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The frenetic development of the current architectures places a strain on the current state-
of-the-art programming environments. Harnessing the full potential of such architectures
is a tremendous task for the whole scientific computing community.

We present DAGuE a generic framework for architecture aware scheduling and manage-
ment of micro-tasks on distributed many-core heterogeneous architectures. Applications
we consider can be expressed as a Direct Acyclic Graph of tasks with labeled edges desig-
nating data dependencies. DAGs are represented in a compact, problem-size independent
format that can be queried on-demand to discover data dependencies, in a totally distrib-
uted fashion. DAGuE assigns computation threads to the cores, overlaps communications
and computations and uses a dynamic, fully-distributed scheduler based on cache aware-
ness, data-locality and task priority. We demonstrate the efficiency of our approach, using
several micro-benchmarks to analyze the performance of different components of the
framework, and a linear algebra factorization as a use case.

Published by Elsevier B.V.
1. Introduction and motivation

The past few years have witnessed a persistent increase in the number of cores per CPU and in the use of accelerators. This
trend can only be expected to continue, as hardware vendors announce chips with as many as 80 cores, multi-GPU capable
compute nodes and potentially a tighter integration between accelerators and processors. While, from a pure performance
viewpoint, this additional performance is welcome, from a programming perspective it is difficult to extract additional per-
formance from the available hardware.

To achieve this, an MPI/threads hybrid programming model is the commonly proposed solution, with MPI processes run-
ning across nodes and multiple threads running on each node. Unfortunately, programming hybrid applications is difficult
and error prone. Instead of allowing application programmers to focus on algorithmic issues, it encumbers their task with
several low level architectural issues such as load balancing, memory distribution, cache reuse and memory locality on
non-uniform memory access (NUMA) architectures, and communications/computations overlapping. From a performance
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portability point of view these issues are hard to address in a generic way, and are yet orthogonal to the algorithm design
computational scientists are interested in.

In this paper, we present DAGuE, a framework for parallel application developers, that transfers the task of addressing the
system specific performance issues from the application developer to the DAGuE run-time system developer. DAGuE is a Di-
rect Acyclic Graph (DAG) scheduling engine, where the nodes of a DAG are sequential computation tasks and the edges are
data movements between tasks. Designing a parallel application with the DAGuE framework consists of encapsulating com-
putation tasks into sequential kernels and defining, through a DAGuE specific language, how the flow of data circulates from
one kernel into the next. The algorithm and the data distribution are decoupled, the runtime system is responsible of map-
ping the algorithm on the data at runtime.

DAGuE schedules tasks in a fully distributed and dynamic fashion among all computing resources (cores, GPUs, acceler-
ators). It enables local tasks to make progress waiting only on data dependencies with other tasks, and no process has a glo-
bal knowledge of the execution progress of remote processes. Each process runs its own instance of the scheduler using a
representation of the DAG that is problem size independent. The DAGuE engine utilizes all cores of each node, enabling work
stealing between cores of the same node. Communications are implicit, depicted solely by he data flow between tasks exe-
cuting on different nodes, thus they are managed by the run-time rather than the application developer. They follow data
dependencies of the DAG and do not require global synchronization, thus enabling scalability. A DAGuE user focuses on
expressing the algorithm as a DAG of tasks, and defining how the tasks should be distributed over the computing resources
via the data distribution. Tools of the framework help her in this task.

The remainder of the paper is organized as follows. Section 2 overviews related work, Section 3 contains a detailed
description of the DAGuE framework. Section 4 describes the algorithms ported to DAGuE. Finally, Section 5 gives the exper-
imental results and Section 6 provides the conclusion and future work.
2. Related work

As early as 1966, the Bernstein conditions, which formalize the requirements for two tasks to be executed in parallel, have
been isolated [1]; Direct Acyclic Graphs are a convenient abstraction of these conditions, with a large variety of applications
[2]. More specifically, in a distributed context, the dataflow execution model is iconic of DAG based approaches [3], which
have mostly been applied, in the last two decades, to grid and peer-to-peer systems [4,5].

Recently, several projects [6–10], mostly in the field of linear algebra, have proposed to revive the general use of DAGs, as
an approach to tackle the challenges of harnessing the power of multi-core and hybrid platforms. We distinguish three ap-
proaches to building and managing the DAG during execution: [5] reads a concise representation of the DAG (in XML), and
unrolls it in memory before scheduling it. Perez et al. [11], Agullo et al. [8], Song et al. [12], and Augonnet et al. [13] modifies
the sequential code with pragmas, to isolate tasks that will be run as an atomic entity, and runs the sequential code to dis-
cover the DAG. Optionally, these engines use bounded buffers of tasks to limit the impact of the unrolling operation in mem-
ory. The third approach consists of using the concise representation of the DAG in memory, to minimize the impact of
unrolling the complete DAG. Using structures such as a Parameterized Task Graph (PTG) proposed in [14], the memory used
for DAG representation is linear in the number of task types and totally independent of the total number of tasks.

However, only a few of these recent projects have tried to use DAG scheduling in distributed memory environments.
Scheduling DAGs on clusters of multi-cores introduces new challenges: the scheduler should be dynamic to address the
non determinism introduced by communications; and in addition to the dependencies themselves, data movements must
be tracked between nodes. In the context of linear algebra, three projects are prominent: in [15,16], the authors propose
a centralized approach to schedule computational tasks on clusters of SMPs using a PTG representation and RPC calls based
on the PM2 project. Husbands and Yelick [17] proposes an implementation of a tiled algorithm based on dynamic scheduling
for the LU factorization on top of UPC. Gustavson et al. [18] uses a static scheduling of the Cholesky factorization on top of
MPI to evaluate the impact of data representation structures. All of these projects address a single problem and propose ad
hoc solutions.

