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Abstract—1 As the scale of modern high end computing
systems continues to grow rapidly, system failure has become
an issue that requires a better solution than the commonly
used scheme of checkpoint and restart (C/R). While hard errors
have been studied extensively over the years, soft errors are
still under-studied especially for modern HPC systems, and in
some scientific applications C/R is not applicable for soft error
at all due to error propagation and lack of error awareness.
In this work, we propose an algorithm based fault tolerance
(ABFT) for high performance dense linear system solver with soft
error resilience. By adapting a mathematical model that treats
soft error during LU factorization as rank-one perturbation,
the solution of Ax = b can be recovered with the Sherman-
Morrison formula. Our contribution includes extending error
model from Gaussian elimination and pairwise pivoting to LU
with partial pivoting, and we provide a practical numerical bound
for error detection and a scalable checkpointing algorithm to
protect the left factor that is needed for recovering x from soft
error. Experimental results on cluster systems with ScaLAPACK
show that the fault tolerance functionality adds little overhead
to the linear system solving and scales well on such systems.

I. INTRODUCTION

A soft error or Silent Data Corruption (SDC) [1] occurs
when the data in the computing system is altered without
the error being detected. The sources of soft errors could be
temperature and voltage fluctuations, cosmic particles, electro-
static discharge, etc. Soft errors become more prevalent with
new technologies that feature higher clock frequencies, in-
creased transistor density, and lower voltage [2]. Management
of such errors has been argued for strongly especially in the
context of high-end systems [3].

Unlike soft errors, hard errors normally bring down a part of
the system, for instance a node, and provide direct notification
to the application about the nature of the error as well as
logistical details such as the time and location of the error.
The real challenge posed by soft errors the lack of any
indication of occurrence which results in wrong results. When
this happens to a large scale system, the error caused by the
hardware-related soft error normally propagates throughout the
application data which leads to practically unrecoverable state
with an incorrect result. It also requires a huge effort to trace
the cause of the error because no failure record can be found,
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especially for large systems. For instance, China’s Tianhe-
1A that ranked number one on the November 2010 TOP500
list [4] uses 7,168 NVIDIA Tesla M2050 GPUs to achieve
2.57 Pflop/s in the context of the High-Performance LINPACK
Benchmark (HPL) benchmark. HPL is a software package
that solves a dense system of linear equations in double pre-
cision arithmetic on distributed-memory parallel computers.
Even though the newer generations of GPUs from NVIDIA
features the Error Correction Codes (ECC) technology, when
performing computationally intensive calculations (such as
HPL), the feature is usually turned off to avoid the associated
performance penalty [5]. This subjects GPUs to soft errors just
as the technology starts being used as the critical enabler of
high performance scientific computing.

For top machines on the TOP500 list, it is not unusual that
running time spans more than 24 hours, more if the time to
optimize and prepare for the running is included [6]. This
leaves these machines susceptible to by soft error during a
very long period of time. Therefore, it is important to equip
large scale computing systems with soft error resilience.

ScaLAPACK [7] is an implementation of functionality from
LAPACK [8] for distributed memory systems based on MPI
or PVM. ScaLAPACK is designed for solving dense linear
algebra problems such as systems of linear equations, least
squares problems, and eigenvalue problems. The algorithm
used by HPL is based on the right-looking LU factoriza-
tion implemented in ScaLAPACK. The complexity of the
LU factorization makes it hard to protect from soft errors
because the data updates performed by the algorithm touch
large areas of data and therefore cause error propagation
and result in large errors even from a single bit flip. While
traditional recovery mechanisms for fault tolerance based on
checkpointing are not suitable for soft errors, algorithm based
fault tolerance (ABFT) has been shown to be promising with
LU factorization on systolic arrays system [9]. In this paper,
we devise an ABFT based soft error detection and protection
mechanism for ScaLAPACK’s LU dense linear system solver.
This mechanism can detect the occurrence of soft errors
and recover the solution with little overhead, and the same
method may be applied to other factorization routines such as
Cholesky and QR.

The rest of the paper is organized as follows. Section II talks
about related work. Section III introduces a linear solver based
on the LU factorization and shows how soft error affects the
final result. Section IV gives the soft error model. Section V



and VI establish the ABFT algorithm for the right factor
while Section VII provides solution to the protection of the
left factor. Section VIII shows performance evaluation and
experiment results and Section IX concludes the work.

