
From Serial Loops to Parallel Execution
on Distributed Systems

George Bosilca1, Aurelien Bouteiller1 Anthony Danalis1, Thomas Herault1,
and Jack Dongarra12

1 University of Tennessee, Knoxville TN 37996, USA,
2 University of Manchester, Manchester, UK

{bosilca,bouteill,adanalis,herault,dongarra}@eecs.utk.edu

Abstract. Programmability and performance portability are two major
challenges in today’s dynamic environment. Algorithm designers target-
ing efficient algorithms should focus on designing high-level algorithms
exhibiting maximum parallelism, while relying on compilers and run-
time systems to discover and exploit this parallelism, delivering sustain-
able performance on a variety of hardware. The compiler tool presented
in this paper can analyze the data flow of serial codes with imperfectly
nested, affine loop-nests and if statements, commonly found in scientific
applications. This tool operates as the front-end compiler for the DAGuE
run-time system by automatically converting serial codes into the sym-
bolic representation of their data flow. We show how the compiler ana-
lyzes the data flow, and demonstrate that scientifically important, dense
linear algebra operations can benefit from this analysis, and deliver high
performance on large scale platforms.

Keywords: compiler analysis; symbolic data flow; distributed computing; task
scheduling

1 Introduction and Motivation

Achieving scientific discovery through computing simulation puts such high de-
mands on computing power that even the largest supercomputers in the world
are not sufficient. Regardless of the details in the design of future high perfor-
mance computers, few would disagree that a) there will be a large number of
nodes; b) each node will have a significant number of processing units; c) pro-
cessing units will have a non-uniform view of the memory. Moreover, computing
units in a single machine have already started becoming heterogeneous, with the
introduction of accelerators, like GPUs.

This creates a complex environment (the “jungle”3) for application and li-
brary developers. A developer, whether a domain scientist simulating physical
phenomena, or a developer of a numerical library such as ScaLAPACK [4] or
3 Herb Sutter, “Welcome to the Jungle”, 12-29-2011, http://herbsutter.com/2011/
12/29/welcome-to-the-jungle/



PLASMA [12], is forced to compromise and accept poor performance, or waste
time optimizing her code instead of making progress in her field of science. A
better solution would be to rely on a run-time system that can dynamically
adapt the execution to the current hardware. DAGuE [10], which deploys dy-
namic micro-task scheduling, has been shown [11] to deliver portable high per-
formance, on heterogeneous hardware for a class of regular problems, such as
those occurring in linear algebra.

Unfortunately, dynamic scheduling approaches commonly require application
developers to use unfamiliar programming paradigms which hinders productivity
and prevents widespread adoption. As an example, in DAGuE, the algorithms
are represented as computation tasks decorated by symbolic expressions that
describe the flow of data between tasks.

In this paper, we describe a compiler tool that automatically analyzes anno-
tated sequential C code and generates the symbolic, problem size independent,
data flow used by DAGuE. Through polyhedral analysis, our compiler represents
the data flow of the input code as parameterized, symbolic expressions. These
expressions enable each task to independently compute, at run-time, which other
tasks it has dependencies with, thus defining the communication that must be
performed by the system. We explain the process and the tools used to perform
this translation. To the best of our knowledge, it is the first time that state-
of-the-art, handcrafted software packages are outperformed by automatic data
flow analysis coupled with run-time DAG scheduling on large scale distributed
memory systems.

2 Related Work

Symbolic dependence analysis has been the subject of several studies [14, 18–20],
mainly for the purpose of achieving powerful dependence testing, array privati-
zation and generalized induction variable substitution, especially in the context
of parallelizing compilers such as Polaris [5] and SUIF [17]. This body of work
differs from the work presented in this paper in that our compiler does not focus
on dependence testing, or try to statically find independent statements, in order
to parallelize them. Our compiler derives symbolic parameterized expressions
that describe the data flow and synchronization between tasks. Furthermore, we
focus on programs that consist of loops and if statements, with calls to kernels
that operate on whole array regions (i.e. matrix tiles), rather than operating on
arrays in an element by element fashion. This abstracts away the access pat-
terns inside the kernels, and simplifies the data flow equations enough that we
can produce exact solutions using the Omega Test.