In comparison, the framework described in this paper, DAGuE, takes advantage of a concise representation of the DAG; it
is fully distributed, i.e. no centralized components, and avoids unrolling the DAG in memory at any given moment. The alge-
braic representation of the dependencies enables out-of-order execution of the tasks, only limited by the actual data depen-
dencies, and not by the original control flow of the input language, hence extracting more potential parallelism. At best of our
knowledge no such approach has been taken in the past. Moreover, as shown in the rest of this paper, DAGuE is a general tool
not dedicated to a single application or platform.
3. The Direct Acyclic Graph environment

We consider the following three challenges as the most important when considering DAG scheduling on emerging high
performance architectures, consisting of many multi-cores NUMA computing nodes, clustered in a large distributed memory
machine. Data distribution must be left to the programmer, to enable control over the communication volume and to ease
composition with other software layers; inside a node, scheduling must be completely dynamic and asynchronous, to
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maximize throughput and load balance; communication between nodes should be asynchronous and reactive, to overlap as
much as possible computation and communication and to avoid costly distributed synchronizations.

To achieve these goals, DAGuE consists of a runtime engine and a set of tools to build, analyze, and pre-compile a compact
representation of a DAG. The DAGuE library includes the runtime environment which is formed by the assembly of the gen-
eric runtime code, and the program-specific codes generated by the compile phases. The runtime library encompasses a dis-
tributed multi-level dynamic scheduler, an asynchronous communication engine and a data dependencies engine, all deeply
integrated into the generated code of the considered routine. A typical DAGuE application is a regular MPI application, that
links with a DAGuE optimized computational routines generated with the DAGuE toolchain. The end-user programmer does
not necessarily have to use DAGuE, as the routines can be embedded in interoperable libraries.

The representation of Fig. 1 describes the conceptual representation of the unrolling of the DAG, as seen by the runtime.
Although the size of the fully unrolled DAG is a function of the global parameter space (SIZE, etc. . . .), for small problem sizes,
the DAG can be entirely unrolled in memory, and can be handled by well established management techniques. However,
considering larger scale machines envisioned in the future, Gustafson’s law calls for much larger problem sizes, for which
the memory requirements would explode with the combination of all possible tasks, far exceeding the available memory.
The traditional workaround for this issue, as seen in StarPU, PLASMA, Cilk, etc. is to restrict the exploration of the DAG to
a bounded window. This interferes with the exploitation of potential parallelism, as the filling of the window follows the
ordering dictated by the sequential code flow, executed on all compute nodes, a serious limitation on million way parallel
machines envisioned in the future. This is not a concern for DAGuE, as the engine never unfolds the DAG. Instead, it uses a
symbolic interpretation, similar to the algebraic representations depicted in Fig. 3, to explore successors, generate and sche-
dule ready-tasks. Hence, at any given time, the DAG is never entirely unrolled in memory, only tasks ready to be executed on
the local resources exists in the system. Furthermore, each compute node computes only successors for tasks that are locally
executed (unlike the code flow approach that conceptually unrolls the entire DAG on all nodes).
Fig. 1. DAG of QR for a 4 � 4 tiles matrix on a 2 � 2 grid of processors.
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The IN and OUT dependencies, are accessible between any pair of tasks that have a dependent relation, in the successor or
predecessor direction. If task A modifies a data dA and passes it as data dB to task B as read-only, task A can compute that task
B is part of its successors; task B can compute that task A is part of its predecessors; and both tasks know what data is ac-
cessed how by the other task. This is sufficient knowledge to implement a fully distributed scheduling engine for the under-
lying DAG, based only on local knowledge. When a node learns that some task has been completed remotely, it can locally
compute in O(d) operations what local tasks are enabled by this completion, d being the output degree of this task in the
DAG. This computation is independent of the total dimension of the underlying DAG, the problem size, the number of task
or total number of edges. Its memory requirements is also bounded by the number of tasks generated. To accelerate the
scheduling operations, the IN dependencies are compiled into a prologue function, and the OUT dependencies into an epi-
logue function, inserted around the computational body of the task.
3.1. Input format

The input format of the DAGuE framework can be either sequential pseudo-code, consisting of simple loop nests (see
Fig. 2), or directly the intermediate Job Data Flow representation (JDF). In the case of the sequential pseudo-code, it is trans-
lated in the JDF format, using a provided tool (H2J) based on the integer programming framework Omega-Test [19] to extract
data dependencies. The JDF format, is a textual representation of the algorithm, each task being divided into two parts: the
dataflow representation and the code body. The code body is a simple translation of the kernel call in C, and can be custom-
ized by the programmer. The DAG dependencies are represented separately by algebraic conditions on inputs and outputs of
each tasks, as illustrated by the JDF code generated from the aforementioned pseudocode for the GEQRT kernel, presented in
Fig. 3. In this example, if the parameter k = 0, the value of the V data is read from the local A matrix, otherwise, it comes from
the C2 output of the DSSMQR kernel. Inputs and outputs can be typed (U depends only on the upper triangle of the data, L on
the lower triangle, and T on the entire data). In order to fine tune the algorithm, the programmer can alter an existing JDF, or
create it from scratch for simple cases. Adding a task priority function to the tasks, which computes a priority hint based on
the task’s parameters, is a typical example of JDF alterations for tuning purposes.