II. RELATED WORK

For parallel applications, checkpoint-restart (C/R) is the
most commonly used method for fault tolerance [10]. At
the application and system level, the running state of the
application is dumped to reliable storage at certain intervals,
either automatically by the message passing middleware or at
the request of the user application. C/R requires the least user
intervention, but suffers from high checkpointing overhead
when writing data to stable storage.

To reduce the overhead, diskless checkpointing [11] uses
system memory for checksum storage rather than disks. It has
seen good applications such as FFT [12] and matrix factoriza-
tions [13]. Diskless checkpointing is suitable for applications
that modify small amounts of memory between checkpoints.

Both C/R and diskless checkpointing need the error infor-
mation for recovery, and no such information exists with soft
error. Algorithm based fault tolerance (ABFT) eliminates the
need for periodical checkpointing. This eliminates checkpoint-
ing overhead during computing could reflect the most current
status of the data which poses clues for soft error detection
and recovery. ABFT was originally introduced to deal with
silent error in systolic arrays [14], [15]. ABFT encodes data
once before the computation begins. Matrix algorithms are
designed to work on the encoded checksum along with matrix
data, and the correctness is checked after the matrix operation
completes.

ABFT for matrix factorization was explored for a single
error [16], [17] which was later extended to multiple errors
[18], [19], [20] by adopting methodology from error correcting
code. These methods for systolic arrays offered a promising
direction, but required modification in both algorithm and
implementation to be used on the dense linear system solver
for distributed memory machines. Iterative solvers were eval-
uated for soft error vulnerability [21], [22], and this shows
the recent awareness of soft error for solving large scale
problems. For dense matrices, the effect of soft errors on
linear algebra packages like BLAS and LAPACK has also
been studied [23], which showed that their reliability can
be improved by checking the output of the routine, and the
error patterns do not depend on the problem size. Also, the
possibility of predicting the fault propagation is explored.

III. HIGH PERFORMANCE LINEAR SYSTEM SOLVER

For dense matrix A, the LU factorization gives PA = LU (or
P = ALU), where P is pivoting matrix, L and U are unit lower
triangular matrix and upper triangular matrix respectively. LU
factorization is popular for solving systems of linear equations.
With L and U , the linear system Ax = b is solved by{

Ly = b
Ux = y
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Fig. 1: Example of 2D block-cyclic data distribution

ScaLAPACK implements the right-looking version of LU with
partial pivoting based on a block algorithm and 2D block
cyclic data distribution. Fig. 1 is an example of P = 2,Q = 3
and a global matrix of 4×4 blocks. The same color represents
the same process and numbering in Ai j indicates the location
in the global matrix. Mapping algorithm between local blocks
and their global locations can be found in [24].

When applied to an ABFT algorithm that uses 2D block-
cyclic distribution, checksum is generated before the factor-
ization, and put conceptually on the right of the matrix. We
assume that, during computation, matrix data and checksum
are equally susceptible to soft error. The checksum is put along
with data matrix without using additional reliable processes.

A. Error Propagation

Radiation induced soft error strikes at random moment and
area, normally in the form of a bit flip. For algorithms like LU
factorization, errors caused by bit flip are carried along with
computation.

In ScaLAPACK, the left factor L is stored in-place at the
lower triangular of the original matrix except the 1’s on the
diagonal, and the right factor U takes over the upper triangular
including diagonals at the end of the factorization. Once an
iteration finishes, the lower triangular L and upper triangular
U that are finished till this iteration do not participate in any
future operations and therefore that soft error that occurred
after this moment in these area does not propagate except
being moved vertically by pivoting.

Fig. 2 is a demonstration of such a situation. Two LU
factorizations of the same data are run. One with errors and
one without error. The matrix size is 200× 200 with block
size 20. The two final results are subtracted and colored by
the size of the absolute value of the residue. The brighter the
color, the larger the residue. Using MATLAB notation, two
soft errors are injected at location (50,120) and (35,10) right
before the panel factorization for blocks (41 : 200,41 : 60)
starts. Error at (35,10) is in the finished L area and therefore
does not propagate. Error at (50,120) is in the PDTRSM
area. During PDTRSM, data in column 120 gets affected and
this column of errors continues into the PDGEMM area (the
trailing matrix for step 40) until PDGETF2 starts on blocks
(100 : 200,100 : 121) when errors spread out to the whole
trailing matrix (120 : 200,120 : 200). It is worth noting that
errors on the diagonals also cause the pivoting sequence to



Fig. 2: Error propagation

diverge from the correct sequence, and this affect the areas
below row 120 of L.