The polyhedral model [1, 3, 23], of which the Omega Test is part, has drawn
a lot of attention in recent years, and newer optimization and parallelization
tools, such as Pluto [6], have emerged that take advantage of it. However, un-
like the work currently done within the polyhedral model, we do not use the
dependence abstractions to drive code transformations, but rather export them



in symbolic notation to enable our run-time to make scheduling and message
exchange decisions.

In our work we harness the theoretical framework set by Feautrier [15] and
Vasilache et al. [25] to compute the symbolic expressions that capture the data
flow. By coupling for the first time this compiler theory with a distributed mem-
ory DAG scheduling run-time, we assert experimentally the significance of this
approach in the context of high performance computing.

Finaly, Baskaran et. al [2] performed compiler assisted dynamic scheduling
using compiler analysis. In their approach, the compiler generates code that
scans and enumerates all vertices of the DAG at the beginning of the run-time
execution. This has the same drawbacks as approaches, such as StarSS [21]
and TBlas [24], that rely on pseudo-execution of the serial loops at run-time to
dynamically discover dependencies between kernels. The overhead grows with the
problem size and the scheduling is either centralized of replicated. In contrast,
the symbolic data-flow and synchronization expressions our compiler generates
can be solved at run-time by each task instance independently, in O(1) time,
without any regard to the location of the given instance in the DAG.

3 Compiler & Run-time Synergy

The goal of traditional standalone parallelizing compilers is to convert a serial
program into a parallel program by statically addressing all the issues involved
with parallel execution. However, dynamic environments call for a run-time solu-
tion. In our toolchain, the compiler static analysis scope is reduced to producing
a symbolic representation to be interpreted dynamically by the scheduler during
execution. Effectively, the compiler performs static data flow analysis to convert
an affine input serial program into a Direct Acyclic Graph (DAG), with program
functions (kernels) as its nodes, and data dependency edges between kernels as
its edges. Then, the run-time is responsible for addressing all DAG schedul-
ing challenges, including background MPI data transfers between distributed
resources [10].

To drive the scheduler decisions, the compiler needs to produce more than a
boolean value regarding the existence or not of a dependency. It has to identify
the exact, symbolic, dependence relations that exist in the source code. From
those, it generates parameterized symbolic expressions with parameters that
take distinct values for each task. The expressions are such that the run-time
can evaluate them for each task Ti independently of the task’s place in the
DAG. Also, the evaluation of each expression costs constant time (i.e., it does
not depend on the size of the DAG). The result of evaluating each symbolic
expression is another task Tj , to which data must be sent, or from which data
must be received4.

4 Therefore, the only parameters allowed in a symbolic expression are the parameters
of the execution space of Ti, and globals used in the input code.



4 Input and Output Formats

4.1 Input Format: Annotated Sequential Code

The analysis methodology used by our compiler allows any program with regular
control flow and side-effect free functions to be used as input. The current im-
plementation focuses on codes written in C, with affine loops and array accesses.
The compiler front-end is flexible enough to process production codes such as
the PLASMA library [12]. PLASMA is a linear algebra library that implements
tile-based dense linear algebra algorithms.

for (k = 0; k < A.mt; k++) {

Insert_Task(zpotrf, A[k][k], INOUT);

for (m = k+1; m < A.mt; m++) {

Insert_Task(ztrsm, A[k][k], INPUT, A[m][k], INOUT);

}

for (m = k+1; m < A.mt; m++) {

Insert_Task(zherk, A[m][k], INPUT, A[m][m], INOUT);

for (n = k+1; n < m; n++) {

Insert_Task(zgemm, A[m][k], INPUT, A[n][k], INPUT, A[m][n], INOUT);

}

}

}

Fig. 1: Cholesky factorization in PLASMA

Figure 1 shows the PLASMA code that implements the Tiled Cholesky fac-
torization [12] (with some preprocessing and simplifications performed on the
code for improving readability). The figure shows the operations that constitute
the Cholesky factorization POTRF, TRSM, HERK, and GEMM. The data ma-
trix “A” is organized in tiles, and notation such as “A[m][k]” refers to a block
of data (a tile), and not a single element of the matrix. Our compiler uses a
specialized parser that can process hints in the API of PLASMA. We made this
choice because in the PLASMA API the following is true: a) for every matrix tile
passed to a kernel as a parameter, the parameter that follows it specifies whether
this tile is read, modified, or both, using the special values INPUT, OUTPUT and
INOUT; b) all PLASMA kernels are side-effect free. This means that they operate
only on memory pointed to by their arguments, and that memory is not aliased.

