
The Design of an Auto-Tuning I/O Framework on Cray XT5 System

Haihang You∗, Qing Liu‡, Zhiqiang Li† and Shirley Moore§
∗National Institute for Computational Science

Oak Ridge, TN 37831
hyou@utk.edu

‡Mathematics Department
University of Tennessee, Knoxville, TN 37996

zli@math.utk.edu
†Oak Ridge National Laboratory

Oak Ridge, TN 37831
liuq@ornl.gov

§Electrical Engineering and Computer Science Department
University of Tennessee, Knoxville, TN 37996

shirley@eecs.utk.edu

Abstract—As high performance computing (HPC) heads
towards the exascale era, the computing power surges tremen-
dously and applications will scale to hundreds of thousands
cores. Consequently, the amount of data processed and gener-
ated will increase dramatically. Nowadays, a parallel shared
file system is a must have for a supercomputer. To utilize
I/O effectively is essential for an application to scale up. We
have developed a mathematical model to describe parallel
I/O activities that serves as the basis for an I/O auto-tuning
infrastructure for HPC systems. Our current work is in the
context of Lustre, but our ideas should be applicable to other
distributed file systems. This paper explains our model, which
is based on queuing theory, describes the auto-tuning process,
and gives experimental results over Lustre on the Cray XT5
that show low relative error.

Keywords-I/O; performance modeling; auto-tuning; queuing
theory; simulation

I. INTRODUCTION

As HPC heads toward the exascale era, the high per-
formance computing power surges tremendously and this
trend will continue in years to come. Applications can scale
to hundreds of thousands cores; consequently, the amount
of data processed and generated will increase dramatically.
Nowadays, a parallel shared file system is a must have
for a supercomputer. Utilizing I/O effectively is essential
for an application to scale up. We would like to study
the I/O characteristics of applications, design mathematical
models to describe I/O activities, and build an I/O auto-
tuning infrastructure for HPC systems.
Our current work is in the context of Lustre, but our

ideas should be applicable to other distributed file systems.
Lustre[1] is a distributed file system used for large scale
cluster computing. It can support up to tens of thousands of
client systems and serve petabytes of storage and hundreds
of GBs per second of I/O throughput. As of June, 2010, 15

Figure 1. Lustre file system architecture

of the top 30 supercomputers in the world use the Lustre file
system. A Lustre file system consists of two major units:
1) A single metadata target (MDT) per file system that
stores metadata, such as filenames, directories, permis-
sions, and file layout, on the metadata server (MDS)

2) One or more object storage servers (OSSes) that
store file data on one or more object storage targets
(OSTs). An OSS typically serves between two and
eight targets, with each target being a local disk file
system up to 8 terabytes (TBs) in size. The capacity
of a Lustre file system is the sum of the capacities
provided by the targets.

The architecture of a typical Lustre system is shown in
Figure 1.
To access a file, a client has to complete a filename lookup

on the MDS. Subsequently, either a file is created if the file
does not exist or information about the file is returned to

the client. The information includes on which OSTs the file
resides, and the offsets and sizes on each OST. The client
then opens the file and does I/O operations directly to the
OSTs. In the paper, we focus on the OSS and OST part
and consider the MDS and MDT part as the independent
process. In other words, we only consider queuing and
writing/reading.
The I/O of the Lustre file system is very complicated. The

following parameters can affect the I/O performance:
1) Lustre stripe count
2) Lustre stripe size
3) I/O transfer size
4) Number of processes per file
5) Number of files
6) Total number of I/O processes
When an application does I/O on a Lustre file system,

choosing different parameter values can affect the I/O
performance drastically. Sometimes users can see several
orders of magnitude difference in performance. For example,
stripe size and stripe count (number of OSTs) are common
parameters to tweak on a Lustre file system. Thus, an auto-
tuning process seems desirable. But in practice, an auto-
tuning process may add too much load to the file system
and affect other users. In addition, other users’ processes
may contribute noise to the tuning process and disturb its
accuracy. To avoid these effects, we model the entire system
mathematically and simulate the system. If result from the
model and the simulation match, we can start the auto-
tuning process on the computer based on the modeling and
simulation results. After the tuning process, we apply the
optimal parameters we found to the real processes.
The paper is arranged as follows: First, we introduce

mathematical models for two different cases. Second, we
give results of running the simulations and provide compar-
isons between the mathematical modeling and simulation
results. Then we give results from running the auto-tuning
tests on three different systems: Kraken (Cray XT5, Jaguar
(Cray XT4), and Jaguarpf (Cray XT5). We use the Kraken
test results to tweak the parameters. Finally, we propose a
more interesting model for future work.