From the example, it can be seen that large areas of the
final L and U can be contaminated by a single soft error, and
the affected area is a function of the soft error location and
moment of injecting, which is unknown beforehand. Available
fault tolerance, like C/R and diskless checkpointing, are not
applicable because they require the location and time infor-
mation of error, and by the end of the factorization the error
could have propagated into their checksum and invalidated the
redundancy for recovery.

IV. SOFT ERROR MODELING

Given the feature of soft error propagation in LU factor-
ization, we adopted the error modeling technique proposed in
[16], which was designed for soft error in LU factorization
with pairwise pivoting on systolic arrays and extended to
ScaLAPACK LU.

Soft error is treated as rank-one perturbation to the original
matrix prior to factorization. LU factorization is viewed as
matrix multiplied from the left by a set of triangularization
matrices to get the final triangular form. Let

A0 = A

and
At = Lt−1Pt−1At−1

Pt−1 is the partial pivoting matrix at step t−1. At step t, error
occurs at random location (i, j) in matrix A as

Ãt = Lt−1Pt−1At−1−λeieT
j (1)

= Lt−1Pt−1(Lt−2Pt−2 . . .L0P0)A0−λeieT
j

ei is a column vector with all 0 elements except 1 as the ith

element. Continuing factorization from step t equals to starting

factorization from the initial error matrix

Ã = A−deT
j

where d = λ (Lt−1Pt−1Lt−2Pt−2 . . .L0P0)−1ei
And at the end of the factorization,

PA0 = LU

where U is an upper triangular matrix.
In essence, this model treats soft error as a perturbation to

the initial matrix similar to rounding errors so that backward
error analysis [25] can be used for designing the recovery
algorithm.

V. CHECKSUM FOR THE RIGHT FACTOR

Since the upper triangular matrix U undergoes changes dur-
ing each iteration of the LU factorization, static checkpointing
is not suitable for recovery. For HPL, algorithm based fault
tolerance has been shown for fail-stop failure [26], but without
the knowledge of error location, the same method cannot be
directly applied to soft error recovery. Instead, We chose the
method proposed in [17] which was also designed for soft
error in systolic arrays.

To capture one error, for input matrix A ∈ R m×n, two
generator matrices are used, e = (1,1, . . . ,1) and a random
matrix w. e,w ∈ R m×1.

LU factorization is appended with checksum by e and w on
the right as

P(A Ae Aw) = L(U c v) (2)

c,v ∈ R m×1 are checksum after factorization. To prevent
pivoting from rotating checksum into matrix, no column-wise
checksum is taken.

At the time or error, A becomes the erroneous matrix Ã, and
the checkpointed matrix becomes

(Ã Ae Aw)

And the LU factorization becomes

P̃(Ã Ae Aw) = L̃(Ũ c̃ ṽ) (3)

From (3)

c̃ = L̃−1P̃Ae = L̃−1P̃(Ã+deT
j )e

= L̃−1(L̃Ũ + P̃deT
j )e

= Ũe+ L̃−1P̃deT
j e = Ũe+ L̃−1P̃d

By the same token,

ṽ = Ũw+w jL̃−1P̃d

Assume residual vectors r,s ∈ R m×1

r̃ = c̃−Ũe = L̃−1P̃d (4)

and
s̃ = ṽ−Ũw = w jL̃−1P̃d (5)

Combining (4) and (5),

s̃ = w j r̃. (6)

r̃ can be used to check for error, and in case error occurs, the
column in which the error resides can be determined by (6).
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Fig. 3: Error detection

A. Error Detection Threshold
In ScaLAPACK, since the actual computation is carried out

in finite precision arithmetic, r̃ is rarely zero due to the present
of rounding error even when no error occurs. This calls for an
upper bound to differentiate in r̃ the error caused by rounding
error and soft error. In [16], the upper bound for LU with
pairwise pivoting is discussed without a definite conclusion.
We derive in an alternative way such a bound.

For LU with partial pivoting, we have PA = LU , and A +
δA = L̂Û , where δA is the backward error.

