
Energy and performance
characteristics of different parallel
implementations of scientific
applications on multicore systems

Charles Lively1, Xingfu Wu1, Valerie Taylor1, Shirley Moore2,
Hung-Ching Chang3 and Kirk Cameron3

Abstract
Energy consumption is a major concern with high-performance multicore systems. In this paper, we explore the energy
consumption and performance (execution time) characteristics of different parallel implementations of scientific applica-
tions. In particular, the experiments focus on message-passing interface (MPI)-only versus hybrid MPI/OpenMP implemen-
tations for hybrid the NAS (NASA Advanced Supercomputing) BT (Block Tridiagonal) benchmark (strong scaling), a
Lattice Boltzmann application (strong scaling), and a Gyrokinetic Toroidal Code – GTC (weak scaling), as well as central
processing unit (CPU) frequency scaling. Experiments were conducted on a system instrumented to obtain power infor-
mation; this system consists of eight nodes with four cores per node. The results indicate, with respect to the MPI-only
versus the hybrid implementation, that the best implementation is dependent upon the application executed on 16 or
fewer cores. For the case of 32 cores, the results were consistent in that hybrid implementation resulted in less execution
time and energy. With CPU frequency scaling, the best case for energy saving was not the best case for execution time.

Keywords
energy consumption, frequency scaling, hybrid MPI/OpenMP, MPI, multicore system, performance characteristics,
scientific applications

1 Introduction

Currently, the trend in high-performance computing (HPC)

systems has shifted towards cluster systems with multi-

cores. Energy consumption becomes a major challenge

when using multicores to build petaflop or exaflop HPC

systems (Kogge, 2008). Saving energy implies reducing

power consumption or improving the performance (execu-

tion time), or both. The relationship between the perfor-

mance and power consumption is non-linear and complex.

In this paper, we investigate energy and performance charac-

teristics of different parallel implementations of scientific

applications on a multicore cluster system, and explore inter-

actions between power consumption and performance.

The experiments conducted for this work utilized a

multicore cluster, called Dori, from Virginia Tech with

eight nodes, two AMD dual-core Opteron processors per

node, and a power profiling tool, called PowerPack (Ge

et al., 2010). We used PowerPack to measure the power

consumption for our applications and Prophesy (Taylor

et al., 2003) to measure the execution time of the appli-

cations. The experiments focus on exploring energy and

performance characteristics for MPI-only versus hybrid

MPI/OpenMP implementations (for three applications),

and frequency scaling (for two applications). We use the

following three applications for our experiments: a

hybrid NASA Advanced Supercomputing (NAS) parallel

benchmark BT (Block Tridiagonal) with Class B (based

on NAS Parallel Benchmarks (NPB) BT 3.3) (Wu and

Taylor, 2011); a Lattice Boltzmann application (Wu and

Taylor, 2006); and a three-dimensional (3D) particle-in-

cell application, Gyrokinetic Toroidal Code (GTC;

Ethier, 2005; Wu and Taylor, 2009).

Our experimental results show that different methods

can be utilized to improve performance and save energy.

1Department of Computer Science & Engineering, Texas A&M University,

USA
2Department of Electrical Engineering and Computer Science, University

of Tennessee-Knoxville, USA
3Department of Computer Science, Virginia Tech, USA

Corresponding author:

Xingfu Wu, Department of Computer Science & Engineering, Texas A&M

University, MS 3112, College Station, TX 77843, USA

Email: wuxf@cs.tamu.edu

The International Journal of High
Performance Computing Applications
25(3) 342–350
ª The Author(s) 2011
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342011414749
hpc.sagepub.com

The results indicate, with respect to the MPI-only versus

the hybrid implementation, the best implementation is

dependent upon the application for 16 or fewer cores. For

the case of 32 cores, the results were consistent in that the

hybrid implementation resulted in less execution time and

energy. With frequency scaling, the best case for energy

saving was not the best case for execution time.

The remainder of this paper is organized as follows.

Section 2 describes the power profiling tool PowerPack

and the experimental platform. Section 3 provides the

experimental results with which we explore the energy

and performance characteristics of different scientific

applications. It is noted that for the remainder of the paper,

we use the term performance to be synonymous with exe-

cution time. Section 4 discusses some related work. Sec-

tion 5 summarizes the paper.

2 PowerPack and experiment platforms

Our experiments utilized an eight-node multicore system,

Dori, which is available in the Department of Computer

Science at Virginia Tech. Each node of the system consists

of two dual-core AMD Opteron processors (1.8 GHz) and

six 1 GB memory modules per node.

We used PowerPack (Ge et al., 2010), which provides

power profiling information for advanced execution

systems, to measure the power consumption for our

applications running on the Dori cluster. The PowerPack

framework shown in Figure 1 is a collection of software com-

ponents, including libraries and application-programming

interfaces (APIs), which enable system component-level

power profiling correlated to application functions.

PowerPack obtains measurements from power meters

attached to the hardware of a system. The framework

includes APIs and control daemons that use DVFS (dynamic

voltage and frequency scaling) to enable energy reduction

with very little impact on the performance of the system.

As multicore systems evolve, the framework can be used

to indicate the application parameters and the system compo-

nents that affect the power consumption on the multicore unit.

PowerPack allows the user to obtain direct measurements of

the major system components’ power consumption, including

CPU, memory, hard disk, and motherboard. This fine-grain

measurement allows power consumption to be measured on

a per-component basis.

In this work, power consumption is measured on one

main node and then remapped to other nodes on the sys-

tem; this method is used because of the limited number

of power measurement instruments. When executing an

application, the PowerPack API and LabView data acqui-

sition measurements are used to provide for fully auto-

mated application profiling of power consumption.

