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1 Introduction and Motivation

The runtime environment of MPI implementations plays a key role to launch the
application, to provide out-of-band communications, enabling I/O forwarding
and bootstrapping of the connections of high-speed networks, and to control
the correct termination of the parallel application. In order to enable all these
roles on a exascale parallel machine, which features hundreds of thousands of
computing nodes (each of them featuring thousands of cores), scalability of the
runtime environment must be a primary goal.

In this work, we focus on an intermediate level of the deployment / communi-
cation infrastructure bootstrapping process.We present two algorithms: the first
to share the contact information of all runtime processes, enabling an arbitrary
set of connections, and the second to distribute only the information needed to
build a binomial graph. We implemented these two algorithms in ORTE, the
runtime environment of Open MPI, and we compare their efficiency, one with
the other, and with the runtime systems of other popular MPI implementations.

2 Evaluation

We use the underlying launching tree to exchange contact information at the
runtime level, and let the runtime system build for itself a communication in-
frastructure mapping a binomial graph [1] topology. This topology has several
interesting properties such as redundant links to support fault tolerance and
binomial tree shape connectivity rooted in each peer. A precedent work [3] pro-
poses a self-stabilizing algorithm to build such an overlay on top of a tree. Such
an algorithm provides two main features: 1) inherent fault-tolerance and 2) self-
adaptation to the underlying tree topology, which negates the need for initializing
the construction of the binomial topology.

We compare our implementation with three other setups: the implementa-
tion of ORTE described in [4] (prsh with improved flooding), MPICH2 [5] ver-
sion 1.3.2p1 using Hydra [6,2] with rsh and MVAPICH2 version 1.7a using the
ScELA [7] launcher. All versions are compiled in optimized mode and the exper-
iments based on rsh were using ssh as a remote shell system.
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Fig. 1. Comparison of ORTE prsh with BMG and ORTE prsh with Flooding

First, we compare the two implementations in ORTE together, in the figures
presented in Fig. 1. The first micro benchmark, presented in Fig. 1a measures the
time taken to solely exchange the Contact Information, following the Improved
Flooding Strategy, or the BMG Building strategy, as functions of the number of
nodes. The latter consists in two phases: first the building of the ring, then of the
BMG, and the two phases are represented in the figure. Individual measurements
are represented with light points, and mean values are connected with a line.
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Fig. 2. Comparison with other MPI
runtime systems

The BMG algorithm presents a better
convergence time, in practice, than the
Improved Flooding algorithm. This is ex-
pected, since it exchanges much less in-
formation (each node receives only the
contact information of O(log2(n)) nodes)
than the Flooding algorithm (O(n)). The
ring construction time occupies a major
part of this time, but the system appears
to scale faster than linearly.

This is also demonstrated in Fig. 1b,
which presents how both implementations
perform when increasing the number of nodes. On the /bin/true benchmark, the
BMG construction algorithm demonstrates a better scalability than the Flood-
ing Algorithm, with noticeable steps that characterize the logarithmic behavior
of the algorithm. This logarithmic behavior disappears, when launching a com-
municating MPI application, like a2a, or even a simple empty MPI application,
like initfinalize. This is due to the third phase of the launching in ORTE,
the modex, that introduces a linear component to the performance.

Fig. 2 compares the two ORTE implementations with Hydra (MPICH2), and
ScELA (MVAPICH) for the three benchmarks, and various number of nodes.
Although Hydra performs slightly better than both ORTE implementations at
a small scale, ORTE reaches the same performance for 154 nodes and above.
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After about 166 nodes, both Hydra and ScELA for the /bin/true benchmark
suffer from connections storms, that impact the performance by introducing a
delay of 3s, due to TCP SYN packets retransmission.

3 Conclusion

In this paper, we presented two strategies for the construction of a runtime com-
munication infrastructure running in parallel with the deployment of the runtime
processes and the deployment of the parallel application. The first strategy uses
an improved flooding algorithm, that enables any runtime process to communi-
cate with any other directly, thus providing an arbitrary routing topology for
the runtime. The second strategy uses an ad-hoc self-adapting algorithm, that
transforms the initial spawning tree into a binomial graph, not only sharing the
needed contact information (and only this information), but also establishing
at the same time the corresponding links. We implemented both algorithms in
ORTE, the runtime system of Open MPI, and compared the implementations
with the state of the art runtime environments for MPI. Experiments demon-
strated an improved scalability, highlighting the importance of tight integration
between launching and communication infrastructure construction, and the ad-
vantages of a flexible routing topology at the runtime level.
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