranks to return
MPI ERR PROC FAILED. Similarly, on an intercommunicator, processes
of the remote group failing before entering the operation have the same
effect on all surviving ranks of the local group. (End of advice to users.)

Advice to users. Note that communicator creation functions (like MPI COMM -
DUP or MPI COMM SPLIT) are collective operations. As such, if a fail-
ure happened during the call, an error might be returned to some processes
while others succeed and obtain a new communicator. While it is valid to
communicate between processes which succeeded to create the new com-
municator, it is the responsibility of the user to ensure that all involved
processes have a consistent view of the communicator creation, if needed.

3

A conservative solution is to invalidate (see Section ?? the parent commu-
nicator if the operation fails, otherwise call an MPI Barrier on the parent
communicator and invalidate the new communicator if the MPI Barrier
fails. (End of advice to users.)

1.2.2 Dynamic Process Management

Dynamic process management functions require some additional semantics from
the MPI implementation as detailed below.

1. If the MPI implementation decides to return an error related to process
failure at the root process of MPI COMM CONNECT or MPI COMM -
ACCEPT, the root processes of both intracommunicators must return an
error of class MPI ERR PROC FAILED (unless required to return MPI -
ERR INVALIDATED as defined by 1.3.1).

2. If the MPI implementation decides to return an error related to process
failure at the root process of MPI COMM SPAWN, no spawned processes
should be able to communicate on the created intercommunicator.

Advice to users. As with communicator creation functions, it is possible that
if a failure happens during dynamic process management calls, an error
might be returned to some processes while others succeed and obtain a
new communicator. (End of advice to users.)

1.2.3 One-Sided Communication

As with all non-blocking operations, one-sided communication operations should
delay all failure notification to their synchronization calls and return MPI ERR -
PROC FAILED (see Section 1.2). If the implementation decides to return an
error related to process failure from the synchronization function, the epoch
behavior is unchanged from the definitions in Section 11.4. Similar to collective
operations over MPI communicators, it is possible that some processes could
have detected the failure and returned MPI ERR PROC FAILED, while others
could have returned MPI SUCCESS.

Unless specified below, MPI makes no guarantee about the state of memory
targeted by any process in an epoch in which operations completed with an
error related to process failure.

1. If a failure is to be reported during active target communication func-
tions MPI WIN COMPLETE or MPI WIN WAIT (or the non-blocking
equivalent MPI WIN TEST), the epoch is considered completed and all
operations not involving the failed processes are completed successfully.

2. If the target rank has failed, MPI WIN LOCK and MPI WIN UNLOCK
operations return an error of class MPI ERR PROC FAILED. If the owner
of a lock has failed, the lock cannot be acquired again, and all subsequent

4

operations on the lock must fail with an error of class MPI ERR PROC -
FAILED.

Advice to users. It is possible that request based RMA operations complete
successfully while the enclosing epoch completes in error due to process
failure. In this scenario, the local buffer is valid but the remote targeted
memory is undefined. (End of advice to users.)

1.2.4 I/O

Due to the fact that MPI I/O writing operations can choose to buffer data to
improve performance, for the purposes of process fault tolerance, all I/O data
writing operations are treated as operations which synchronize on MPI FILE -
SYNC. Therefore (as described for non-blocking operations in Section 1.2), fail-
ures may not be reported during an MPI FILE WRITE XXX operation, but
must be reported by the next MPI FILE SYNC. In this case, all alive processes
must uniformly return either success or a failure of class MPI ERR PROC -
FAILED.

Once MPI has returned an error of class MPI ERR PROC FAILED, it makes
no guarantees about the position of the file pointer following any previous opera-
tions. The only way to know the current location is by calling the local functions
MPI FILE GET POSITION or MPI FILE GET POSITION SHARED.

1.3 Failure Mitigation Functions

1.3.1 Communicator Functions

MPI provides no guarantee of global knowledge of a process failure. Only pro-
cesses involved in a communication with the failed process are guaranteed to
eventually detect its failure (see Section 1.2). If global knowledge is required,
MPI provides a function to globally invalidate a communicator.

MPI COMM INVALIDATE(comm)
IN comm communicator (handle)

This function notifies all processes in the groups (local and remote) associated
with the communicator comm that this communicator is now considered invalid.
This function is not collective. All alive processes belonging to comm will be
notified of the invalidation despite failures. An invalid communicator preempts
any non-local MPI calls on comm, with the exception of MPI COMM SHRINK
and MPI COMM AGREEMENT (and its nonblocking equivalent). A commu-
nicator becomes invalid as soon as:

1. MPI COMM INVALIDATE is locally called on it;

2. Or any MPI function raised an error of class MPI ERR INVALIDATED
because another process in comm has called MPI COMM INVALIDATE.

5

(or such error field should have been set in the status pertaining to a
request on this communicator).

Once a communicator has been invalidated, all subsequent non-local calls
on that communicator, with the exception of MPI COMM SHRINK and MPI -
COMM AGREEMENT (and its nonblocking equivalent), are considered local
and must return with an error of class MPI ERR INVALIDATED. If an imple-
mentation chooses to implement MPI COMM FREE as a local operation (see
Page 209 Line 1), it is allowed to succeed on an invalidated communicator.