Figure 1 contains four kernels, that correspond to the aforementioned opera-
tions. In the rest of this article we will use the terms task and task class. A task
class is a specific kernel in the application that can be executed several times,
potentially with different parameters, during the life-time of the application.
zpotrf and zgemm are examples of task classes in Figure 1. A task is a particu-
lar, and unique, instantiation of a kernel during the execution of the application,



with given parameters. In the example of the figure, task class zpotrf will be
instantiated as many times as the outer loop for(k) will iterate, and thus we
define the task class’s execution space to be equal to the iteration space of the
loop.

4.2 Compiler Output: Job Data Flow

for (k = 0; k < N; k++) {

Insert_Task( Ta, A[k][k], INOUT );

for (m = k+1; m < N; m++) {

Insert_Task( Tb, A[k][k], INPUT, A[m][m], INOUT );

}

}

Fig. 2: Pseudocode example of input code

The compiler outputs a collection of task classes and their dependency rela-
tion in a format we refer to as the Job Data Flow (JDF). Consider the simpler
input defined in Figure 2. The compiler extracts (as described in Section 5.1)
data flows between Ta and Tb in a symbolic way and outputs them in the defini-
tions of task classes Ta and Tb in the JDF. The symbolic representation of each
edge is such that every task Ta(k) is able to determine the tasks Tb(k, m) that
need to use the data defined by Ta(k) and vice-versa. Consider the particular
edge due to A[k][k] flowing from Ta(k) to Tb(k,m). In the JDF, we use the
following notation to store this flow edge in task class Ta:

A[k][k] -> ( k < N-1 ) ? A[k][k] Tb( k, (k+1)..(N-1) )

Conversely, tasks of the class Tb must be able to determine which task they
depend on for input. In this case the same edge has the following form:

A[k][k] <- A[k][k] Ta(k)

The full JDF that the compiler produces to represent the example code of
Figure 2 is shown in Figure 3. As can be seen in the figure, in addition to the
execution space and the data flow edges, there are two more elements in a JDF
file. First, there is an affinity definition of the form “:A[k][k]” which signifies
that the corresponding task should be run in the MPI process that owns the
corresponding data element. Second, there is a BODY that consists of C-language
code that the run-time will invoke in order to execute the actual kernel that
constitutes the body of a task.

From interpreting that JDF output, the DAGuE run-time can handle dis-
tributed memory execution efficiently, the scheduler can identify which tasks
must communicate with which other, without consulting a centralized entity or
traversing the whole problem DAG.



Ta(k)
k = 0..N-1
: A[k][k]

A[k][k] <- (k==0) ? A[k][k] : A[m][m] Tb(k-1, k)
-> (k<N-1) ? A[k][k] Tb(k, (k+1)..(N-1))
-> A[k][k]

BODY
Ta(A[k][k]);

END

Tb(k,m)
k = 0..N-1
m = k+1..N-1
: A[m][m]

A[k][k] <- A[k][k] Ta(k)
A[m][m] <- (k==0) ? A[k][k] : A[m][m] Tb(k-1, m)

-> (m==k+1) ? A[k][k] Ta(m) : A[m][m] Tb(k+1, m)
BODY

Tb(A[k][k], A[m][m]);
END

Fig. 3: Example Job Description Format

5 Extracting Symbolic Data Flow and Data Exchange

5.1 Omega Relations

The Omega test [22] is the library we use for manipulating the sets of affine
constraints over integer variables that arise when performing the symbolic data-
flow analysis necessary when converting from sequential code to JDF. An Omega
Relation is a mapping between two tuples, defining the execution space of the
source and sink task classes, as well as the conjunction of constraints for both
execution spaces. Consider the example of compiler input given in Figure 2. The
iteration space of Ta is the iteration space of outer loop for(k); We denote this
iteration space with the following Omega notation:

{[k] : 0 <= k <= N-1}

Such notation { [T] : C }, where T is a tuple, and C is a conjunction of
constraints, defines the ranges of values for the elements of T for which C is true.
Similarly, we define the execution space of task class Tb to be:

{[k,m] : 0 <= k < N-1 && k+1 <= m <= N-1}

Here, the tuple has two elements, since Tb is enclosed by two loops. By
examining the data-flow of the code, we can see that A[k][k] for example, will
be modified (defined, in compiler parlance) by kernel Ta and then read (used,
in compiler parlance) by kernel Tb. The corresponding relation due to A[k][k]
flowing from Ta(k) to Tb(k,m) is:

{[k] -> [k’,m] : 0 <= k < N-1 && k+1 <= m <= N-1 && k == k’}



In the example above, the term “[k]” represents the execution space of the
source, Ta, and the term “[k’,m]”5 represents the execution space of the sink,
Tb. In Omega parlance, this Relation has an input variable count of one and
output variable count of two.

5.2 Interprocess Data Exchange

The symbolic data edges are associated with task classes, so that the run-time
can use them to determine what messages need to be exchanged between tasks.
In particular, for each task the run-time must determine the tasks that produced
the input of this task and the tasks that will consume the output of this task.
Therefore, the expressions stored in the JDF may contain only a) the parameters
of the source task, b) symbolic and numeric constants, c) the logical constants
“TRUE” and “FALSE”.

Outgoing Messages After the compiler has finished processing the input source
code, it will have a collection of Omega Relations describing the data flow edges
from each task class to each other task class in the code. To produce the infor-
mation needed by the run-time regarding the outgoing edges of a task Ti, we
need to process all Relations of flow edges that have as source the task Ti. For
every parameter that appears in the execution space of a Relation’s destina-
tion, we solve the equality constraints in the conjunction of constraints for this
parameter. Consider, as an example, the Relation:

{[k,m] -> [k’] : k’ = m && 1+k = m && 1 <= m < N}

which describes the flow edge from A[m][m] in Tb to A[k][k] in Ta. This edge
will be stored in the JDF of Tb as:

A[m][m] -> ((1+k)==m) ? A[k][k] Ta(m)

This way, when the run-time is processing task Tb(7, 8) for example, it can com-
pute in O(1) time that it needs to send tile A[8][8] to task Ta(8). Also, when
processing task Tb(7, 11), the run-time can compute that A[11][11] should not
be sent to any instance of Ta, since the condition (1 + k) == m is not true
(clearly, 1 + 7 6= 11).

If a destination parameter does not appear in any equality constraints in the
conjunction, we determine the lower bound and upper bound of this parameter
by solving the inequality constraints, and create a range of tasks that should be
the receiver of this message. As an example, consider the flow edge from A[k][k]
of Ta to A[k][k] of Tb which is described by the Relation:

{[k] -> [k’,m] : k’ = k && 0 <= k < m < N}

5 Although both task classes share a common enclosing loop, we use different variables
in the execution spaces (k and k’) because the dependency could be a loop carried
dependency, so we have to allow the two iteration spaces to be independent.



In order to store this edge in the JDF expression of Ta, we need to express k′ and
m in terms of k (and constants), since k is the only parameter in the execution
space of Ta. Therefore, this edge will be translated to the following information
in JDF notation:

A[k][k] -> (k < N-1) ? A[k][k] Tb(k, k+1..N-1)

since the output parameter “m” does not appear in any equality constraints. In
JDF syntax, expressions with ranges signify to the run-time that a broadcast
operation must be performed.

Incoming Messages To produce the information regarding the incoming edges
of a task Ti, we traverse the flow edges of all tasks searching for edges that have
task Ti as the destination. For each such Relation, we compute the inverse, and
then proceed with solving the inverse Relation for the output parameters, as we
do for the outgoing edges.