3 Experimental results

This section provides the details of our experimental

results. In particular we explore MPI-only versus hybrid

MPI/OpenMP implementations, and applying frequency

scaling. In Section 3.1, we present the results for MPI-

only versus hybrid MPI/OpenMP implementations for

three applications. In Section 3.2, we present the results for

applying frequency scaling to the NAS BT benchmark and

the GTC application.

3.1. MPI and hybrid implementations

In this section, we use three scientific applications to

explore the energy and performance of MPI-only versus

Figure 1. PowerPack framework (Ge et al., 2010).

Lively et al. 343

hybrid (MPI/OpenMP) implementations: a hybrid NAS BT

(Wu and Taylor, 2011), a Parallel Multiblock Lattice Boltz-

mann (PMLB) application and the GTC.

3.1.1. NAS parallel benchmark BT. We ran the hybrid MPI/

OpenMP NPB BT with Class B on Dori to evaluate its per-

formance and power consumptions for MPI and hybrid

(MPI/OpenMP) implementations. Using the hybrid MPI/

OpenMP programming can achieve better performance and

also save energy. Our results show that the CPU and mem-

ory power consumption of the hybrid BT are higher than

that for the MPI BT. Memory power consumption for the

hybrid BT goes up and down significantly compared to the

MPI BT, because of the use of shared address space by

OpenMP.

We used PowerPack to collect power profiles for the

CPU, memory, hard disk and motherboard for the MPI and

hybrid MPI/OpenMP BT, as shown in Figures 2 and 3.

Figure 2. Power for the message-passing interface block tridiagonal (MPI BT) executed on a node with four MPI processes.

Figure 3. Power for message-passing interface (MPI)/OpenMP block tridiagonal (BT) executed on a node with one MPI process with
four OpenMP threads.

344 The International Journal of High Performance Computing Applications 25(3)

Figure 2 indicates that there are slacks when CPUs are

waiting for data exchanges among all MPI processes. This

causes CPU power to fluctuate up and down frequently for

the MPI BT. Figure 3 illustrates that CPU power for the

hybrid MPI/OpenMP BT does not vary as much as it does

for the MPI BT, because the OpenMP threads take advan-

tage of intra-node communication (shared address space),

where we used one MPI process with four OpenMP threads

for the execution of the hybrid BT. However, memory

power consumptions for both are similar because of the rel-

atively small problem size.

From Figures 2 and 3, we observe that the performance

(execution time) for the hybrid MPI/OpenMP BT is slightly

better than that for its MPI counterpart. The CPU power

consumption for the hybrid BT is slightly higher than that

for its MPI counterpart. The execution time for hybrid

BT is 257 seconds and that for MPI BT is 269 seconds. The

total energy consumption for the hybrid BT is 57,779 J; the

energy consumption for MPI BT is 58,643 J. Table 1 pro-

vides a comparison of the MPI and hybrid performance

of the application on four cores using one node in the sys-

tem. Using the hybrid MPI/OpenMP implementation pro-

vides for an overall improvement in execution time of

4.46% and energy savings of 1.47%. Because the total

energy consumption is the product of performance and

power, 4.46% performance improvement and higher power

consumption for the hybrid BT just results in the 1.47%
energy saving.

Similarly, using the hybrid BT on four nodes not only

can save 4.56% of the energy consumption, but also can

achieve 5.84% performance improvement, as shown in

Table 1. The 5.84% performance improvement and higher

CPU and memory power consumption for the hybrid BT

result in the 4.56% energy saving. This indicates that the

hybrid parallel programming model MPI/OpenMP effi-

ciently exploits the potential offered by the multicore

cluster. The results are given for four and 16 cores only,

because BT requires that the number of cores be a perfect

square.

3.1.2. Parallel Multiblock Lattice Boltzmann. In this section, we

discuss the energy performance of a large-scale scientific

application, the PMLB (Wu and Taylor, 2006). The Lattice

Boltzmann method is widely used in simulating fluid

dynamics. It is based on kinetic theory, which entails a

more fundamental level in studying the fluid than

Navier–Stokes equations.

The PMLB application was implemented by researchers

in the Aerospace Engineering Department at Texas A&M

University using a MPI for communication. Our work pro-

vides for a hybrid implementation of the code incorporating

OpenMP to take advantage of the shared-memory architec-

ture of multicore chips.

The PMLB code demonstrates that the MPI-only imple-

mentation provides for a better performance in terms of

execution time and energy consumption on up to 16 cores

shown in Table 2. As the number of cores increases to 32

the execution time and energy consumption for the hybrid

version becomes better than the MPI-only version. Specif-

ically, on 32 cores (8�4), the energy consumption for the

hybrid implementation is over 17% better than the MPI-

only and the execution time for this parallel programming

paradigm is 21% better.

The results are interesting in two ways. While energy is

the product of power and execution time, the percentage

reduction or increase for energy was not the same as that

for performance. For example, with four cores, the execu-

tion time for the hybrid implementation was 33% larger,

but the corresponding energy was 79% larger than MPI-

only. Secondly, only when we have 32 cores is the hybrid

method better. Further work is needed to explore if a differ-

ent hybrid implementation would produce better results for

16 or fewer cores.

3.1.3. Gyrokinetic Toroidal Code. In this section, we discuss

the energy performance of the GTC (Ethier, 2005; Wu et

al., 2009). Note that the GTC is weak scaling with 100 par-

ticles per cell and 100 time steps.