Ûe− ĉ = Ûe− L̂−1PAe
= (Û− L̂−1PA)e
= (Û− L̂−1(L̂Û−δA))e
= L̂−1

δAe

∴

∥∥Ûe− ĉ
∥∥

‖ĉ‖
≤ 1
‖ĉ‖

∥∥L̂−1∥∥‖δA‖‖e‖ (7)

And because LU with partial pivoting is backward stable, we
have ‖δA‖

‖A‖ ≤ O(ρε), where ε is the machine epsilon and ρ is

the growth factor defined as ρ =
maxi, j|ui, j|
maxi, j|ai, j| . The inequity in (7)

becomes∥∥Ûe− ĉ
∥∥

‖ĉ‖
≤ 1
‖ĉ‖

∥∥L̂−1∥∥O(1)ρε ‖A‖= τ (8)

τ is the threshold for error detection. Soft error recovery is

triggered when ‖Ûe−ĉ‖
‖ĉ‖ > τ .

The constant O(1) depends on the matrix used. Fig. 3 is
an evaluation of the error detection threshold using uniformly
distributed random matrix.

VI. RECOVERY OF LINEAR SOLVER SOLUTION

LU factorization is normally used to solve a system of
linear equations Ax = b. Therefore when it comes to recovery,
there are two options for recovery: recovering only x and/or
recovering L, U and P. In this work we focus on the solution
of linear system equations based on LU factorization, and
recovering L and U will be addressed in future work. The
following recovery method is based on [17] and applied
explicitly to partial pivoting.

Pivoting to 
the Left

Pivoting to 
the Right

Fig. 4: Two pivoting sweeps in LU factorization

A. Recovery Algorithm

For the system of equations Ax = b, we have

x = A−1b = A−1(P̃−1P̃)b
= (P̃A)−1P̃b (9)

Both P̃ and b are known, so (P̃A)−1 is needed to obtain the
correct solution x.

With (5), error column can be determined but no further
knowledge is available to precisely pinpoint the error. There-
fore,

P̃A− P̃Ã = (P̃a· j− L̃Ũ· j)eT
j (10)

P̃A = L̃Ũ +(P̃a· j− L̃Ũ· j)eT
j

P̃A = L̃Ũ + L̃(L̃−1P̃a· j−Ũ· j)eT
j

P̃A = L̃(Ũ + teT
j ), t = L̃−1P̃a· j−Ũ· j (11)

Let v = Ũ−1t

P̃A = L̃Ũ(I + veT
j )

∴ (P̃A)−1 = (I + veT
j )
−1(L̃Ũ)−1

By Sherman-Morrison formula [27], let x̃ be the erroneous
solution due to soft error:

(P̃A)−1 =
(

I− 1
1+ v j

veT
j

)
(L̃Ũ)−1 (12)

Apply (P̃A)−1 in (12) to (9), we get

x =
(

I− 1
1+ v j

veT
j

)
(L̃Ũ)−1P̃b (13)

And since L̃Ũ x̃ = P̃b,

x =
(

I− 1
1+ v j

veT
j

)
x̃ (14)

v j is the jth element of v. Therefore, the correct solution x
can be obtained from x̃ through an update procedure.

B. Implementation

The core part of (14) is the computing of v. Since v =
Ũ−1t and t = L̃−1P̃a· j−Ũ· j, L̃−1P̃a· j is in turn at the center
of recovery.

Let t = L̃−1P̃a· j, and we have L̃t = P̃a· j. While this can
be solved by a combination of PDLAPIV and PDTRSM in



Fig. 5: Checksum protecting partial result of L

ScaLAPACK, two assumptions taken by previous work [16],
[17] are revealed:

1) A column of the original matrix is required for recovery
2) The left factor L and pivoting matrix P need to be clean

without soft error
The first requirement is trivial to fulfill since for many

scientific applications [28], [29], more time is spent in solving
the linear system of equations than generating the original
matrix. In the case of HPL, the original matrix uses the
linear congruential random number generator (RNG) and,
consequently, any column can be generated with negligible
overhead. In particular, for the general formula for Linear
Congruential Generators (LCG) Xn+1 = (aXn + c) (mod m)
with n ≥ 0,. The values for the constants are chosen to be:
a = 6364136223846793005, c = 1, and m = 264 which creates
a sequence with a period of 264 [30]. The leap frogging [31]
property of LCGs allows us to jump forward in the sequence
by utilizing the following formula: Xn+k = (akXn + ak−1

a−1 c)
(mod m), with k ≥ 0,n≥ 0. In order to obtain Xn+k from Xn,
we observe that k = ∑i bi2i where bi are the binary digits (bits).
For each non-zero bit bi we use a2i

to jump ahead in the
sequence using the leap frogging formula. And each a2i

may
be generated recursively from a2i−1

as the subsequent leaps
are performed. Consequently, the number of steps needed to
obtain Xn+k from Xn is equal to log2 k: 2 log2 N in the worst
case for an N by N matrix generated for HPL.