5.3 Anti-dependence Edges

An anti-dependence edge exists between tasks Tsrc and Tdst if Tsrc uses a variable
that Tdst defines, and Tsrc executes before Tdst

6. In parallel execution, anti-
dependence edges must be translated to synchronization edges, to avoid using
wrong versions of the data. Ostensibly, anti-dependencies are not relevant in
a distributed memory execution environment due to data copying. However,
DAGuE can run on distributed memory machines, shared memory machines, or
distributed memory clusters of shared memory nodes. Therefore handling anti-
dependencies in a uniform and systematic way is important for preserving the
semantics of the input serial algorithm.

Our compiler starts by recording all potential anti-dependencies as Omega
Relations. Then, Algorithm 1 is used to minimize the number of synchronization
edges by using data flow edges between tasks to eliminate the need for additional
synchronization, wherever possible. This is possible because a data flow edge im-
poses a message exchange between tasks and therefore explicit synchronization.

6 Performance

Two metrics of performance are relevant in the context of this work. First, the
performance of the compiler tool itself, and second, the performance of applica-
tions running under our system. We have tested the performance of our compiler
tool by processing the dense linear algebra operations found in the PLASMA
library, on hardware commonly found on average personal computers. The com-
pilation time we have observed is in the order of 100ms when the anti-dependence
minimization algorithm is not being used, and in the order of a few seconds when
it is being used.
6 Or more accurately, if there exists an execution path from Tsrc to Tdst.



Function FinalizeAntiDependencies(IG)
Input: IG, Input graph.
Result: Modifies IG by finalizing antidependencies.
begin

foreach anti-dependence edge Ea ∈ IG do
Let G be a copy of IG

/* Unless otherwise specified all nodes and edges belong */

/* to G, and all operations are done on G. */

foreach pair of nodes N1, N2 do
R←

S
{Ri : N1 −−→

Ri

N2}
Replace all edges from N1 to N2 with single edge N1 −→

R
N2

foreach Node N0 do
Let (p1, . . .) be the parameters of the task that correspond to N0

/* Initiate Cycle(N0) with an empty (tautologic) */

/* Relation to self. */

Cycle(N0)← {[p1, . . .]→ [p1, . . .]}
foreach Node N0 do

foreach N0 −−→
R0

N1 . . . −−−−→
Rn−1

N0 do

/* N0, N1 . . . N0 is a Cycle formed following flow, */

/* and/or anti-dependence edges. */

C ← R0 ◦R1 ◦ . . . ◦Rn−1

T ← transitive closure of C
Cycle(N0)← Cycle(N0)

S
T

A← FindTransitiveEdge(Source(Ea), ∅, ∅)
/* May remove Ea if empty */

Change Ea to (Ea −A) in IG

Algorithm 1: FinalizeAntiDependencies(IG)

Function FindTransitiveEdge(Nc, T, A)
Input: Nc, the current node in the transitive edge; T the transitive edge being

built; A the union of all transitive edges found until now.
Result: Union of the transitive edges that start at Nc and end at Sink(Ea)
begin

/* Scope inlcludes the variables of FinalizeAntiDependencies() */

/* in Algorithm 1. This algorithm operates on G. */

Mark Nc as visited
T ← Cycle(Nc) ◦ T
foreach Edge Nc −−→

Ri

Ni s.t. Ni is not visited do

Ttmp ← Ri ◦ T
A← FindTransitiveEdge(Ni, Ttmp, A)

if Nc = Sink(Ea) then
return A

S
T

else
return A

Algorithm 2: FindTransitiveEdge(Nc, T, A)



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20k 40k 60k 80k 100k 120k

P
e
rf

o
rm

a
n

c
e
 (

o
v
e
r 

p
e
a
k
)

Matrix Size

Gemm Peak
DAGuE

ScaLAPACK
DSBP

(a) Cholesky Factorization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20k 40k 60k 80k 100k 120k

P
e
rf

o
rm

a
n

c
e
 (

o
v
e
r 

p
e
a
k
)

Matrix Size

Gemm Peak
DAGuE

ScaLAPACK
High Performance Linpack

(b) LU Factorization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20k 40k 60k 80k 100k 120k

P
e
rf

o
rm

a
n

c
e
 (

o
v
e
r 

p
e
a
k
)