Table 3 provides the energy and performance compari-

son of the GTC application executed on one to eight nodes

of Dori with the default CPU frequency of 1.8 GHz, where

KJ stands for thousand Joules, and N�M means N nodes

with M cores per node. With the increase of the number

of nodes from one to eight, the performance improvement

percentage for the hybrid GTC over the MPI-only GTC

increases from 37.22% on one node to 42.12% on eight

nodes. In addition, the hybrid also saves 37.81% of the

overall system energy over the MPI GTC on one node, and

41.86% of the total system energy on eight nodes. This also

shows that using the hybrid MPI/OpenMP programming

reduces the MPI communication overhead and achieves

better performance and save energy.

It is interesting to observe that the performance

improvement percentage and energy-saving percentage

on a given number of nodes (from one to eight) are similar,

mainly because the energy savings are the result of the per-

formance improvement by the hybrid GTC. It indicates that

power consumption for both the hybrid GTC and the MPI

GTC is similar because the application is weak scaling.

This is different from the results of the BT shown in Table

1, where the NAS BT is strong scaling and the performance

improvement percentage for the hybrid BT is much larger

Table 1. Comparison for Block Tridiagonal (BT) for one and four
nodes.

#Cores BT type Run time(s) Total energy (J)

1�4 Hybrid 257 57,779
(–4.46%) (–1.47%)

MPI 269 58,643
4�4 Hybrid 71.723 15,941.091

(–5.84%) (–4.56%)
MPI 76.174 16,702.200

Lively et al. 345

than its energy-saving percentage because of the higher

power consumptions of the hybrid BT.

3.2. Performance and energy using frequency scaling

To perform frequency scaling on Dori, five frequency val-

ues are utilized. The default frequency and voltage for the

system is set to 1.8 GHz and 1.4 V and can be adjusted to

1.0 GHz and 1.3 V. The CPU frequency on Dori can be

adjusted in increments of 200 Hz from 1.8 to 1.0 GHz.

We use the power profiling data of BT and GTC executed

on four nodes (4�4) to further investigate the energy and

performance impacts by using frequency scaling.

Table 4 provides the effects of applying frequency

scaling to the NAS BT benchmark. When we scale down

the CPU frequency from 1.8 to 1.0 GHz we observe that the

hybrid BT has the minimum energy consumption of

14,444.036 J with the CPU frequency of 1.2 GHz. We use

this energy consumption as a baseline to calculate the other

percentages shown in Table 4. When increasing the CPU

frequency from 1.2 to 1.8 GHz, we obtained performance

improvement but lost energy. So there is a trade-off

between performance and energy consumption. Achieving

better performance may require using more energy.

Table 5 shows the energy and performance for the

hybrid and MPI-only GTC at five CPU frequency gears

from 1.8 to 1.0 GHz on the Dori system. This shows the

effect that adjusting the frequency of the system has on the

energy and performance of the application. As shown in

Table 5, for the default CPU frequency of 1.8 GHz, the

performance improvement percentage for the hybrid GTC

over the MPI-only GTC is 38.29% on four nodes (with

four cores per node), and the hybrid also saves 38.40%
of the overall system energy over the MPI GTC on four

nodes. We use the energy and performance for the MPI

and hybrid GTC at the CPU frequency of 1.6 GHz as base-

line to calculate the percentages of energy and perfor-

mance at various frequencies, shown in Table 6. As we

seek to explore the saving in energy we use the lowest

energy consumption obtained at 1.6 GHz as the baseline.

For the given problem size and number of cores, it is

obvious to see the total application execution times for both

Table 2. Energy and performance comparison of message-passing interface (MPI) and hybrid Parallel Multiblock Lattice Boltzmann
(PMLB) applications.

#Cores PMLB type Run time(s) Total energy (KJ) CPU energy (KJ)
Memory
energy (KJ) Disk energy (KJ)

Motherboard
energy (KJ)

1�4 Hybrid 30.022 6.337 3.682 0.818 0.243 0.411
(33.92%) (70.81%) (65.55%) (94.3%) (27.89%) (32.58%)

MPI (baseline) 22.418 3.710 2.224 0.421 0.190 0.310
2�4 Hybrid 21.045 8.629 5.246 0.916 0.354 0.584

(18.74%) (39.42%) (40.61%) (37.33%) (19.59%) (19.43%)
MPI (baseline) 17.724 6.189 3.731 0.667 0.296 0.489

4�4 Hybrid 13.248 (5.78%) 10.534 (10.55%) 6.276 (12.17%) 1.229 (4.41%) 0.455 (10.44%) 0.738 (6.49%)
MPI (baseline) 12.524 9.529 5.595 1.177 0.412 0.693

8�4 Hybrid 11.929 17.903 10.723 2.088 0.822 1.327
(–21.32%) (–17.26%) (–16.13%) (–17.34%) (–20.89%) (–21.15%)

MPI (baseline) 15.161 21.637 12.784 2.526 1.039 1.683

Table 3. Energy and performance comparison of message-passing interface (MPI) and hybrid Gyrokinetic Toroidal Code (GTC)
applications.

#Cores GTC type Run time(s)
Total
energy (KJ)

CPU
energy (KJ)

Memory
energy (KJ)

Disk
energy (KJ)

Motherboard
energy (KJ)

1�4 Hybrid 1302.773 270.223 162.969 27.086 9.699 17.119
(–37.22%) (–37.81%) (–38.52%) (–33.47%) (37.20%) (–37.11%)

MPI (baseline) 2075.376 434.524 265.071 40.714 15.445 27.221
2�4 Hybrid 1395.322 576.674 353.826 61.887 23.801 38.753

(–37.47%) (–37.68%) (–38.35%) (–34.33%) (–38.18%) (–37.83%)
MPI (baseline) 2231.652 925.401 574.003 94.238 38.501 62.333

4�4 Hybrid 1434.491 1182.959 711.065 118.186 41.824 74.670
(–38.29%) (–38.40%) (–39.31%) (–34.64%) (–39.26%) (–38.58%)

MPI (baseline) 2324.707 1920.578 1171.572 180.825 68.858 121.571
8�4 Hybrid 1463.457 2419.985 1457.945 244.013 86.806 153.596

(–42.12%) (–41.86%) (–42.39%) (–37.73%) (–41.7%) (–41.80%)
MPI (baseline) 2528.556 4162.998 2530.861 391.842 148.906 263.909

346 The International Journal of High Performance Computing Applications 25(3)

t-

T
a
b

le
4
.