The second requirement shows that the mathematical re-
covery model is not practical without an extra fault tolerance
scheme for the left factor because all parts of the matrix are
equally possible to be affect by soft error. While the pivoting
matrix P (a vector ipiv in ScaLAPACK) is easy to protect
(simply by duplication), the left factor covers a much larger
area and therefore is an easy target for soft error. Without
confidence in the sanity of the left factor L, the result of the
recovery cannot be trusted, even in the case of HPL where the
left factor is by default not referenced.

VII. CHECKPOINTING FOR THE LEFT FACTOR

It has been shown that the left factor is kept relatively static
during LU factorization except row exchanges due to pivoting.
This indicates that a simpler checkpointing scheme could be
sufficient to give protection to this part. Diskless checkpointing
collects checksums by performing checkpointing within a
group of processes, and writing the result to the memory
of a “checkpointing process” at a certain interval. The only

requirement is that pivoting does not break the relationship
between the data and their diskless checksum, once generated.

A. Diskless Checkpointing

To protect L during factorization, another set of column-
wise checksum (vertical checksum) is appended at the bottom
of the data matrix as shown in Fig. 5. The checksum is
calculated by the same method as the checksum for the right
factor. For one soft error, two generator matrices e2 and w2
are used in addition to e1 and e2 used for the right factor. For
original matrix A, two checksums are appended as:

 A Ae1 Aw1
e2A . . .
w2A . . .

 (15)

At each iteration, once a panel factorization finishes, the
newly generated partial L is checkpointed into the same
columns of the vertical checksum. The left pivoting in the LU
factorization has a different effect the same columns of the
vertical checksum. The left pivoting in Fig. 4 has a different
effect on e2A and w2A. Suppose pivoting requests exchanging
row j and k. For e2A:

e2A = (1,1, . . . ,1)×



a1·
...

a j·
...

ak·
...

am·


= (1,1, . . . ,1)×



a1·
...

ak·
...

a j·
...

am·


This means e2A is immune to the left pivoting, but for w2A

this conclusion does not hold since data in w2 are random
numbers and let w2,i be the ith element of w2:

w2,1a1 +w2,2a2 + ·+w2, ja j + · · ·+W2,kak + · · ·+w2,mam

6= w2,1a1 +w2,2a2 + ·+w2, jak + · · ·+W2,ka j + · · ·+w2,mam

and therefore each left pivoting invalidates all previous vertical
checksums, and re-checkpointing is not an option because of
the high cost.

To cope with this situation, all left pivoting is delayed until
the end of all iterations, and for HPL, even though by default
the left factored is not referenced, if an error is detected in



Fig. 6: Local checkpointing algorithm

U and therefore requires L for recovery, the pivoting is then
performed on demand.

For any column of the computed left factor [a1,a2, · · · ,ak]T ,
the vertical checkpointing produces the following two sets of
checksums:{

a1 +a2 + · · ·+ak = c1
w2,1a1 +w2,2a2 + · · ·+w2,kak = c2

(16)

Suppose a j is hit by soft error to ã j, the new checksum
suite becomes{

a1 + · · ·+ ã j + · · ·+ak = c̃1
w2,1a1 + · · ·+w2, jã j + · · ·+w2,kak = c̃2

(17)

Subtract (17) from (16), we get{
c̃1− c1 = ã j−a j

c̃2− c2 = w2, j(ã j−a j)

and therefore w2, j = c̃2−c2
c̃1−c1

. j can be determined by looking up
w2, j in w2, and the erroneous data can be recovered from the
first equation of (16).

The check matrix used for L is

H =
[

1,1, · · · ,1 −1
w2,1,w2,2, · · · ,w2,m −1

]
And it is trivial to show that any two columns of H is
independent given the random numbers in the second row do
not repeat. By coding theory [32] the minimal distance of
this error correcting code is 3, and therefore it can correct up
to 1 error per column. In practice, the first row of H could
cause large rounding errors in the recovery process due to
floating pointing arithmetic. Another row of different random
numbers can solve the issue as long as no two column of H
are linear dependent. Also, using a generator and check matrix
with higher minimal distance, more error can be tolerated in
one column. This will be addressed in future work.