The JDF representation is then pre-compiled into a C-code and becomes available as an object file. The pre-compiler gen-
erates a user visible C function, based on the JDF name, taking all global variables as arguments. This function represents the
interface used by the caller of the routine; it includes, in addition to the code provided by the user in the body, an epilogue
and a prologue. These two entities are composed by a set of stubs necessary to the DAGuE runtime to retrieve the local or
remote data required by the task (in the prologue); to execute the task’s body and to infer and trigger all local or remote
successors of the task (in the epilogue). The C-code generated at this step remains problem-size independent. It is a symbolic
representation of the DAG, that maps very closely the textual representation of the JDF. After he set the parameters values
using the main entry point provided by the DAGuE translator, the user gets an object that can iterate on the underlying DAG,
to explore it if necessary. Each task discovered by the process that walks the DAG can be used to compute the tasks that are
successors. Since the link between tasks are symbolic, there is no need to access the rest of the DAG to compute the
successors.

The DAGuE engine is responsible for moving data from one processor to another when necessary; tasks are enabled only
when all incoming data is locally available. Dependencies of the JDF may be marked with a modifier. This modifier is a type
qualifier. It tells the communication engine how to transfer data from a memory location to another. As both the in and out
dependencies can be typed, complex memory layout can be transferred. This is useful to save communication bandwidth in
some linear algebra kernels, where typically a tile is divided in a lower and a upper triangle that flows to different tasks
independently.
3.2. The DAGuE engine: a fast, distributed, architecture-aware dynamic scheduler of DAG

The scheduling is fully distributed; all nodes run the scheduling engine. Each process can parse the concise JDF represen-
tation independently to find information about any tasks in a memory constrained space. Each computing thread runs for
Fig. 2. Pseudocode of the tile QR factorization (right-looking loop nesting order version).



Fig. 3. Generated JDF representation of the GEQRT dependencies. Arrows indicate the direction of the flow of data, brackets indicate the type of the data.
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itself the scheduling functions, thus alleviating the need for a centralized approach of scheduling. To handle load imbalance
between threads, the scheduling is dynamic and threads are allowed to steal work from one another on the same process, in
a NUMA-aware way. Many advanced strategies for work stealing have been proposed in the past, in this work we imple-
mented one that focuses solely on improving cache locality, as it has been demonstrated to be a major criterion for perfor-
mant multithreaded execution [20]. Considering all of the many other approaches and selecting the most appropriate is out
of the scope of this paper; the performance section will demonstrate that our approach is sufficient to demonstrate the supe-
riority of the contribution of this work, which is the distributed decentralized algebraic DAG scheduling approach.

DAGuE creates one thread per core and binds them to the core. Each thread alternates between executing sequential com-
putational kernels, and executing the generated epilogues and prologues, which are effectively calls to the scheduler. Each
thread maintains a local (bounded) list of ready tasks. When a thread completes a task, it executes the epilogue derived from
the JDF, determining which tasks may have been enabled. Iterating on the outgoing dependencies of the task, the thread
atomically marks which incoming dependencies of the targets are enabled. A task with all IN dependencies enabled can
be scheduled. To improve locality and data reuse on NUMA architectures, the scheduler pushes tasks in the local thread-spe-
cific queue, if it is not full. If this queue is full, it will push the task to a global shared dequeue that is unbounded. When
requesting a task, the scheduler will try to pull a task from the local queue, selecting according to the user-defined priority
function for each task. If the local queue is empty, it will steal a task from one of the other threads queues. Bounded queues
are organized following the NUMA hierarchy, to favor the cache reuse effect (hence, a thread bound on core c will try to pull
from the thread bound on a close core, if its local list is empty, trying each of the other threads one after the other, from
closest to farthest). If no work can be found locally, the first task in the global system queue is pulled. As the experiments
will show, this approach provides very efficient cache and memory locality. A large local queue size prevents tasks from
migrating between threads, while a small local queue would lead to excessive job stealing and thus poor cache and NUMA
locality. While this can be subject to further tuning, the queue size of 48 used currently in the engine performs well. The
DAGuE environment uses the HWLOC library [21] to discover the NUMA architecture of the machine at runtime and discover
architectural proximity. The JDF language and its internal representation at runtime, are specifically optimized to handle
DAGs that enable simultaneously a large number of dependencies, called ranges. In Fig. 3, such a range is found on line 6,
where the DGEQRT (k) kernel will enable SIZE � 1 � k � 1 DORMQR (k, p), k + 1 6 p 6 SIZE � 1. All the DORMQR tasks use
the data V modified by DGEQRT (k), and it is efficient for the cache reuse to schedule these tasks on the same core. Should
other cores endure starvation, task stealing evens the workload. The internal dynamic structures are designed for memory
efficiency and can support millions of activations with very small overheads, as we demonstrate in Section 5.

At the end of the epilogue, the thread has noted, using the parallel partitioning of the JDF, which tasks, if any, will execute
remotely, and which data from the completed task they will require. Again, this evaluation is decentralized, every node eval-
uates the conditions pertaining only to tasks of interest to determine the nodes hosting successor tasks. The epilogue ends
with a call to the asynchronous communication engine to trigger the movement of the output data to the necessary nodes.

3.3. Asynchronous communication engine

In DAGuE, communications are implicitly inferred from the data dependencies between tasks, according to the parallel
partitioning. The JDF does not contain the parallel partitioning itself, but the mapping between tasks and data. The upper
level has to provide the data distribution, and the programmer the task to data mapping (which can be an arbitrary function
as long as it evaluates identically on every rank). Typical mappings (1D, 2D block cyclic) are provided in the framework. The
runtime will then map the tasks on nodes according to the (static) parallel partitioning, use job-stealing techniques to favor
an efficient scheduling of the local tasks, detect remote dependencies and accordingly issues all the necessary commands to
move data between distributed resources without requiring explicit communications to appear in the input language.
Although job stealing is a key concept for scheduling within nodes, tasks are immutably pinned to a specific node, according
to the evaluation of the data partitioning predicate, in order for the programmer to keep control of the memory distribution
load balance and amount of communications of the algorithm. However, the remote scheduling of tasks is still dynamic in
the sense that the order in which communication requests are satisfied, hence promoting the exploration of a particular path
in the DAG over another, is considered by the communication engine according to tasks priorities and potential network
contentions dynamically. The communication engine has to also exhibit a strong level of asynchrony in the progression of
network transfers, to effectively achieve communication/computation overlap and asynchronous progress of tasks on
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different nodes. As a consequence, in DAGuE, communications are handled by a separate thread, which takes commands
from all the compute threads and issues the corresponding network operations. Upon completion of a task, the dependency
resolution is executed. Local tasks activations are handled locally, while for remote dependencies an activate message is sent
to the process that verifies the predicate. From the compute thread’s perspective, this is a fire and forget operation. Regardless
of the network congestion status, the compute threads are able to focus on the next available compute task as soon as pos-
sible to maximize communication overlap.