C
o
m

p
ar

is
o
n

fo
r

m
es

sa
ge

-p
as

si
n
g

in
te

rf
ac

e
(M

P
I)

an
d

h
yb

ri
d

B
lo

ck
T

ri
d
ia

go
n
al

(B
T

)
ap

p
lic

at
io

n
s

o
n

4
�

4
(1

6
co

re
s)

u
si

n
g

fr
eq

u
en

cy
sc

al
in

g.

C
P
U

sp
ee

d
B
T

ty
p
e

R
u
n

ti
m

e(
s)

T
o
ta

l
en

er
gy

(K
J)

C
P
U

en
er

gy
(K

J)
M

em
o
ry

en
er

gy
(K

J)
D

is
k

en
er

gy
(K

J)
M

o
th

er
b
o
ar

d
en

er
gy

(K
J)

1
.8

G
h
z

H
yb

ri
d

7
1
.7

2
3

(–
2
5
.3

1
%

)
1
5
,9

4
1
.0

9
1

(1
0
.3

6
%

)
9
4
5
3
.6

6
8

(2
2
.8

8
%

)
1
5
8
0
.7

1
8

(–
2
6
.7

6
%

)
5
0
8
.6

7
9

(–
3
0
.8

3
%

)
9
1
9
.0

1
8

M
P
I

7
6
.1

7
4

(–
2
7
.8

2
%

)
1
6
,7

0
2
.2

0
0

(1
5
.6

3
%

)
9
9
8
6
.5

2
1

1
7
6
5
.7

0
6

5
5
4
.3

4
7

9
9
7
.4

8
8

1
.6

G
h
z

H
yb

ri
d

(b
as

el
in

e)
7
6
.1

3
9

(–
2
1
.8

0
%

)
1
5
,0

5
8
.2

3
0

(4
.2

5
%

)
8
7
3
7
.3

0
4

(1
3
.5

7
%

)
1
7
1
3
.1

3
2

(–
2
0
.6

2
%

)
5
6
6
.7

2
8

(–
2
2
.9

4
%

)
1
0
0
0
.6

5
5

M
P
I

8
1
.8

4
1

(–
1
5
.9

4
%

)
1
5
,9

0
3
.0

5
2

(1
0
.1

%
)

9
0
8
8
.2

2
0

1
8
5
8
.3

8
6

5
9
8
.2

0
8

1
0
6
2
.2

5
8

1
.4

G
h
z

H
yb

ri
d

8
4
.8

4
9

(–
1
2
.8

6
%

)
1
4
,7

3
2
.0

7
6

(1
.9

9
%

)
8
1
8
6
.8

2
8

(6
.4

1
%

)
1
8
5
2
.8

7
7

(–
1
4
.1

5
%

)
6
0
1
.6

8
3

(–
1
8
.1

9
%

)
1
0
9
1
.1

4
5

M
P
I

9
0
.5

3
0

(–
7
.0

2
%

)
1
5
,6

2
4
.0

8
0

(8
.1

7
%

)
8
5
7
7
.5

5
1

1
9
9
2
.7

5
4

6
3
9
.7

7
8

1
1
6
3
.6

6
1

1
.2

G
h
z

H
yb

ri
d

9
7
.3

6
6

1
4
,4

4
4
.0

3
6

7
6
9
3
.5

4
7

2
1
5
8
.3

6
9

7
3
5
.4

9
5

1
2
8
8
.5

1
0

M
P
I

1
0
1
.9

9
0

(4
.7

4
%

)
1
5
,0

8
8
.7

9
3

(4
.4

6
%

)
8
1
0
1
.0

8
1

2
3
3
0
.1

0
7

8
0
3
.4

9
3

1
3
7
2
.1

6
0

1
.0

G
h
z

H
yb

ri
d

1
1
1
.9

4
7

(1
4
.9

7
%

)
1
7
,0

4
1
.2

4
6

(1
7
.9

8
%

)
9
3
2
5
.7

7
8

(2
1
.2

2
%

)
2
4
8
0
.8

0
0

(1
4
.9

3
%

)
8
7
3
.5

3
0

(1
8
.7

7
%

)
1
5
0
3
.2

0
7

M
P
I

1
1
7
.3

9
4

(2
0
.5

6
%

)
1
7
,7

7
4
.7

5
0

(2
3
.0

6
%

)
9
6
3
0
.9

3
9

2
6
0
6
.2

5
6

8
9
8
.1

5
2

1
5
5
9
.3

5
4

T
a
b

le
5
.

G
yr

o
ki

n
et

ic
T

o
ro

id
al

C
o
d
e

(G
T

C
)

p
o
w

er
p
ro

fil
in

g
o
n

4
�

4
(1

6
co

re
s)

u
si

n
g

fr
eq

u
en

cy
sc

al
in

g.