II. MATHEMATICAL MODEL

We set up our model with information we gathered for
Kraken, the Cray XT5 hosted at the National Institute for
Computational Sciences. The specifications of its file system
are shown in Table II.
The total time or the system time which is spend to write

a job contains two parts: waiting time in the queue and the
service time (or writing time) at the disk. In this section
we build the mathematical models to find the total time in
average. The goal is given by the following equation:

E(T) = E(W) + E(S) (1)

Name Value Source
Seek time 0.004s Kraken webpage
Write time 0.5Gbit/s Kraken webpage
Inter-arrival time 13.47804s (in average) June 2010 usage logs
Service time 4.453082s (in average) June 2010 usage logs
Transfer speed 10 Gbit/s Kraken webpage

Table I
SPECIFICATION OF KRAKEN’S FILE SYSTEM

Figure 2. Inter-arrival times between I/O requests

where T is the total time, W is the waiting time and S is
the service time.
We make the following assumptions for the whole section:

1) The seek time is a constant. From the Table I, the seek
time is 0.004s for the Kraken file system.

2) The inter-arrival times are independently exponential
distributed with parameter λ.

3) The service times are independented exponential dis-
tributed with parameter γ.

4) The service times are independent from the inter-
arrival times.

5) There is no request at the moment when the system
starts to work.

The inter-arrival time is defined as the difference of arrival
times between the last requests of two jobs. Since the system
time of a job depends on the last block, we treat the entire
job as one block a rriving at the moment when the last block
arrives. The service time is the time which the system spend
to finish a job. If two jobs arrive at the same time, we treat
them as one job arriving at that moment from the system
point of view. Figure 2 explains this idea. Jobs A and B
both arrive at time t1. Job C arrives at time t2. Then t2− t1
is the inter-arrival time. Similarly, t3 − t2 is the inter-arrival
time between job C and job (D+E).

arrival time(s) number of experiments error
1000 1000 0.71%

5000 0.91%
10000 1000 0.13%

5000 0.06%
20000 1000 0.23%

5000 0.05%

Table II
MODELING ERRORS

A. One File and One OST
First we start with the simplest case: one OSS and one

OST. Since the seek time is too small comparing with the
service time and waiting time, we ignor the seek time in
this case. Then this can be medeled by classical queuing
theories which are discussed in many references, e.g. [2],
[3]. Suppose that a file with size M is to be writen at time
t. Let W (t) be the waiting time of the request. In this case,
the service time is fixed since the file size is known. So the
waiting time in the queue is the only random factor.Since
the waiting time only depends on the current position in the
queue, W (t) is a Markov process.
The following equation for expected waiting time is given

in [4]:

E(W (t)) = (
λ

γ
− 1)t+

∫ t

0
p0(u)du (2)

where p0(t) = P (system is idle at time t). To understand
the above formula clearly, define a process W̄ (t) in the same
way as W (t) except that there is no barrier at 0, that is,
W̄ (t) can take negative value. So the process W̄ (t) decreases
deterministically at unit rate for all t. The first two terms
on the right side of the above equation give the expected
value of W̄ (t). The final term in the above equation is the
correction for the total time spent by W (t) at 0, during
which no such decrease occurs.
We have established the mathematical model. Next we use

simulations to verify it. We run the simulation in Matlab and
compare the results with those from the mathematical model.
Table II shows the errors.
Moreover, it has been proven that the Markov process

W (t) is stable as time tends to infinity, if ρ = λ
γ

< 1.
In other words, there is an invariant probability distribution
for the limit of W (t). From the table, when the number
of experiments are 5000, the error at time 10000 seconds
is almost same as the one at time 20000 seconds. Our
comparison shows the distribution tends to be stable.