An activate message contains information about the task that completed (the task identifier and the values of the param-
eters) and the index of the output data variables needed by all the dependent tasks on the destination expressed as a single
integer bit mask. During the epilogue of the task, activate messages targeting the same processor are coalesced and a single
command is sent to every destination process. Only processes that will run tasks depending on the completed task are noti-
fied. As an example, on the ping-pong program presented in Fig. 6, when finishing PING (2), the activate message from rank 0
to rank 1 contains {PING,2,1}, because T is the first output of PING. Leveraging on the ranges expressed in the JDF represen-
tation, the communication topology can be adapted to limit the outgoing degree of one-to-all dependencies and establish
proper collective communication techniques, such as pipelining or spanning three approaches.

Upon the arrival of an activate message, the destination process schedules the reception of the relevant output data from
the parent task by evaluating itself the dependencies of the parent tasks. A single control message is sent to the originating
process to initiate the data transfers; all output data needed by the destination are received by different rendezvous mes-
sages. When one of the data transfers completes, the receiver invokes locally the dependency resolution function associated
with the parent task, inside the communication thread, with a specific restricted mask to satisfy only the dependencies re-
lated to this particular transfer. Remote dependencies resolutions are data specific, not task specific, in order to maximize
asynchrony. Tasks enabled during this process are added to the queue of the first compute thread, as there are no cache con-
straints involved.

In the current version, the communications are performed using MPI. To increase asynchrony, data messages are non-
blocking, point-to-point operations allowing tasks to concurrently release remote dependencies, while keeping the maxi-
mum number of concurrent messages limited. The collaboration between the MPI processes is realized using control mes-
sages, short messages containing only the information about completed tasks. The MPI process pre-posts persistent
receives to handle the control messages for the maximum number of concurrent tasks completion. Unlike the data messages,
there is no limit to the number of control messages that can be sent, to avoid deadlocks. This can generate unexpected mes-
sages, but only for small size messages. Due to the rendezvous protocol described in the previous paragraph, the data pay-
loads are never unexpected, thus reducing memory consumption from the network engine and ensuring flow control.

3.4. GPU and accelerators support

From a memory hierarchy point of view, a GPU behaves as a remote resource, the data has to be explicitly moved into and
retrieved from the GPU. However, from an execution point of view, the accelerator is reliant on the CPU, which is in charge of
orchestrating the submission of tasks to be executed. Due to architectural choices, some tasks can be executed more effi-
ciently on the GPU, while others are more efficient on the cores. In order to increase the overall utilization of all hardware
resources, the workload can be balanced between the cores and the GPUs. The runtime DAGuE scheduler has been extended
to handle this heterogeneity, and decides at runtime which tasks to run on which resources, using the appropriate kernel and
moving the data back and forth between the accelerator and host memory.

The tasks representation has been extended to allow application developers to specify multiple versions of the compu-
tation kernels, implementing a codelet approach. If a task has multiple representations (BODY in the JDF format), the sched-
uler selects between all the versions the one that matches the hardware it considers for executing the tasks. Minimal
interaction from the programmer is required, limited to providing the appropriate GPU equivalents of the regular kernels
(oftentimes as simple as replacing a BLAS call by a CuBLAS call).

When the scheduler is invoked via the stubs in the epilogue of a task, it can switch, if an accelerator is idling and if the task
at hand can execute on it, to a different scheduling approach and take a GPU in charge. From this point on, it will orchestrate
the submission of tasks and the retrieval of results computed by completed tasks on the GPU. This thread maintains this role
until all available tasks for the GPU have been submitted. The scheduler, when in GPU mode, multiplexes the different oper-
ations asynchronously using multiple streams to enable overlapping of I/O and computation, and to increase the throughput
of the GPU. It moves data from the CPU to the GPU, places kernel execution orders, and moves data back from the GPU to the
CPU, as well as detects tasks completions and triggers the corresponding actions in the task scheduling system. On hardware
supporting concurrent executions (such as NVIDIA Fermi), several tasks will be submitted to the GPU simultaneously, in or-
der to achieve a more effective utilization of the GPU warps/threads. To minimize GPU to host traffic, intermediate results are
not retrieved by the host (except until a task that is executed on a CPU needs it) and tasks that depend on already loaded data
are preferably executed on that same GPU.

4. Applications and use cases

A distinct feature of our engine is its ability to translate a sequential nested loop code into a concise, symbolic format
which it can interpret and then execute in a distributed environment. In this paper, we illustrate the type of algorithms that
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can be improved with DAGuE, by presenting the features of the three most useful dense linear algebra algorithms ported to
DAGuE, namely: Cholesky, LU and QR factorizations. These three algorithm are among the most useful for production appli-
cations, and are often used to compute the numerical solution of linear equations Ax = b, to compute eigenvalues, to solve
overdetermined systems, or are critical building blocks for sparse solvers like GMRES. These algorithms are specific enough
that their parallelization from a sequential code is not practically impossible, but are still challenging enough to demonstrate
the wide range of critical applications that can benefit from the DAGuE approach.