C
P
U

sp
ee

d
G

T
C

ty
p
e

R
u
n

ti
m

e(
s)

T
o
ta

l
en

er
gy

(K
J)

C
P
U

en
er

gy
(K

J)
M

em
o
ry

en
er

gy
(K

J)
D

is
k

en
er

gy
(K

J)
M

o
th

er
b
o
ar

d
en

er
gy

(K
J)

1
.8

G
h
z

H
yb

ri
d

1
4
3
4
.4

9
1

(–
8
.6

2
)

1
1
8
2
.9

5
9

(–
3
.7

2
%

)
7
1
1
.0

6
5

(–
7
.1

%
)

1
1
8
.1

8
6

(–
8
.0

9
%

)
4
1
.8

2
4

(1
0
.8

1
%

)
7
4
.6

6
9

(–
9
.2

6
%

)
M

P
I

2
3
2
4
.7

0
7

(4
8
.1

%
)

1
9
2
0
.5

7
8

(6
8
.5

0
%

)
1
1
7
1
.5

7
2

1
8
0
.8

2
5

6
8
.8

5
8

1
2
1
.5

7
1

1
.6

G
h
z

H
yb

ri
d

(b
as

el
in

e)
1
5
6
9
.9

6
0

1
1
3
9
.8

3
1

6
6
4
.0

9
8

1
2
8
.5

9
4

4
6
.8

9
4

8
2
.2

9
2

M
P
I

2
5
1
1
.5

3
2

(5
9
.9

7
%

)
2
0
5
7
.5

1
6

(8
0
.5

1
%

)
1
2
5
3
.0

4
1

1
9
6
.4

4
0

7
6
.9

0
2

1
3
3
.0

3
0

1
.4

G
h
z

H
yb

ri
d

1
7
7
3
.4

4
4

(1
2
.9

6
%

)
1
1
4
3
.6

1
5

(0
.0

3
%

)
6
6
1
.1

6
1

(–
0
.0

4
%

)
1
5
3
.4

5
0

(1
9
.3

9
)

5
9
.6

4
9

(2
7
.1

9
%

)
9
8
.0

1
7

(1
9
.1

0
%

)
M

P
I

2
7
9
1
.6

0
7

(7
7
.8

1
%

)
1
7
7
8
.6

8
2

(8
.0

0
%

)
1
0
4
0
.4

5
7

2
3
0
.3

5
3

9
3
.1

8
7

1
5
3
.7

7
8

1
.2

G
h
z

H
yb

ri
d

2
0
9
4
.5

9
8

(3
3
.4

0
%

)
1
1
6
2
.3

9
3

(1
.9

7
%

)
6
2
8
.3

8
6

(–
5
.3

7
%

)
1
7
6
.8

9
7

(3
7
.5

6
%

)
6
8
.9

6
6

(4
7
.1

%
)

1
1
4
.9

1
4

(3
9
.6

4
%

)
M

P
I

3
1
2
6
.4

4
6

(9
9
.1

%
)

1
7
2
4
.0

5
7

(5
1
.2

6
%

)
9
4
0
.2

2
7

2
5
4
.2

7
5

1
0
3
.8

1
9

1
7
1
.7

4
6

1
.0

G
h
z

H
yb

ri
d

2
4
4
5
.1

5
5

(3
7
.8

7
%

)
1
3
9
3
.6

5
0

(2
2
.2

6
%

)
7
6
9
.3

6
6

(1
5
.8

5
%

)
2
0
4
.9

6
(4

.3
4
%

)
8
1
.4

1
7

(7
3
.6

1
%

)
1
3
4
.7

5
8

(6
3
.7

6
%

)
M

P
I

3
5
5
3
.9

8
2

(1
2
7
.3

7
%

)
2
0
1
5
.4

8
3

(7
6
.8

2
%

)
1
1
1
2
.2

7
7

2
8
5
.3

2
6

1
1
5
.8

7
0

1
9
3
.7

7
8

T
a
b

le
6
.

Fu
n
ct

io
n
-l
ev

el
p
er

fo
rm

an
ce

(s
ec

o
n
d
s)

co
m

p
ar

is
o
n

o
f
G

yr
o
ki

n
et

ic
T

o
ro

id
al

C
o
d
e

(G
T

C
)

u
si

n
g

fr
eq

u
en

cy
sc

al
in

g.

C
P
U

sp
ee

d
G

T
C

ty
p
e

R
u
n

ti
m

e
P
u
sh

er
Sh

ift
C

h
ar

ge
P
o
is

so
n

Sm
o
o
th

Fi
el

d
Lo

ad

1
.8

G
h
z

H
yb

ri
d

1
4
3
4
.4

9
1

8
5
4
.5

3
6
.7

5
4
9
8
.1

1
6
.9

4
1
0
.2

5
4
.2

8
9

8
.7

7
3

M
P
I

2
3
2
4
.7

0
7

8
2
3
.7

2
6
8
.4

6
2
7
.7

1
5
9
.6

2
8
4
.9

1
4
7
.3

8
.8

9
9

1
.6

G
h
z

H
yb

ri
d

1
5
6
9
.9

6
0

(–
9
.4

4
%

)
9
4
0
.1

(–
1
0
.0

2
%

)
3
9
.6

4
(–

7
.8

3
%

)
5
4
2
.3

(–
8
.8

7
%

)
2
0
.8

1
(–

2
2
.8

4
%

)
8
.0

1
9

(2
7
.8

2
%

)
4
.3

8
9

(–
2
.3

3
%

)
9
.6

9
3

(–
1
0
.4

9
%

)
M

P
I

2
5
1
1
.5

3
2

(–
7
.4

4
%

)
8
5
0
.7

3
4
8
.2

6
9
2
.5

1
6
0
.8

2
9
2
.7

1
5
1
.7

1
1
.5

5
1
.4

G
h
z

H
yb

ri
d

1
7
7
3
.4

4
4

(–
2
3
.6

2
%

)
1
0
6
7
.0

0
(–

2
4
.8

7
%

)
3
8
.4

8
(–

4
.8

%
)