B. One File and Multiple OST’s
In the Lustre file system, I/O parallelism is the most

important feature for parallel applications. So we need to
consider a system with N OST’s. We assume that these
OST’s are independent. Actually, the transfer times should
be a part of inter-arrival time. But since the transfer time

is very small compared with the exponential inter-arrivals,
we simplify our model by ignoring the transfer times. For
the same reason, we don’t consider the seek time. Let the
service time at the ith OST be Si, i = 1, 2, ... which is
exponentially distributed with parameter γ. In this case, we
have to consider two parts: waiting time and service time,
since they both depend on the number of OST’s. The waiting
time for a file that is divided into n(n ≤ N) blocks is the
largest waiting time on those n OST’s, denoted by W (t),
where t is the moment when the file arrives to the queue.
Intuitively, the more OST’s that are used, the more time
it takes to wait in the queue. But the service time can be
reduced by using more OST’s. Therefore, we have to balance
these two parts and find optimal settings to minimize the
system time.
To find the expected system time, we first consider the

distribution of W (t). Let F (w) be the distribution function
of the waiting time W (t). The expected system can be
calculated by the following equation:

E(W (t)) =

∫ ∞

0
wF (dw).

Let Wi(t), i = 1, 2, ..., n be the waiting time of the file
that arrives at time t on the i-th OST. We assume that all
theWi(t) are independent and identically distributed, that is,
there is no relationship between two waiting times in the two
different queues and they have the same distribution. Since
the distibutions of Wi(t) are the same we define F1(w) as
the distribution function in the first queue. By the defination
of the distribution function, we have

P (W (t) ≤ w) = P (max
0≤i≤n

Wi(t) ≤ w)

= P (W1(t) ≤ w,W2(t) ≤ w, ...,Wn(t) ≤ w)

= P (W1(t) ≤ w)n

where the last equation follows from the idependence of
waiting times.
To calculate the distribution of the waiting time at the first

OST, we need to find the density function. Let f(w, t) be
the density of waiting time in first queue. The distribution
can be given by

F1(w) =

∫ w

0
f(u, t)du.

From [4], we have
∂f(w, t)

∂t
=

∂f(w, t)

∂w
− λf(w, t) + λf(0)γe−γw

+λ

∫ w

0
f(w − u, t)γe−γudu,

dp0(t)

dt
= −λp0(t) + f(0, t),

where p0(t) = P (W1(t) = 0).
If we assume that ρ = λ

γ
< 1, which means that the

average inter-arrival time (1
λ
) is longer than the average

service time (1
γ
), we may find the equilibrium solution by

assuming that, as t → ∞, f(w, t) → f(w). In other word,
the density of the waiting time has a formula which doesn’t
depend on time after a long time period. It could be the case
for Kraken, since it has run for a long time. According to
the usage data from June 2010, we also find ρ = λ

γ
< 1 for

the system of Kraken. So letting t → ∞, we have

λf(w)− f ′(w) = λf(0)γe−γw + λ

∫ w

0
f(w − u)γe−γwdu,

λp0 = f(0).

Solving for f(w) and p0,

f(w) = ργ(1− ρ) exp (−γ(1− ρ)w),

p0 = 1− ρ

Now we are ready to calculate the corresponding distri-
bution function. Let F1(w) be the distribution function of
the waiting time in the first queue. For w > 0, we have:

F1(w) =

∫ w

0
f(u)du

=

∫ w

0−
ργ(1− ρ) exp (−γ(1− ρ)w) + p0

= ρ[1− exp (−γ(1− ρ)w)] + (1− ρ)

= 1− ρ exp (−γ(1− ρ)w)

Noting that p0 = 1− ρ is the probability that the system
is idle at time 0, we have the distribution function of waiting
time in one queue:

F1(w) =

{

(1− ρ) if w = 0
1− ρ exp (−γ(1− ρ)w) if w > 0

(3)