4.1. Tile algorithms

We decided to consider the tile version of the linear algebra algorithms. Tile algorithms are based on the idea of process-
ing the matrix by square sub-matrices, referred to as tiles [22], of relatively small size, which makes the operations efficient
in terms of cache and TLB use. More importantly in the context of DAGuE, tile algorithms provide more task parallelism than
traditional approaches for linear algebra operations, and thus is well suited for DAG scheduling strategies. Tile algorithms
have a long history of research in the domain of linear algebra [23], and their use for multicore shared memory architectures
led to significant performance improvements [24].

4.2. Matrix factorizations

The QR factorization (or QR decomposition) offers a numerically stable way of solving full rank underdetermined, over-
determined, and regular square linear systems of equations. The QR factorization of an m � n real matrix A has the form
A = QR, where Q is an m �m real orthogonal matrix and R is an m � n real upper triangular matrix.

A detailed tile QR algorithm description can be found in [25]. Fig. 2 shows the pseudocode of the Tile QR factorization. It
relies on four basic operations implemented by four computational kernels for which reference implementations are freely
available as part of either the BLAS, LAPACK or PLASMA [8].

� DGEQRT: The kernel performs the QR factorization of a diagonal tile and produces an upper triangular matrix R and a unit
lower triangular matrix V containing the Householder reflectors. The kernel also produces the upper triangular matrix T as
defined by the compact WY technique for accumulating Householder reflectors [26]. The R factor overrides the upper tri-
angular portion of the input and the reflectors override the lower triangular portion of the input. The T matrix is stored
separately.
� DTSQRT: The kernel performs the QR factorization of a matrix built by coupling the R factor, produced by DGEQRT or a

previous call to DTSQRT, with a tile below the diagonal tile. The kernel produces an updated R factor, a square matrix V
containing the Householder reflectors and the matrix T resulting from accumulating the reflectors V. The new R factor
overrides the old R factor. The block of reflectors overrides the corresponding tile of the input matrix. The T matrix is
stored separately.
� DORMQR: The kernel applies the reflectors calculated by DGEQRT to a tile to the right of the diagonal tile, using the reflec-

tors V along with the matrix T.
� DSSMQR: The kernel applies the reflectors calculated by DTSQRT to the tile two tiles to the right of the tiles factorized by

DTSQRT, using the reflectors V and the matrix T produced by DTSQRT.

The Cholesky factorization of an n � n real symmetric positive definite matrix A has the form A = LLT, where L is an n � n
real lower triangular matrix with positive diagonal elements. It relies also on four computational kernels: DPOTRF, DSYRK,
DTRSM and DGEMM. A detailed description of this algorithm can be found in [24]. The LU factorization with partial row piv-
oting of an m � n real matrix A has the form A = PLU, where L is an m � n real unit lower triangular matrix, U is an n � n real
upper triangular matrix and P is a permutation matrix. It relies on four kernels: DGETRF, DTSTRF, DGESSM and DSSSSM. A
detailed description of this algorithm can be found in [24,27].

4.3. Expressivity and generality

To avoid the pitfalls associated with general automatic parallelization, the DAGuE approach has to trade some generality
to gain in performance. In most programming paradigms, the control flow enforces an ordering on the operations, limiting
the possible parallelism, but enabling maximum expressivity at the user level. DAG approaches try to set free from the par-
allelism limitation, but are usually restricted by the size of the window of visible tasks in the dependency graph, that has to
be small to spare the memory consumption. In DAGuE, the graph is not unrolled, instead, algebraic conditions are evaluated
to unfold the direct successors and predecessors of a particular task at hand. This is the key to one of the major feature in the
DAGuE approach: the ability to execute the kernels in any arbitrary order allowed by the data flow, but without artificial
limitations imposed by the control flow. Conversely, this introduces a specific condition on the type of algorithms that
can be expressed with DAGuE: any algorithm that depends on the value of the data to drive the construction of the DAG
is difficult, nearly impossible to express. Should the list of successor of a task depend on the value of the computed data
(or a random value, as is the case for Monte-Carlo simulations), the other processors have no means of computing locally,
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without an interaction with the predecessor processor holding that data, that they are part of that successor list, and remote
dependencies cannot be satisfied.

While this limitation is strong, we believe that many algorithms can be expressed (even outside the field of dense linear
algebra). All algorithms that can be expressed as imperfectly nested loops with affine bounds, increment functions and array
subscripts, regardless of their purpose, can benefit from the DAGuE approach. Beyond that, some algorithms might be too
complex to be extracted automatically from the sequential code, especially if loop boundaries are not affine, but an advanced
programmer can write them directly in the intermediate JDF format. Example of such algorithms are most sorting algo-
rithms, FFT, etc. Moreover, many sparse algorithms feature a graph that is data dependent, but that graph is globally known,
as it is directly inferred from the dense blocks structure of the input sparse matrix, and can be evaluated on every node inde-
pendently with consistent results. As a consequence, we believe that most sparse algorithms can also be expressed with DA-
GuE; and ongoing work are attempting at porting the sparse GMRES solver.
5. Performance evaluation

5.1. Experimental conditions

Platforms. The Griffon cluster is one of the clusters of the Grid’5000 experimental grid [28]. It is a 648 core machine com-
posed of 81 dual socket Intel Xeon L5420 quad core processors at 2.5 GHz with 16 GB of memory, interconnected by a 20Gbs
Infiniband network. Linux 2.6.24 (Debian Sid) is deployed.

The Dancer cluster is a 8 quad core node cluster, based on a Intel Q9400 2.5 Ghz processor, each node with 4 GB of mem-
ory. All nodes are connected using a dual Gigabit Ethernet, and Myrinet 10G. Linux 2.6.31.2 is deployed.