6
1
7
.2

(–
2
3
.9

1
%

)
2
1
.0

1
(–

2
4
.0

3
%

)
8
.5

3
2

(2
0
.1

3
%

)
4
.6

8
0

(–
9
.1

1
%

)
1
0
.8

2
(–

2
3
.3

3
)

M
P
I

2
7
9
1
.6

0
7

(–
2
0
.1

0
%

)
1
0
5
3
.0

0
3
0
7
.4

0
7
7
2
.6

1
5
7
.8

3
2
3
.7

1
6
3
.2

1
0
.5

7
1
.2

G
h
z

H
yb

ri
d

2
0
9
4
.5

9
8

(–
4
6
.0

2
%

)
1
2
5
5
.0

0
(–

4
6
.8

7
%

)
4
6
.4

3
(–

2
6
.3

4
%

)
7
3
4
.2

(–
4
7
.4

%
)

2
4
.2

1
(–

4
2
.9

1
%

)
9
.8

8
4

(3
.7

%
)

5
.5

1
7

(–
2
8
.6

3
)%

1
2
.3

6
(–

4
0
.8

8
%

)
M

P
I

3
1
2
6
.4

4
6

(3
4
.4

9
%

)
1
2
1
8
.0

0
3
2
4
.3

8
9
7
.9

1
6
2
.8

0
3
3
5
.0

0
1
7
1
.2

1
1
.9

4
1
.0

G
h
z

H
yb

ri
d

2
4
4
5
.1

5
5

(–
7
0
.4

5
%

)
1
4
7
3
.0

0
(–

7
2
.3

8
%

)
4
8
.1

8
(–

3
1
.1

0
%

)
8
5
5
.9

(–
7
1
.8

3
%

)
2
8
.6

0
(–

6
8
.8

3
%

)
1
1
.2

1
(–

9
.3

6
%

)
5
.8

7
9

(–
3
7
.1

%
)

1
4
.5

1
(–

6
5
.3

9
%

)
M

P
I

3
5
5
3
.9

8
2

(–
5
2
.8

8
%

)
1
4
5
8
.0

0
3
3
9
.0

1
0
5
6
.0

0
1
6
1
.3

3
4
5
.9

1
7
1
.3

1
7
.0

2

he MPI and hybrid GTC increase with decreasing the CPU

frequency from 1.8 to 1.0 GHz, as shown in Table 5. For

instance, the execution time for the hybrid GTC executed

on four nodes increases up to 37.87% when decreasing the

CPU frequency to 1.0 GHz. Decreasing CPU frequency

means that a lower voltage is utilized. This results in lower

power consumption for the application. However, because

the energy is the product of power consumption and the

execution time, from Table 5, we observe that the total

energy consumption for the hybrid GTC decreases 3.78%
for the frequency of 1.6 GHz, 3.40% for the frequency of

1.4 GHz, and 1.77% for the frequency of 1.2 GHz, but

increases 17.81% for the frequency of 1.0G Hz; the total

energy consumption for the MPI GTC increases 7.13% for

the frequency of 1.6G Hz, decreases 8.00% for the fre-

quency of 1.4 GHz, and decreases 11.4% for the frequency

of 1.2 GHz, but increases 4.94% for the frequency of 1.0

GHz. So there is performance–energy trade-off that needs

to be seriously considered when applying frequency scaling

to an application.

Table 6 illustrates the effect that frequency scaling has

on the performance of GTC at a functional granularity. The

run times for the MPI and hybrid GTC at the default fre-

quency of 1.8 GHz are used as baselines to calculate the

performance percentages for reduced frequencies. We

observe that the hybrid GTC outperforms its MPI counter-

part because of large performance improvements for the

five functions, shift, charge, Poisson, smooth, and field of

the GTC and poor L2 cache behavior for the MPI imple-

mentation, which increases the amount of off-chip commu-

nications and degrades the performance. This is consistent

across different CPU frequencies. This further shows that

using the hybrid MPI/OpenMP programming can not only

reduce MPI communication overhead, but also achieve bet-

ter performance and save energy. The function-level infor-

mation for CPU frequency scaling can help us in finding

the best combination of CPU frequency adjustments for the

entire GTC to save more energy when applying frequency

scaling to the entire application.

4 Related work

HPC researchers have developed several techniques and

systems with the goal of improving the power consumption

and energy utilization of scientific applications. Power-

aware infrastructures provided by Hsu and Feng (2005),

Song et al. (2009), and Ge et al. (2010) are able to capture

the energy consumption of scientific applications on large-

scale parallel platforms. In this work, the PowerPack dis-

cussed in Ge et al. (2010) is utilized.

DVFS is a well-used energy reduction technique (Freeh

et al., 2005, 2008). In Freeh et al. (2005), the authors used

DVFS to reduce the energy consumption of MPI applica-

tions by determining different phases for the application.

This work utilized a brute-force approach to determine the

optimal energy-performance setting for each phase and

then execute the application accordingly. The NAS BT

benchmark is divided into two phases that are executed at

multiple gear points. The BT is executed at gears 1 and

2, giving an energy saving of 10% with a time penalty of

5%. In Freeh et al. (2008), a system called Jitter was intro-

duced with the goal of exploiting the MPI wait time for

load-imbalanced applications. The frequency and voltage

of nodes with less computational time were reduced to save

overall energy while other compute-intensive nodes

completed.