B. Local Checkpointing

From experimental result in VIII-B, we see that vertical
checkpointing is limited by scalability because the operation
of checkpointing is implemented as a PDGEMM operation on
the critical path of LU execution. Only a small amount of
processes can participate and the rest are stalled.

Since the left pivoting is delayed, the left factor once com-
puted is not touched any more. The communication incurred
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Fig. 7: Weak scalability of global and local checkpointing for
the left factor on the Dancer cluster

by the PDGEMM-based checkpointing can be removed by a
local checkpointing scheme. A similar error correcting code
is used.

Fig. 6 is an example of the local checkpointing. Block size is
nb×nb and matrix has 5×5 blocks. The process grid is 2×3.
Suppose npi, j,npi, j are the size of data owned by process (i, j)
(yellow and green for process (0,1) and (1,1)). Each process
has a local vertical checksum space in memory of size 2×
nqi, j.

Suppose LU factorization proceeds until the second column
resulting in the left factor in the area covered in red trapezoid.
Right after the panel factorization, all processes that have
blocks in the current matrix column started to check if they
own any blocks belonging to the current left factor. In this
example, process (0,0) has 2 blocks in the red rectangle, and
(0,1) has one and half blocks in the red trapezoid. Both of
these two processes start to apply their local generator matrix
of size 2× nqi, j for the 2 blocks using DGEMM, and for
process (0,1) the first DGEMM is carried out in DTRMM
because only the strict lower triangular part is needed. The
result is written in the corresponding local checksum location
depicted in red lines in Fig. 6.

To recover from an error, the same checkpointing scheme
as in section VI-A is used locally by each process. Every
column of the involved processes is checked for erroneous
data and therefore the local checkpointing makes the left-
factor protection capable of recovering from one soft error
per column of each process.

The advantage of this checkpointing is that it removes
unnecessary global communication during checkpointing and
breaks the checkpointing operation into dPe embarrassingly
parallelism. Further more, on a cluster where more than one
core is available on each computing node, this checkpointing
can be further hidden by executing it in a separate thread so
that the main thread can move on quickly to later steps.

VIII. EXPERIMENTAL RESULT

This section evaluates the performance for our algorithm
in scalability, checkpointing overhead and performance. The



scalability and overhead tests are carried out on a small
cluster at the University of Tennessee, Knoxville (UTK)
named “Dancer”, which is an 8-node based on two quad
Intel 2.27GHz Xeon cores per node, with an Infiniband 20G
interconnect. For the performance experiment, we use another
cluster at UTK called ”Newton”, which has 72 Dell C6100
computing nodes connected by QDR Infiniband for MPI ap-
plication. Each node has two 6-core Intel Xeon CPUs. We use
OpenMPI on both clusters, and our algorithm implementation
is based on ScaLAPACK 1.8.0 from the Netlib using double
precision, and on each node GotoBLAS2-1.13 is used. Last,
the experiments are run on a Cray XT5 named “Kraken”
at large scale. In all the experiments, block size NB for
ScaLAPACK is set to 100. The column of original matrix
that is required for recovery is re-generated by PDMATGEN
of ScaLAPACK.

A. Performance Model for the Right Factor

For the right factor, two columns of checksum are appended
at the beginning of the factorization, therefore the overhead
consists of this one-time checkpointing and extra FLOPS of
carrying out LU factorization with the checksum.

According to [33], the execution time of LU driver
(PDGESV) in ScaLAPACK is

T (N,P) = C f
N3

P
t f +Cv

N2
√

P
tv +Cm

N
NB

tm (18)

Here N and NB are matrix size and block size (supposed
square matrix with square blocks), and P is the total number of
processes. C f = 2

3 , Cv = 3+ 1
4 log2 P and Cm = NB(6+ log2P).

Because in our implementation, checksum resides in-site with
computing processes, all three constants remain unchanged in
(18).

The two extra columns of checksum cause

Textra = C f
6N2 +12N +8

P
t f +Cv

4N +4√
P

tv +Cm
1

NB
tm

extra run time, which is O(N2) and is negligible to T (N,P)
when problem size and machine size scale up.

The initial checkpointing for the right factor is dominated
by a matrix-matrix operation PDGEMM with matrices sized
N×N and N×2. Using a similar model in (18), this overhead
is also small compared to PDGESV.