Substituting (3) into (3), we have

F (w) = F1(w)
n =

{

(1− ρ)n if w = 0,
(1− ρ exp (−γ(1− ρ)w))n if w > 0

(4)
Let the writing speed on the OST is V , then the service

time of the file whose size is M is M
nV
. The expected mean

of the system time is given by

E(T) = E(W) + S

=

∫ ∞

0
wdP (w) +

M

nV

=

∫ ∞

0
wn[1− ρ exp (−γ(1− ρ)w)]n−1

×ργ(1− ρ) exp (−γ(1− ρ)w)dw +
M

nV

=
1− (1− ρ)n

γ(1− ρ)

n−1
∑

i=1

1

i
+

ρn

γ(1− ρ)n
+

M

V n

Figure 3. Speed vs number of OSTs

Figure 4. Effect of file size on optimal number of OSTs

From the above equation, we can see that the first term
increases as n increases and the other two terms decrease as
n increases. Although we don’t know the explicit formula
for the optimal number of OST’s, we still can tell that it
must be at somewhere in the middle. We use Matlab to find
it for a file whose size is known.
Figure 3 shows the relationship between n and system

time for writing a 50G file. The result matches experience
with the real application: the more OST’s that are used, the
more time is spent on waiting and the less time is spent on
writing. So there must be a optimal number in the middle
to minimize the time that is spent to finish the job.
Figure 4 shows the relationship between the file size and

the optimal number of OSTs. The optimal number of OST’s
increases as the file size becomes larger.
Then we simulate the system on the computer. Let Ts

(resp. Tm) be the system time for the file from simulation
(resp. math model), and let Ns (resp. Nm) be the optimal
number of OST’s from the simulation (resp. math model).
The comparison between the mathematical model and the

Table III
COMPARISON FOR 1000 EXPERIMENTS

File size Ts Tm Ns Nm relative error
1 49.1129 48 1 1 2.2%
10 114.5909 117.312 4 4 2.3%
50 176.3773 181.9326 24 20 3.1%
100 202.7398 210.1419 42 40 3.7%
500 263.1881 274.9212 179 199 4.5%
1000 292.9404 302.6972 425 399 3.3%

simulation results is shown in Table III:
From Table III, we can see that the relative errors do

not change much as the file size increases. This gives us
confidence for ignoring the transfer time and seeking time.
In real practice, it may not be easy to find the parameter

λ. We test the system to find the distribution of the system
time. Since we know the file sizes used in the tests, the
service times are known. Then, we can find the distribution
of the waiting time; that is, the parameter λ can be found
by this approach.

III. TESTS ON LUSTRE FILE SYSTEMS
In this section, we give the results from three different

Cray XT4/5 systems. We use the test data from Kraken
to tweak the parameters. The reason we do this is that we
found that different system’s settings are very different. For
example, Jaguar has cache on, but Jaguarpf has no cache.
This caused a big difference when we ran the tests. Figure 5
shows the speed on the cache system and Figure 6 shows the
speed on the no cache system. The x-axis represents stripe
size and the y-axis represents transfer size. The legend on
the write gives achieved I/O speed in MB/s.
From these figures, we can see that the test speed on the

cached system is much faster. The reason is that the write or
read time on the disk was not counted when the cache was
turned off. So although we know the physical speed of the
disk, we still cannot apply our model to the real system. We
have to tweak the speed by comparing with the test results.
Since we use Kraken, we tweak the speed using the test data
from Kraken. Our approach is that we write one file on a
single OST and compare the test results with the simulation
we established in Section 2.1. The figure (7) is the average
writing speed for a 1G file on Kraken. The x-axis represents
stripe size and the y-axis represents transfer size. The legend
on the write gives achieved I/O bandwidth in MB/s. Because
we only test the results for the case in which the stripe size
is larger or equal to transfer size, the data above the diagonal
are all zeros. Figure 8 shows the results from the simulation.
We also use these data to tweak the parameter. Af-

ter comparing the simulation and test results, we de-
cide to use V = 1G/s for Kraken. We calculate
two different kinds of relative error. One is: error1 =
sum of (test result−simulation)

sum of test result = 0.07879. The other one
is: error2 = sum of (test result−simulation)2

sum of (test result)2 = 0.06364.