On Dancer and Griffon, the software is compiled using gcc and gfortran 4.4 with -O3 flags, and uses the OpenMPI 1.4.1,
Plasma 2.1.0 and Intel Math Library MKL-10.1.0.015.

Competing Benchmarks. We compare the performances of the DAGuE based factorizations with three other implementa-
tions. ScaLAPACK [29] is the reference implementation for distributed parallel machines of some of the LAPACK routines. Like
LAPACK, ScaLAPACK routines are based on block partitioned algorithms to improve cache reuse and reduce data movement.
We used the vendor ScaLAPACK and BLAS implementations (from MKL). DSBP [18] is a tailored implementation of the Chole-
sky factorization using (1) a tiled algorithm, (2) a specific data representation suited for Cholesky, and (3) a static scheduling
engine. We used DSBP version 2008–10-281. HPL is considered the state of the art implementation of an LU factorization. It is
used as the prominent metric in the evaluation of the performance level of the most powerful machines in the world issued by
the Top 500 [30]. The algorithm and programming paradigm are very similar to the ScaLAPACK version of the LU factorization,
but extremely tuned.

Tuning. Parallel factorizations are controlled by several parameters: N defines the size of the input matrix (N � N doubles),
while NB defines the size of a tile, or a block, in tiled, or blocked algorithms, respectively. An N � N matrix is divided in
NT � NT tiles where NT � NB = N. When NB does not divide N, the incomplete tiles are padded with zeroes. No computation
happens on the padding but complete tiles are transferred over the network nonetheless. P and Q, control the process grid
used to map the block cyclic distribution of the matrices. According to [31] and to our experiments, a close to square process
grid, with P 6 Q, minimize the communications while balancing computations. Consequently, for all the results presented in
this paper, the process grid follows this rule. NB has been tuned experimentally for each software, the results are generated
using the best overall performing NB. HPL has been tuned experimentally on the Griffon platform (WR10R2R1 is the best per-
forming combination).

In many figures, we provide the theoretical performance of the platform, computed from the frequency, the depth of the
pipeline and the number of cores. The practical peak (GEMM peak) is defined as the hypothetical performance of all cores
reaching the best performance measured by a single core computing a matrix–matrix multiplication. All benchmarks are
using double precision operations, except for GPU benchmarks which are in single precision.
5.2. Scheduling performance

The first results evaluate the overhead of the scheduling engine on a single node architecture. Two different simple
benchmarks compute Nb repetitions of a simple task, consisting of a N � N double precision matrix–matrix multiply. The first
benchmark is a sequential program composed of four nested loops (one loop around Nb, then the three loops of the matrix–
matrix multiply). The second benchmark is a simple JDF file that generates Nb parallel tasks consisting of the three inner
loops of the matrix multiplication.

Fig. 4 plots the ratio between the time taken by the sequential program with ideal scaling (hence time/p, where p is the
number of cores), and the time taken by the DAGuE engine for the same number of tasks Nb and matrix size N. We did all
measures on the dancer platform, five times, and divided each measurement of the DAGuE engine by the fastest sequential
run for the same parameters.
1 Available online at http://www8.cs.umu.se/�larsk/index.html.

http://www8.cs.umu.se/~larsk/index.html
http://www8.cs.umu.se/~larsk/index.html
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The embarrassingly parallel matrix–matrix multiply is a stress test for the scheduling engine of DAGuE. An extremely
large number of tasks (up to 220) can be scheduled at the same time. Thus, the waiting queue of the engine is rapidly filled
with ready tasks that have to be scheduled. Thanks to not unfolding the complete graph, the engine is able to manage mil-
lions of simultaneous tasks without impacting the computation time. For very small tasks (in the order of microseconds), the
overheads due to dynamic scheduling can exceed the ideal execution time by a factor of three, suggesting that DAGuE is best
fitted for tasks of a coarser grain. However, the overheads due to the scheduling infrastructure become rapidly negligible; for
a relatively small work size (a matrix–matrix multiply of 30 � 30 doubles takes 44 ls on the dancer platform), DAGuE
reaches the ideal parallelization performance projection.
5.3. Communication performance

The second benchmark aims at evaluating the communication performance of the DAGuE engine. We have designed a
simple ping pong benchmark where a message of variable size is sent from one task to another, a certain number of times.
By carefully placing the tasks on different nodes (according to the distribution of data A), we can measure the inherent cost of
communications. The JDF representation of this ping pong is presented in Fig. 6. A(0) is the original data it is used in PING

(k) as a starting point for T if k = 0, otherwise T is the output of the previous (k � 1) PONG task. Similarly, when the expected
number of data movements have been reached (k = NT) the content of the data is stored back in A(0), otherwise it is given as
input for the next PONG (k + 1) task. Each dataflow, marked with or ? in the text, is tagged with the expected type ATYPE,
defined to the desired size by the main program. In the current implementation on top of MPI, the ATYPE is an MPI datatype.

We measure the total time t taken to execute this JDF on two machines, interconnected with two 1 Gb/s ethernet, then
with Myricom 10 Gb/s, and finally with Infiniband 20 Gb/s. From this time t we compute the average latency of the DAGuE
engine. In Fig. 5 we compare these measurements with the NetPIPE [32] benchmark using the same MPI library. For all net-
work types, a high overhead on small message latency is observed for DAGuE: from a factor of 10 on the double-1G Ethernet
network to a factor of 90 on the MX-10G network. The current implementation of DAGuE uses a 3-way rendezvous protocol
to move all data; the emitter first signals the completion of the task to the nodes that will run a task depending on this com-
pletion. The receiver node, when notified of a completion, allocates resources to receive the actual data, then requests the
data from the emitter, that finally sends the data. For very small messages, this multiplies the latency by at least a factor
of 3. Moreover, the goal of the DAGuE engine is to resolve data dependencies and move data for the upper layer application.
To do this, the engine introduces an accounting of data and allocates memory to receive the new data. So, all network data
are received in a newly allocated buffer that will be garbage collected by the system. Furthermore, the communications and
the treatment of the tasks are done on different threads, adding four to six thread context switches to the latency. This is a
different behavior than the NetPIPE benchmark, which receives and sends data ‘‘in-place’’ and does not use threads. For high-
speed networks this introduces a significant overhead that explains the observed difference.