B. Scalability

Since checkpointing is performed in each iteration for the
left factor, the scalability of such algorithm is the main
concern. The operation counts of checkpointing a panel of
height Ni using PDGEMM is 2×NB×Ni.

Fig. 7 is the overhead experiment under weak scaling on
the Dancer cluster. The overhead is calculated by

Tf t pdgesv−Tnetlib pdgesv

Tnetlib pdgesv
×100%

And Tf t pdgesv is the run time of the soft resilient version of
PDGESV, whereas Tnetlib pdgesv is the run time of the Netlib
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Fig. 8: Weak scalability test of PDGEMM on the Dancer
cluster

PDGESV, which is what the fault tolerance version is built
upon, and serves as a performed baseline.

The result shows that the overhead of vertical checkpointing
increases as computing scale and problem size scales up. Since
vertical checkpointing is implemented by PDGEMM with
M = 2, K = Ni and N = NB, the checkpointing performance is
limited by the performance of PDGEMM. Fig. 8 is PDGEMM
performance under such shape comparing to the M = N = K
case. The colors of lines are coordinated with the color of
vertical axis titles. Clearly PDGEMM does not scale in this
matrix shape. In fact, PDGEMM in PBLAS (part of ScaLA-
PACK) is implemented based on the DIMMA [34] algorithm,
which is an enhanced version of SUMMA [35]. SUMMA is
designed to work with outer product shape for high parallelism
along with sophisticated broadcasting scheme, therefore the
inner product shape used by the vertical checkpointing cannot
benefit from such a design. In contrast, the local checkpointing
scales well because checkpointing is performed in parallel
by all involved processes and global collective operation is
avoided. This scalability ensures that the overhead caused by
the left factor checkpointing will not grow into a performance
drag when moving to a larger scale.

With the local checkpointing, the overall overhead of the
fault tolerant PDGESV is shown in Fig. 9, where 64 processes
are arranged in a 8× 8 grid. For the case marked with “one
error in L and U”, two data items are modified as error
injection at location (400,150) and (300,500) right before the
panel factorization for blocks (501:end,501:600) starts. The
“one error” case includes the checkpointing overhead and the
time to recover from the two errors. Same setup applied to
performance experiments with alike marks.

This experiment shows that the overhead decreases with
larger problems. At 32000, the overhead of the initial check-
pointing for the right factor, local checkpointing for the left
factor and the extra FLOPS from doing PDGESV with two
extra columns is below 1%.
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Dancer cluster
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C. Recovery Performance

To test the recovery performance, experiments are carried
out on both Dancer and Newton clusters.

Fig. 10 is the performance in Gflop/s of the same experiment
in Fig. 9. PDGEMM performance is included as the achievable
machine peak to show that ScaLAPACK PDGESV runs at a
reasonable speed. Fig. 11 is the result on Newton with 256
processes in a 16×16 grid. Both Gflop/s performance results
show that the soft error resilience functionality demands little
overhead, and moving to a larger grid does not cause overhead
increase.

For LU, algorithm stability is an important issue and it is
critical that the recovered solution is numerically close to the
original solution. Since in all our experiments the recovered
residue r = ‖Ax−b‖

‖A‖‖b‖M is in the same magnitude as that of the
original solution, this comparison is skipped.

Finally, Fig. 12 and 13 show experiments on a larger
installation: a supercomputing offering from Cray, Kraken at
the Oak Ridge National Lab. For this two runs, 6144 and
24576 cores were used respectively. The MPI processes were
arranged in 32×32 and 64×64 grid, and each MPI process
resides on a six-core AMD 2.6 GHz Istanbul CPU running
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Fig. 11: PDGESV performance with and without soft error
resilience on the Newton cluster
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6 threads for local BLAS operation. Both results on Kraken
show negligible overhead of error recovery.

IX. CONCLUSION

In this paper, a high performance dense linear system
solver with soft error resilience is proposed. This work is
based on a mathematical model of treating soft error during
LU factorization as rank-one perturbation and recovering the
solution of Ax = b with the Sherman-Morrison formula. We
extended this model to LU with partial pivoting with a
practical numerical bound for error detection, and a scalable
checkpointing algorithm to protect the left factor from soft
errors which is needed for recovery. Experimental results
based on a ScaLAPACK implementation show that the fault
tolerance functionality adds negligible overhead to the linear
system solving and scale well on modern cluster systems. In
the future, we will address multiple errors and the protection
of other matrix factorizations.
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