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

50

100

150

200

250

300

Figure 5. I/O speeds writing a file
with cache

2 4 6 8 10 12
1

2

3

4

5

6

7

8

9

10

11

12

20

40

60

80

100

120

140

160

180

Figure 6. I/O speeds writing a file
with no cache

After this preparation, we are ready to deal with writing
one file on multiple OST’s. To do that, we use all the
parameters we found from Kraken and run the simulation
on a single computer. Then we can build the framework for
any one file writing. The same work can be done similarly
for reading a file from multiple OST’s.

IV. AUTO-TUNING FRAMEWORK

Figure 9 shows the structure of the auto-tuning process,
adapted from [5]. In the first step to calibrate the simulation
on a specific system, we run a benchmark such as IOR[6]
and compare with the simulation results. We adjust the setup
parameters of the simulation and mathematical models so
that the simulation will behave in the same way as the real
system. We call this step the training process. Then for a
given I/O setup, we use the mathematical model to generate
a set of parameters which is the starting point of tuning
process. Each set of parameters is input to the simulation,
which reports performance that is used by the search engine

Figure 7. I/O speeds writing a file
on Kraken

Figure 8. Simulated I/O speeds

to come up with the next set of parameters. Previous search
results and sets of parameters are stored in a database, so
that the search process can avoid redoing the test for an
existing result. This procedure stops when an optimal set of
parameters is reached.

• Simulation will release the burden on the real system.
• The auto-tuning framework is faster compared to run-
ning the search process on the real system, since each
benchmark job has to go through batch queue, and also
it takes more time to finish each job.

• The noise of the real system will be avoided, and the
framework can provide parameters without much error.

V. APPLICATION EXAMPLE

The HMMER package is an open-source implementa-
tion of profile Hidden Markov Model (HMM) methods for
sensitive database searches [7]. It is one of the essential
computational tools widely used by biologists to construct
profile hidden Markov models for the detection of protein

Figure 9. Auto-tuning

sequence similarity, protein family classification, and func-
tional annotation. There are now more than 100 million
protein sequences in all public databases around the world,
and this number is growing rapidly. Thus, to identify protein
domains in all currently available protein sequences is a
challenging computational task.
The latest version of HMMER3 [8] is 100 times faster

than previous version of HMMER. Despite performance
improvement of HMMER3 algorithm, HMMER tools are
still unable to keep up with the exponential growth of
biological databases. There are now more than 100 million
protein sequences in all public databases around the world,
and this number is growing rapidly. Thus, to identify protein
domains in all currently available protein sequences is a
challenging computational task.
To the best of our knowledge, we had not previously seen

any implementation of protein sequence analysis that can
successfully scale up to hundreds of thousands of processors.
The hmmscan tool of the HMMER package is used to
search a query protein sequence against the PFam (protein
family) database, which is one of the largest public collec-
tion of conserved protein domains [9]. We have implemented
an efficient parallel version of hmmscan, along with an
optimized I/O implementation using our parallel I/O auto-
tuning framework. Experimental results show linear speedup
with increasing numbers of computing cores on Kraken, a
Cray XT5, allowing the analysis of 100 millions of proteins
in less than six minutes by running a capability job with
98K computing cores. The details of the implementation
will be published elsewhere. Here we summarize the I/O
optimization part.

A. HMMER I/O Optimization
To eliminate intense I/O contention, we divided the MPI

global communicator into multiple sub-communicators, and
the process with rank zero in each sub-communicator per-
forms the I/O. It reads in the database and broadcasts it to
other processes inside the sub-communicator. It also gathers
output data from peer processes and aggregates the data
into one file. The Lustre parameters mentioned in section I
have a big impact on the overall performance. We used the

tuning process described in section IV to arrive at the Lustre
parameters given in Table V. The number of processes
sharing one file determines the size of the subcommunicator
in parallel HMMER.
Empirical optimization techniques have been successfully

applied to numerous software packages such as ATLAS
and FFTW for achieving good performance. In our work,
we applied similar techniques to acquire optimal values of
parameters mentioned above.
1) Search Space: Given the I/O pattern to be tuned, we

can define the search space in different ways. See Table IV
for a summary of the search spaces. For sequential POSIX
I/O case, we defined a search space with three parameters
with lower and upper bounds: Lustre stripe count, stripe size,
and transfer size. For parallel POSIX I/O case, we add an
extra parameter: number of I/O processes.