Matrix Size

Gemm Peak
DAGuE

ScaLAPACK

(c) QR Factorization

Fig. 4: Performance comparison on the Griffon platform (on 648 cores)

The performance of the DAGuE run-time has been extensively studied in
related publications [8, 9, 7]. The goal of this paper is to present the compiler
front-end of the system, so we present only a summary of performance results to
demonstrate that our toolchain can automatically analyze, schedule and execute
non-trivial algorithms, and deliver high performance at scale. Application per-
formance results are relevant, because the scalability achieved by our run-time is
enabled by the problem size independent algebraic expressions that our compiler
generates to describe inter-task dependence edges.

For the experiments we present here, we used 81 dual socket Intel Xeon L5420
quad core processors at 2.5GHz for a total of 648 cores. Each node has 16GB of
memory, and is interconnected to the others by a 20Gbs Infiniband network and
runs Linux 2.6.24 (Debian Sid).

The benchmarks consist of three popular dense matrix factorizations: Cholesky,
LU and QR. All three operations are implemented in the ScaLAPACK numerical
library [4]. Moreover, the Cholesky factorization has been implemented in a more
optimized way in the DSBP software [16], using static scheduling of tasks, and
a data distribution more efficient. The LU factorization with partial pivoting is
also solved by the well known High Performance Linpack benchmark (HPL [13]),
used to measure the performance of supercomputers.

For our comparison, we implemented these operations within DAGuE by
using the compiler presented in this paper to generate the JDF symbolic rep-
resentation from the corresponding PLASMA files. The data distribution is not
generated by automatic tools, but rather chosen by the human developer. For
our experiments, we have distributed the initial data following the classical 2D-
block cyclic distribution used by ScaLAPACK, and used our run-time engine to
schedule the operations on the distributed data. The kernels consist of the BLAS
operations referenced by the sequential codes, and their implementation was the
most efficient available on this machine. The same kernel implementations for
ScaLAPACK, HPL, DSBP, and our engine were used on each run.

Figure 4 presents the performance measured using our system (labeled as
DAGuE) and ScaLAPACK, and when applicable DSBP and HPL, as a function
of the problem size. All data is normalized to the theoretical floating point peak
of the machine. A total of 648 cores participated in the distributed run, and the
data was distributed according to a 9x9 2D block-cyclic grid. Tile size was tuned
to provide the best performance on each setup. As the figures illustrate, on all



benchmarks and for all problem sizes, our framework outperforms ScaLAPACK,
and performs as well as the state of the art, hand-tuned codes for specific prob-
lems. Our system goes from the sequential code to the parallel run automatically,
with very limited human involvement, but is still able to outperform DSBP, and
competes with the HPL implementation on this machine.

7 Conclusion

In this paper we presented the compiler front end of the DAGuE system, more
precisely how the compiler extracts the Symbolic Data Flow and Data Exchanges
from the input code in order to expose additional information to the run-time.
We outlined JDF, DAGuE’s internal problem-size independent representation of
task generated by the compiler and used by the run-time to make all task schedul-
ing and communication decisions. We showed how Relations produced using the
Omega test can be converted into message and synchronization requests for the
run-time, and how the synchronization edges can be reduced to the minimum
necessary set. Using this critical information exposed by the compiler, the run-
time can take more effective decisions about inter-nodes data transfers and about
how to schedule tasks in order to maximize the available parallelism not only
locally but remotely. Experimental results confirm that serial codes processed by
our system can match, or outperform, highly optimized, state of the art, hand
tuned, distributed linear algebra codes, such as Scalapack, libSCI and HPL.