In Rountree et al. (2009), a run-time system, Adagio,

was presented to combine static methods for energy reduc-

tion methods, such as dynamic voltage scaling (DVS), with

scheduling algorithms to reduce energy without dramati-

cally increasing the overall execution time. The run-time

mechanism used was for slack prediction and was applied

to three different application codes: UMT2k, ParaDis, and

the NPB. Adagio slows computation that is off the critical

path so it does not affect execution time significantly.

In Song et al. (2011), an iso-efficiency energy model is

proposed to explore the application and machine character-

istics that enable balanced energy use and performance.

The iso-efficiency energy model was able to produce pre-

diction errors less than 5% for various MPI applications

from the NPB.

In Curtis-Maury et al. (2008), a prediction model is intro-

duced to provide energy savings on multithreaded applica-

tion programs. This work introduced the ACTOR system,

which allows for dynamic control of active threads in an

application to save energy. In this work the authors use

dynamic concurrency throttling (DCT) to save power by ren-

dering some cores on their multicore system idle. The work

focused on the performance characteristics of the OpenMP

versions from NPB (version 3.1) to achieve performance

improvements of 17.9% and energy savings of 26.7%.

As most research work in this area focuses on MPI or

multithreaded scientific applications, the current trend of

multicore processors used in large-scale computing systems

makes hybrid parallel programming models, such as hybrid

MPI/OpenMP, more popular for large-scale scientific appli-

cations. In (Li et al., 2010), the authors use DVFS and DCT

to reduce the energy requirements of hybrid application

codes for several benchmarks. A power-aware performance

predictor is used to develop a power-efficient algorithm for

ASC (Advanced Simulation and Computing) equoia bench-

marks and NPB multizone (MZ) benchmarks. They

achieved energy savings from 4.1% up to 13.8% with negli-

gible performance loss. Our work presented in this paper dif-

fers from the previous work in that we investigate the

energy-performance benefits of hybrid MPI/OpenMP appli-

cations over MPI-only applications on multicore systems

from parallel programming models’ perspective, because a

hybrid MPI/OpenMP program is not only able to achieve

multiple levels of parallelism, but also is able to reduce the

communication overhead of MPI within a multicore node,

by taking advantage of the shared address space and on-

chip high inter-core bandwidth and low inter-core latency

provided by multicore clusters.

348 The International Journal of High Performance Computing Applications 25(3)

5 Conclusions

In this paper, we investigated energy and performance char-

acteristics of different parallel implementations of scientific

applications on multicore systems, and explored interactions

between power consumption and application performance.

We used the power profiling tool PowerPack to collect power

profiling data for three scientific applications: a hybrid NAS

parallel BT benchmark, a hybrid Lattice Boltzmann applica-

tion PMLB, and a hybrid GTC, for our comparative analysis

of energy and performance on multicore clusters. Our experi-

mental results show that there are various ways to save energy

and improve performance of parallel application code.

Firstly, we found, with respect to the MPI-only versus the

hybrid implementation for a scientific application, the best

implementation is dependent upon the application executed

on 16 or fewer cores. For the case of 32 cores, the results were

consistent in that the hybrid resulted in less execution time

and energy. For example, the hybrid PMLB achieved 21%
performance improvement and 17% reduction in energy con-

sumption compared to the MPI-only implementation. With

the CPU frequency scaling, the best case for energy saving

was not the best case for execution time. For example, the

hybrid GTC executed at the CPU frequency 1.6 GHz pro-

vided the lowest energy consumption but the execution time

increased by 8.62%.

Our hybrid implementations are based on the existing

MPI applications and were implemented to exploit the

shared-memory architectures of multicore systems. For fur-

ther work, we are working on developing analytical models

for energy and performance at different levels based on our

experimental results in this paper, and will investigate the

energy and performance of these applications and addi-

tional scientific applications on other multicore systems

as PowerPack becomes available on different systems.

This work is part of the National Science Foundation

(NSF)-funded MuMI (Multicore application Modeling Infra-

structure) Project (http://www.mumi-tool.org), which facili-

tates the systematic measurement, modeling, and prediction

of performance, power consumption, and performance–

power trade-offs for multicore systems. In the future, we will

use the MuMI to model, analyze, and optimize performance

and power consumption of these benchmarks and applica-

tions on multicore systems as a starting point.

Acknowledgements

The authors would like to acknowledge Stephane Ethier from

Princeton Plasma Physics Laboratory for providing the GTC code

and Research Experience for Undergraduates (REU) summer stu-

dent Ashraf Bah Rabiou for his work on the hybrid PMLB.

Funding

This work was supported by the NSF (grant numbers CNS-

0911023, CNS-0910899, CNS-0910784, and CNS-0905187).

Conflict of interest statement

None declared.

References

Curtis-Maury M, Blagojevic F, Antonopoulos CD and Nilolopoulos

DS (2008) Prediction-based power-performance adaptation of

multithreaded scientific codes. IEEE Trans Parallel Distrib Syst

19(10): 1396-1410.

Ethier S (2005) First Experience on BlueGene/L, BlueGene Appli-

cations Workshop, ANL, 27–28 April. Available at: http://

www.bgl.mcs.anl.gov/Papers/GTC_BGL_20050520.pdf

Freeh V, Kappiah N, Lowenthal D and Bletsch T (2008) Just-in-

time dynamic voltage scaling: exploiting inter-node slack to

save energy in MPI programs. J Parallel Distrib Comput 68:

1175-1185.

Freeh V, Pan F, Lowenthal D and Kappiah N (2005) Using mul-

tiple energy gears in MPI programs on a power-scalable clus-

ter. In: Proceedings of the 10th ACM Symposium on Principles

and Practice of Parallel Programming (PPOPP), June.