Table IV
SUMMARY OF THE SEARCH SPACES

Code Dimension Bounds
IOR Lustre stripe count 1 - 160
(sequential POSIX I/O) Lustre stripe size 1M - 256M

I/O transfer size 1M - 256M
IOR Lustre stripe count 1 - 160
(parallel POSIX I/O) Lustre stripe size 1M - 256M

I/O transfer size 1M - 256M
Number of I/O processes 1 - 12K

2) Search Techniques: Essentially, we are trying to solve
an optimization problem of the function:

f(x1, x2, · · · , xn)

The parameters x1 through xn represent the tuning pa-
rameters, such as Lustre stripe count and size. Typically
these are integer values, but in some cases could be real
numbers. The value of the function is the performance of
the I/O benchmark using that set of parameters. Performance
can be evaluated in many ways, but the results presented
in this paper are based on using IOR to measure I/O
Megabytes per second. In [5], we have examined a variety
of search heuristics such as Simplex Method, Genetic Algo-
rithm, Simulated Annealing, Particle Swarm Optimization,
Orthogonal and Random search method. Having effective
search techniques will become increasingly important when
empirical tuning become more sophisticated and the search
spaces consequently grow.
3) Search Results: Search results are shown in Table V.

Figure 10 shows the I/O performance with searched pa-
rameters. The number of processes sharing one file decides
the size of the subcommunicator in parallel HMMER. It is
relatively easy to conduct sequential POSIX I/O tuning on
Kraken, since the search task can be launched in interactive
mode and there is no waiting time in the job queue for each
benchmark test during the search process. But the parallel
version can not avoid submitting benchmark test through

the job queue, and it makes the search process take too
much time to finish. And it generates too much I/O traffic on
a production machine. So we obtained Lustre stripe count,
stripe size and transfer size by running sequential POSIX I/O
tuning. By conducting a few parallel HMMER experiments
with different subcommunicator sizes, we chose it to be
1024. On Kraken, the default Lustre stripe count is 4 and
stripe size is 1 MB. By default, transfer size the same as
stripe size.

Figure 10. Single process IO performance on Kraken

B. Experimental Results
There are three sets of experiments:
1) Non-Optimized, ideally parallel HMMER with default
Lustre settings shown in Table V.

2) Multi-Threading, running one MPI process and multi-
ple threads on each compute node with default Lustre
settings.

3) Optimized I/O, multi-threading parallel HMMER with
optimized I/O and pre-selected optimal Lustre settings
shown in Table V.

Figure 11 shows the performance comparison in terms
of execution time of three versions of parallel HMMER
running on Kraken. We can see that non-optimized version
won’t scale. Even though the ideally parallel approach is
easy to implement, the performance is bad due to severe
I/O contention between each process. The multi-threading
version performed better than the non-optimized version
because it eliminates I/O contention by twelve times. But
it does not solve the I/O contention problem and we can
see it takes more time to finish when the job size increases.
The optimized I/O version shows the best performance. It
combines multi-threading parallel HMMER with optimized
I/O and auto-tuned Lustre parameters. Table VI shows
experimental results of the optimized I/O version using
from 1008 up to 96000 compute cores. We measured total

Parameters Optimal Value Default Value
Lustre Stripe Size 32MB 1MB
Lustre Stripe Count 5 4
Transfer Size 32MB 1MB
Number of processes/shared file 1024 1

Table V
OPTIMIZED AND DEFAULT PARAMETERS FOR LUSTRE ON KRAKEN

execution time and total number of sequences that are
processed. And we also give the average time for processing
a single sequence. As shown in Figure 12(a) and Figure
12(b), our implementation of parallel HMMER can achieve
linear speedup as we use more compute cores up to a full
machine run, and our approach is perfectly scalable on a
massive parallel supercomputer like Kraken.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1024 2048 4096 8192 16384 32768 65536 131072