However, the DAGuE system is not designed to move small data, but data in the order of magnitude of a matrix tile. Fig. 5
also show that for medium-size messages (64 KB), the difference between NetPIPE and DAGuE is small for the Ethernet



Fig. 6. JDF representation of the ping pong.
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network, and it becomes small at 512 KB for high-speed networks. For the tested applications, the tile size resulting from
tuning varies from 200 � 200 (320 KB) to 350 � 350 (�1 MB), which is in the high efficiency range. Fig. 7 asserts this claim
by presenting the performance per core, for a fixed total number of cores, when varying the repartition between distributed
memory and shared memory accesses, for the Cholesky factorization test case. Even using the inefficient Ethernet network,
the performance per core only decreases slightly when replacing shared memory computation by MPI distributed messaging,
outlining the nearly perfect overlap achieved by the communication engine.

5.4. Impact of task granularity

In Fig. 8, we investigate the effect of task granularity on the performance of the DAGuE Cholesky factorization at different
node scales and input matrix sizes. For each run, we took the smallest matrix size that is bigger than a target T and still divis-
ible by the tile size. For one node, the target T1 is 13,600; for four nodes, the target T4 is 26,880; for 81 nodes, the target T81 is
120,000. To compare all runs in a normalized way, the figure represents the efficiency as a percentage of the theoretical peak.
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All curves present the same general shape: the performance first increases with the block size until a peak, then decreases
slowly when the block size increases. For a single node, this is the effect of the optimization of cache reuse in the BLAS kernel.
For a distributed run, the optimal block size is the result of a trade-off between an ideal size for optimizing the cache effects
in the kernel, network efficiency and available parallelism. As seen in Fig. 5, starting at 1 MB, the DAGuE engine reaches net-
work saturation. Thus, for blocks of 360 � 360 elements and larger, the transfer time increases linearly with the amount of
data (thus as the square of the block size). Smaller block sizes experience a lower network efficiency. However, when the size
of the matrix is large, there are enough tasks ready to be scheduled at all times to overlap communication with computation,
and as a consequence, block size tuning mostly depends on the BLAS kernels.

5.5. Problem scaling

Fig. 9 presents the problem scaling of the DAGuE factorizations compared to state of the art comparable algorithms. We
ran the different factorizations on the Griffon platform, with 81 nodes (648 cores), and for a varying problem size (from
13,600 � 13,600 to 130,000 � 130,000). We took the best block size value for each of the reference implementations; tile
sizes were tuned as demonstrated in Fig. 8 for the DAGuE implementation; block size, process grid and other parameters
are tuned by experimental exploration for HPL, DSBP and ScaLAPACK. We kept the best value of the runs for each plot in
the figure.

When the problem size increases, the total amount of computation increases as the cube of the size, while the total
amount of data increases as the square of the size. For a fixed tile size, this also means that the number of tiles in the matrix
increases with the square of the matrix size, and so does the number of tasks to schedule. Therefore, the global performance
of each benchmark increases until a plateau is reached. On the Griffon platform, the amount of available memory was not
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sufficient to reach the plateau with neither of the implementations, except for the DAGuE QR. On the entire range of bench-
marks and problem sizes, DAGuE outperforms the non-multi-core aware ScaLAPACK. This advantage is more pronounced for
smaller problem sizes, although the lower amount of parallelism due to the smaller number of tiles makes it more difficult to
harness the performance of the machine.

Fig. 9(a) compares the performance of the DAGuE Cholesky factorization with DSBP and ScaLAPACK. Though DSBP fea-
tures a data format specifically tailored for the Cholesky factorization (exploiting the symmetry of the matrix), DAGuE ben-
efits from its dynamic scheduling, and better extraction of parallelism from the loop nest, to better utilize the computing
resources and the network. Consequently, DAGuE is able to reach up to 70% of the theoretical peak (75% of GEMM-peak).

When compared with the highly tuned HPL version of the LU algorithm (Fig. 9(c)), DAGuE exhibits an overall similar level
of performance. For the largest data-sets, HPL exhibits slightly better performance than DAGuE. Considering that the DAGuE
LU is not optimized and is the result of a semi-automatic translation from a sequential code, being able to be competitive
against HPL is a significant achievement. One of the major optimizations in HPL is the lookahead, the capacity to compute
in advance the next synchronous and expensive panel operation, while the GEMM updates are still ongoing. The DAGuE
scheduler mimics this optimization automatically, without the intricacies of the HPL source code.

5.6. Weak scalability

Fig. 10 presents the weak scalability study of the Cholesky factorization. The initial workload for a single node (8 cores)
experiment is a 13,600 � 13,600 matrix. This matrix size is scaled up accordingly to the number of nodes to keep the per core
workload constant, up to N = 120,000 for an 81 node (648 cores) deployment. In most benchmarks, Cholesky factorization is
preferred, as the DSBP software gives a reference point against another tiled algorithm approach, hence outlining the sole
benefit from the superior scheduling of DAGuE.