Ge R, Feng X, Song S, Chang H, Li D and Cameron K (2010)

PowerPack: energy profiling and analysis of high-

performance systems and applications. IEEE Trans Parallel

Distrib Syst 21: 658-671.

Hsu C-H and Feng W-C (2005) A power-aware run-time system

for high-performance computing. In: Proceedings of the

IEEE/ACM Supercomputing 2005 (SC05), November.

Li D, de Supinski B, Schulz M, Cameron K and Nikolopoulos DS

(2010) Hybrid MPI/OpenMP power-aware computing. In:

Proceedings of the 24th International Parallel and Distributed

Processing Symposium (IPDPS), Atlanta, GA, April.

Kogge PM (ed.) (2008) Exascale computing study: technology

challenges in achieving exascale systems. CSE Dept. Tech.

Report TR-2008-13, University of Notre Dame, 28 September.

Rountree B, Lowenthal D, et al. (2009) Adagio: making DVS

practical for complex HPC applications. In: Proceedings of the

23rd International Conference on Supercomputing (ICS09),

New York.

Song S, Ge R, Feng X and Cameron K (2009) Energy profiling

and analysis of the HPC challenge benchmarks. Int J High

Perform Comput Appl 23: 265-276.

Song S, Su C, Ge R, et al. (2011) Iso-energy-efficiency: an

approach to power-constrained parallel computation. In: Pro-

ceedings of the 25th IEEE International Parallel & Distribu-

ted Processing Symposium (IPDPS).

Taylor V, Wu X and Stevens R (2003) Prophesy: an infrastructure for

performance analysis and modeling system of parallel and grid

applications. ACM SIGMETRICS Perform Eval Rev 30: 13-18.

Wu X and Taylor V (2011) Performance characteristics of hybrid

MPI/OpenMP implementations of NPB SP and BT on large-

scale multicore supercomputers. ACM SIGMETRICS Perform

Eval Rev 38: 56-62.

Wu X, Taylor V, Lively C and Sharkawi S (2009) Performance

analysis and optimization of parallel scientific applications

on CMP clusters. Scalable Comput Pract Exper 10: 61-74.

Wu X, Taylor V, Garrick S, Yu D and Richard J (2006) Perfor-

mance analysis, modeling and prediction of a parallel multi-

block lattice Boltzmann application using prophesy system.

In: Proceedings of the IEEE International Conference on

Cluster Computing, 25–28 September.

Lively et al. 349

Author’s Biographies

Charles Lively is a PhD candidate in the Department of

Computer Science and Engineering working with Valerie

E Taylor. He received his BSE in Computer Engineering

from Mercer University and MS in Computer Engineering

from Texas A&M University. His research interests include

high-performance computing with special interest in the

analysis and modeling of scientific applications.

Xingfu Wu has been working at Texas A&M University as

TEES (Texas Engineering Experiment Station) Research

Scientist since July 2003. He is a senior ACM (Association

for Computing Machinery) member and an Institute of

Electrical and Electronics Engineers (IEEE) member. He

received his BS and MS in Mathematics from Beijing Nor-

mal University and his PhD in computer science from the

Beijing University of Aeronautics and Astronautics. His

research interests are performance evaluation and model-

ing, parallel and grid computing, and power and energy

analysis in HPC systems. His monograph, Performance

Evaluation, Prediction and Visualization of Parallel Sys-

tems, was published by Kluwer Academic Publishers

(ISBN 0-7923-8462-8) in 1999.

Valerie Taylor earned her BS in Electrical and Computer

Engineering and MS in Computer Engineering from Pur-

due University in 1985 and 1986, respectively, and her PhD

in Electrical Engineering and Computer Science from the

University of California, Berkeley, in 1991. From 1991 to

2002, she was a member of the faculty in the Electrical and

Computer Engineering Department at Northwestern Uni-

versity. She joined the faculty of Texas A&M University

as Head of the Dwight Look College of Engineering’s

Department of Computer Science in January of 2003, and

is, also, currently a holder of the Royce E. Wisenbaker

Professorship. Her research interests are in the area HPC.

She has authored or co-authored over 100 papers in these

areas. Dr Taylor is a member of ACM and Senior Member

of IEEE-CS.

Shirley Moore received her PhD in Computer Sciences

from Purdue University in 1990. She currently holds a posi-

tion as a Research Associate Professor in the Electrical

Engineering and Computer Science Department at the Uni-

versity of Tennessee. Her research interests are in perfor-

mance modeling and analysis of scientific applications

and in performance analysis tools. She is a member of the

development team of the widely used Performance Appli-

cation Programming Interface (PAPI) library for accessing

hardware performance counters.

Hung-Ching Chang is a PhD candidate in the Department

of Computer Science at Virginia Polytechnic Institute and

State University. He received his BE in Electronic Engi-

neering from Huafan University, Taiwan. His research

interests include parallel distributed systems, energy-

efficient computing, HPC, and performance modeling and

analyses. He is a student member of the IEEE.

Kirk Cameron is an associate professor of Computer Sci-

ence at Virginia Polytechnic Institute and State University.

He holds a BS from the University of Florida and a PhD in

Computer Science from Louisiana State University. He

pioneered the area of high-performance power-aware com-

puting and has received numerous research awards, includ-

ing NSF and DOE (Department of Energy) Career Awards

and the IBM Faculty Award. He is a research fellow of the

Virginia Tech College of Engineering and the Uptime Insti-

tute. He also serves on the editorial board for IEEE

Computer.

350 The International Journal of High Performance Computing Applications 25(3)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