Note for the Forum. The text of Page 208 lines 39-43 must be amended to pro-
vide the following advice to implementers.

The implementation should make a best effort to free an invalidated com-
municator locally and return MPI SUCCESS. Otherwise, it must return
MPI ERR INVALIDATED.

Note for the Forum. The text of Page 208 lines 39-48 must be amended to pro-
vide the following advice to users.

Because MPI COMM FREE resets the MPI Errhandler of a communi-
cator to MPI ERRORS ARE FATAL, fault tolerant applications should
complete all pending communications before calling MPI COMM FREE.

MPI COMM SHRINK(comm, newcomm)
IN comm communicator (handle)
OUT newcomm communicator (handle)

This function creates a new intra or inter communicator newcomm from the in-
validated intra or inter communicator comm respectively by excluding its failed
processes as detailed below. It is erroneous MPI code to call MPI COMM -
SHRINK on a communicator which has not been invalidated (as defined above)
and will return an error of class MPI ERR ARG.

This function must not return an error due to process failures (error classes
MPI ERR PROC FAILED and MPI ERR INVALIDATED). Upon successful
completion, an agreement is made among living processes to determine the
group of failed processes. This group includes at least all processes whose failure
has been notified to the user. The call is semantically equivalent to MPI -
COMM SPLIT, where living processes participate with the same color, and
a key equal to their rank in comm and failed processes implicitly contribute
MPI UNDEFINED.

Advice to users. This call does not guarantee that all processes in newcomm are
alive. Any new failure will be detected in subsequent MPI calls. (End of
advice to users.)

6

MPI COMM FAILURE ACK(comm)
IN comm communicator (handle)

This local function gives the users a way to acknowledge all locally notified
failures on comm. After the call, unmatched MPI ANY SOURCE receptions
that would have returned an error code due to process failure (see Section 1.2.1)
proceed without further reporting of errors due to acknowledged failures.

Advice to users. Calling MPI COMM FAILURE ACK on a communicator with
failed processes does not allow that communicator to be used successfully
for collective operations. Collective communication on a communicator
with acknowledged failures will continue to return an error of class MPI -
ERR PROC FAILED as defined in Section 1.2.1. To reliably use collective
operations on a communicator with failed processes, the communicator
should first be invalidated using MPI COMM INVALIDATE and then a
new communicator should be created using MPI COMM SHRINK. (End
advice to users.)

MPI COMM FAILURE GET ACKED(comm, failedgroup)
IN comm communicator (handle)
OUT failedgroup group (handle)

This local function returns the group failedgroup of processes, from the com-
municator comm, which have been locally acknowledged as failed by preceding
calls to MPI COMM FAILURE ACK.

MPI COMM AGREEMENT(comm, flag)
IN comm communicator (handle)
INOUT flag boolean flag

This function performs a collective operation among all living processes in comm.
On completion, all living processes must agree to set the value of flag to the
result of a logical ’AND’ operation over the contributed values. This func-
tion must not return an error due to process failure (error classes MPI ERR -
PROC FAILED and MPI ERR INVALIDATED), and failed processes do not
contribute to the operation.

If comm is an intercommunicator, the return value is uniform over both
groups and the value of flag is a logical ’AND’ operation over the values con-
tributed by the remote group (where failed processes do not contribute to the
operation).

Advice to users. MPI COMM AGREEMENT maintains its collective meaning
even if the comm is invalidated. (End of advice to users.)

7

MPI ICOMM AGREEMENT(comm, flag, req)
IN comm communicator (handle)
INOUT flag boolean flag
OUT req request (handle)

This function has the same semantics as MPI COMM AGREEMENT except
that it is nonblocking.

1.3.2 One-Sided Functions

MPI WIN INVALIDATE (win)
IN win window (handle)

This function notifies all ranks within the window win that this window is now
considered invalid. An invalid window preempts any non-local MPI calls on
win. Once a window has been invalidated, all subsequent non-local calls on that
window are considered local and must fail with an error of class MPI ERR -
INVALIDATED.

MPI WIN GET FAILED(win, failedgroup)
IN win window (handle)
OUT failedgroup group (handle)

This local function returns the group failedgroup of processes from the window
win which are locally known to have failed.

Advice to users. MPI makes no assumption about asynchronous progress of the
failure detection. A valid MPI implementation may choose to only update
the group of locally known failed processes when it enters a synchroniza-
tion function. (End advice to users.)

Advice to users. It is possible that only the calling process has detected the
reported failure. If global knowledge is necessary, processes detecting fail-
ures should use the call MPI WIN INVALIDATE. (End advice to users.)

1.3.3 I/O Functions

MPI FILE INVALIDATE (fh)
IN fh file (handle)

This function eventually notifies all ranks within file fh that this file is now
considered invalid. An invalid file preempts any non-local completion calls on
file (see Section 1.2.4). Once a file has been invalidated, all subsequent non-local
calls on the file must fail with an error of class MPI ERR INVALIDATED.

8

1.4 Error Codes and Classes

MPI ERR PROC FAILED A process in the operation has failed (a
fail-stop failure).

MPI ERR INVALIDATED The communication object used in the
operation was invalidated.

9