References

1. Ancourt, C., Irigoin, F.: Scanning polyhedra with do loops. In: Proceedings of
ACM PPoPP ’91. pp. 39–50. Williamsburg, VA (1991)

2. Baskaran, M.M., Vydyanathan, N., Bondhugula, U.K.R., Ramanujam, J., Rountev,
A., Sadayappan, P.: Compiler-assisted dynamic scheduling for effective paralleliza-
tion of loop nests on multicore processors. In: Proceedings of ACM PPoPP ’09.
pp. 219–228. Raleigh, NC (2009)

3. Bastoul, C.: Code Generation in the Polyhedral Model Is Easier Than You Think.
In: Proceedings of IEEE PACT ’04. pp. 7–16. Antibes Juan-les-Pins, France (2004)

4. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley,
R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA (1997)

5. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence, T.,
Lee, J., Padua, D., Paek, Y., Pottenger, B., Rauchwerger, L., Tu, P.: Parallel
programming with polaris. IEEE Computer 29, 78–82 (December 1996)

6. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: Proceedings of ACM PLDI
’08. pp. 101–113. Tucson, AZ (2008)

7. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, H., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A., Don-
garra, J.: Distributed-Memory Task Execution and Dependence Tracking within
DAGuE and the DPLASMA Project. Tech. Rep. 232, LAWN (Sep 2010)



8. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: Flexible development of dense linear algebra algorithms on mas-
sively parallel architectures with DPLASMA. In: IEEE PDSEC-11. Anchorage,
AK (2011)

9. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
DAGuE: A generic distributed dag engine for high performance computing. In:
HIPS-11. Anchorage, AK (2011)

10. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.J.:
DAGuE: A generic distributed DAG engine for high performance computing. Par-
allel Computing (2011), to appear, http://dx.doi.org/10.1016/j.parco.2011.10.003

11. Bosilca, G., Bouteiller, A., Hérault, T., Lemarinier, P., Saengpatsa, N.O., Tomov,
S., Dongarra, J.J.: Performance portability of a gpu enabled factorization with the
dague framework. In: IEEE CLUSTER. pp. 395–402 (2011)

12. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.J.: A class of parallel tiled linear
algebra algorithms for multicore architectures. Parallel Comput. Syst. Appl. 35,
38–53 (2009)

13. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: Past, present
and future. Concurrency Computat.: Pract. Exper. 15(9), 803–820 (2003)

14. van Engelen, R.A., Birch, J., Shou, Y., Walsh, B., Gallivan, K.A.: A unified frame-
work for nonlinear dependence testing and symbolic analysis. In: Proceedings of
ACM ICS ’04. pp. 106–115. Malo, France (2004)

15. Feautrier, P.: Dataflow analysis of array and scalar references. International Journal
of Parallel Programming 20, 23–53 (1991), 10.1007/BF01407931

16. Gustavson, F.G., Karlsson, L., K̊agström, B.: Distributed SBP cholesky factoriza-
tion algorithms with near-optimal scheduling. ACM Trans. Math. Softw. 36(2),
1–25 (2009)

17. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.W.,
Bugnion, E., Lam, M.S.: Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer 29, 84–89 (December 1996)

18. Kyriakopoulos, K., Psarris, K.: Data dependence analysis techniques for increased
accuracy and extracted parallelism. International Journal of Parallel Programming
32, 317–359 (August 2004)

19. Kyriakopoulos, K., Psarris, K.: Nonlinear Symbolic Analysis for Advanced Pro-
gram Parallelization. IEEE Transactions on Parallel and Distributed Systems 20,
623–640 (May 2009)

20. Maydan, D.E., Hennessy, J.L., Lam, M.S.: Efficient and exact data dependence
analysis. In: Proceedings of ACM PLDI ’91. pp. 1–14. Toronto, Ontario (1991)

21. Perez, J., Badia, R., Labarta, J.: A dependency-aware task-based programming
environment for multi-core architectures. In: Proceedings of IEEE Cluster Com-
puting. pp. 142 –151 (2008)

22. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. In: Proceedings of the ACM/IEEE SC’91. pp. 4–13

23. Quilleré, F., Rajopadhye, S., Wilde, D.: Generation of efficient nested loops from
polyhedra. Int. J. Parallel Program. 28, 469–498 (October 2000)

24. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra al-
gorithms on distributed-memory multicore systems. In: Proceedings of ACM/IEEE
SC’09

25. Vasilache, N., Bastoul, C., Cohen, A., Girbal, S.: Violated dependence analysis. In:
Proceedings of ACM ICS ’06. pp. 335–344. Cairns, Queensland, Australia (2006)