Clearly, all benchmarks scale almost perfectly, attaining 49% of the GEMM peak for ScaLAPACK, 66% for DSBP, and up to
78% for DAGuE. All runs in the figure are done with a square process grid, the best process grid for Cholesky factorization. The
only exception is the point at 384 cores (48 nodes, 8 cores per node). In this case, we used a process grid of 6 � 8 for the
DAGuE engine, and 16 � 24 for DSBP and ScaLAPACK. This measurement was added to demonstrate that all benchmarks suf-
fer from a similar downgrade of performance when the grid is not perfectly square.

5.7. Strong Scalability

Fig. 11 presents the strong scalability study for the Cholesky factorization (i.e., evolution of the performance for a given
matrix size, when increasing the number of computing resources participating in the factorization). For Fig. 11(a), we used
the largest available matrix size for the smallest number of nodes (93,500 � 93,500) and the most efficient block size after
tuning (340 � 340). For Fig. 11(b), we always used the same number of nodes (81), but varied only the number of cores, so
we chose the smallest matrix size for which benchmarks were able to obtain the best performances (120,020 � 120,020).

The figure shows that, for a fixed matrix size, the performance of both tiled factorizations (DAGuE and DSBP) scales al-
most linearly. Because the same matrix is distributed on an increasing number of nodes, the ratio between computations
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and communications decreases with the number of nodes. As a consequence, the efficiency of the benchmark decreases
when the number of cores increases. ScaLAPACK seems to suffer more from this effect, and is consequently unable to con-
tinue scaling after 512 cores for this matrix size.

Fig. 11(b) illustrates that the DAGuE and DSBP approaches are best fitted for clusters with many cores. We were able to
run on a larger matrix because even at 2 cores per node, the whole memory of the 81 nodes is available. As shown in [18],
DSBP data representation enables it to outperform ScaLAPACK. Because DAGuE is designed as a hybrid system, it scales lin-
early with the number of cores, as long as enough parallelism enables to feed all the threads. At 2 cores per node, the prob-
lem specific data representation of DSBP is more beneficial than the scaling provided by the hybrid and more generic
approach of DAGuE. However, for larger core counts per node, the dynamic scheduling of DAGuE exhibits a better use of
the local computing resources, allowing it to surpass DSBP.

5.8. Performance portability

Not only DAGuE can express a large variety of linear algebra algorithms, but, as we show in this section, it also enables
porting applications performance from a hardware platform to another without changing the main algorithm description.
Fig. 12 presents an execution of the Cholesky algorithm on a heterogeneous cluster encompassing two different types of
GPU accelerators. The code of the Cholesky factorization itself is left unchanged; only the GEMM kernels are GPU accelerated.
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The programmer only has to provide the appropriate kernels, and the DAGuE runtime takes care of moving data to the GPU
boards, cache coherency, and scheduling on both the CPU cores and the GPU accelerators computing units. As the perfor-
mance illustrates, DAGuE is able to extract a significant part of the peak performance of this heterogeneous distributed plat-
form. As expected, inter-node load balance is not flexible enough to support efficiently nodes with significantly divergent
computing power: the overall execution runs at the pace of a Tesla C1060 homogeneous system. DAGuE does not target het-
erogeneous ad hoc desktop grids, but supercomputers, whose architecture is envisioned [33] to be an homogeneous cluster
of nodes with internal heterogeneity. Indeed, intra-node heterogeneity is very well handled, as the total performance rep-
resents 72% of an homogeneous system with 8 Tesla nodes; for comparisons, the efficiency of the CPU only system is
83%, the efficiency of the HPL algorithm on Tianhe-1A, the most powerful GPU accelerated machine in the TOP500, is only
55%.
6. Conclusion

With the emergence of massively many-core parallel architectures, the classical approach based on pure MPI program-
ming model is becoming inefficient. Problems with memory bandwidth, latency and cache fragmentation will, therefore,
tend to become more severe, resulting in communication imbalance. Furthermore, network bandwidth (between parallel
processors) and latency are improving, but at significantly slower rates than the increase of operations per second performed
by the CPU. Specifically, network bandwidth and latency improve by 26%/year and 15%/year respectively, while processing
speed increases by 59%/year. Therefore, the shift in algorithm properties, from computation-bound toward communication-
bound is expected to become striking in the near future. This is demonstrated by our experiments by the fact that ScaLA-
PACK, a very efficient, but 20 year old software package, underperforms on modern architectures. The DAGuE engine pro-
posed in this paper tackles this problem by proposing a generic DAG engine to express task dependencies at a finer
granularity. By specifically targeting clusters of multi-cores, with a hybrid programming model mixing implicit message
passing and multi-threaded parallelism, DAGuE automatically extracts more asynchrony from the algorithms, and therefore
brings the application performance closer to the physical peak. Moreover, algorithms expressed as DAGs have the potential
to alleviate the user from focusing on the architectural issues, while allowing the engine to extract the best performance
from the underlying architecture.

In this paper, the DAGuE engine performance has been investigated using synthetic benchmarks, emphasizing a very good
efficiency starting from task granularity of a few microseconds. The dense linear algebra one-sided factorizations, QR, LU and
Cholesky, have been implemented, using an automated tool to extract the dataflow representation from a sequential algo-
rithm, and demonstrate the performance of the system on a realistic workload. The performance of these algorithms have
been compared to the classical approach for distributed systems programming, represented by the ScaLAPACK routines
and the very optimizes HPL, and a similar optimized version of the tiled Cholesky algorithm called DSBP. The DAG/Tiled algo-
rithm approach clearly outperforms ScaLAPACK, both in terms of scalability and performance, with an efficiency almost dou-
bled in certain instances. Besides being generic, DAGuE benefits from more asynchrony from its dynamic and cache aware
scheduling. In most cases, the DAGuE engine compares favorably in terms of performance against the most finely chiseled
one-sided factorizations available today.
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