Ti
m

e(
se

co
nd

)

Number of Cores

Parallel HMMER Execution Time Comparison on Kraken

Non-Optimized
Multi-Threading

Optimized I/O

Figure 11. Parallel HMMER execution time comparison on Kraken

VI. RELATED WORK

Queuing models have long been used to model disk array
systems for performance analysis and prediction [10], [11].
Approximate queueing models for internal parallel pro-

cessing by individual programs in a multiprogrammed sys-
tem are developed in [12]. The solution technique is devel-
oped by network decomposition. The models are formulated
in terms of CPU:I/O and I/O:I/O overlap and applied to the
analysis of these problems. The authors include both CPUs
and I/O devices in their model and include distributions for
seek and transfer times which we ignore. There models can
be solved exactly for a restricted class of systems but require
inexact solution in general.
Our work differs from previous queuing models in that

we focus on the specific problem of determine the optimal
parameter settings for writing a file in a parallel file system.
We also make simplifying assumptions so that we have
a Markov process for which we can obtain an analytic
expression.
Auto-tuning of parallel I/O has been explored in the Panda

project [13], specifically focusing on collective I/O requests
that read and write large arrays. Auto-tuning parameters

 100

 150

 200

 250

 300

 350

 1024 2048 4096 8192 16384 32768 65536 131072

Ti
m

e(
se

co
nd

)

Number of Cores

HMMER Execution Time on Kraken

Total Time

(a) Total execution time

-20

-19

-18

-17

-16

-15

-14

-13

-12

-11

-10

 1024 2048 4096 8192 16384 32768 65536 131072
Ti

m
e(

se
co

nd
|lo

g2
)

Number of Cores

HMMER Average Time per Sequence on Kraken

Time/Sequence

(b) Average execution time per sequence

Figure 12. Parallel HMMER with I/O optimization on Kraken

include array disk layout and disk unit size (i.e., buffer size).
Either a rule-based system or an empirical search (the most
successful type of search was found to be adaptive simulated
annealing) could be used to try to determine optimal settings
of the parameters. This Panda work pre-dated MPI I/O. The
Panda I/O optimization was designed to work on systems
with low variance in I/O performance.
Characterization, tuning, and optimization of parallel I/O

on the ORNL Cray XT4 Jaguar computer is presented in
[14]. For I/O tuning, the authors experimented with different
settings of tuning parameters for use of an extended two-
phase collective I/O protocol with three I/O benchmarks.
Tuning parameters included the buffer size of the I/O aggre-
gation and the number of I/O aggregator processes. Although
they did not use a formal auto-tuning framework, they ran

Cores Query Total Time avgtime/query
1008 1006809 284.97 2.8304E-04
2004 2001699 299.11 1.4943E-04
4008 4003352 302.02 7.5442E-05
8004 7994733 300.77 3.7621E-05
16008 15989466 317.71 1.9870E-05
32004 31966977 306.67 9.5933E-06
64008 63933972 312.81 4.8927E-06
96000 95888993 313.04 3.2646E-06

Table VI
PARALLEL HMMER WITH I/O OPTIMIZATION EXPERIMENTAL RESULTS ON KRAKEN

the codes several times with different settings to determine
the best setting.
Our work is the first research of which we are aware that

combines a queuing system modeling approach with an auto-
tuning framework for a parallel shared file system. Another
contribution of our work is being able to tune I/O with only a
small number of runs on the real system and in the presence
of noise and high variability that can affect application runs.

VII. FUTURE WORK

Our on-going research focus is to build a full simulation
of multiple processes and multiple OSTs when there are
many processes. We need to divide them into groups and
treats each group as one file. How to group them is very
important and there are many ways to do it. For instance,
we can do it according to the distances of the processes.
Our idea is to find an optimal number of processes for each
group. In this case, the other important parameter is the
number of OST’s assigned to each group. The difficulty here
is that there may be many overlapping. So how to balance
these two numbers needs to be considered. We still use the
model we introduced and the only difference is that there
are multiple groups to write. We assume these groups arrive
at the same time and block size is fixed. So when the blocks
from different groups are assigned to the same OST, we put
them in the same position in the queue. There are two parts
of randomness in this model, waiting time and service time.
This means that we need to minimize the largest combination
of waiting time and service time. In other words, we need
to find the optimal pair (m,n), where m is the number of
groups and n is the number of OST’s for one group. The
randomness of the service is from the OST assignments of
the system. We assume that the system treats each group as
one request and assigns the OST’s to all the groups randomly
and independently. Therefore, the service time on each OST
depends on the number of blocks assigned. We use a random
matrix to describe this situation as follows:
Let A = (aij)m×N be a random matrix with elements 1

or 0, where N is the number of OST’s in the system. The
following condition is satisfied:
∑N

j=1 aij = n for 1 ≤ i ≤ m.

Let Xj =
∑m

i=1 aij be the number of blocks at the jth
OST, 1 ≤ j ≤ N . Then the service time on the jth OST is
given by XjM

mnV
, where M is the total size of the whole job

and V is the writing speed on the disk.
The randomness of the waiting time can be described by

queuing theory we mentioned before. Then the mathematics
problem we are facing can be stated as finding (m,n)
to minimize E(max1≤j≤N (XjM

mnV
+Wj(t)1(Xj=1))), where

Wj(t) is the waiting time at the jth OST.
The other question we are interested in is how to validate

the parameter λ. We plan to use a statistical approach to test
in the system periodically for a long time.

ACKNOWLEDGMENT

This research was supported in part by the U.S. Depart-
ment of Energy Office of Science under contract DE-FC02-
06ER25761 and by the U. S. National Science Foundation.
In addition, this research used resources at the National In-
stitute for Computational Sciences supported by the National
Science Foundation. This research also used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

REFERENCES

[1] Cluster File Systems, Inc., “Lustre: A scalable, highperfor-
mance file system,” Tech. Rep., White paper (2002).

[2] V. E. Benes, “On queues with poisson arrivals,” in The Annals
of Mathematical Statistics, vol. 28, no. 3, Sept. 1957, pp. 670–
677.

[3] U. N. Bhat, An Introduction to Queuing Theory. Boston,
MA, USA: Birkhäuser, 2008.

[4] D. R. Cox and V. Isham, “The virtual waiting-time and related
processes,” in Advances in Applied Probability, vol. 18, no. 2,
June 1986, pp. 558–573.

[5] K. Seymour, H. You, and J. Dongarra, “A comparison of
search heuristics for empirical code optimization,” in 3rd
International Workshop on Automatic Performance Tuning,
2008.

[6] IOR, “The ASCI I/O stress benchmark,”
https://computing.llnl.gov/?set=code&page=sio downloads.

[7] S. R. Eddy, “Profile hidden Markov models,” Bioinformatics,
vol. 14, pp. 755–763, 1998.

[8] Sean R. Eddy, “HMMER3: a new generation of sequence
homology search software ,” http://hmmer.janelia.org.

[9] R. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. Pollington,
O. Gavin, P. Gunesekaran, G. Ceric, K. Forslund, L. Holm,
E. Sonnhammer, S. Eddy, and A. Bateman, “The pfam protein
families database,” Nucleic Acids Research Database Issue,
no. 38, pp. D211–222, 2010.

[10] S. Chen and D. Towsley, “performance evaluation of raid
architectures,” in IEEE Transactions on Computers, vol. 45,
Oct. 1996, pp. 1116–1130.

[11] E. Varki, A. Merchant, J. Xu, and X. Qiu, “Issues and
challenges in the performance analysis of real disk arrays,”
in IEEE Transactions on Parallel and Distributed Systems,
vol. 15, June 2004, pp. 559–574.

[12] D. Towsley, K. Chandy, and J.C.Browne, “Models for parallel
processing within programs: application to cpu: I/o and i/o:
I/o overlap,” in Communications of the ACM, vol. 21, no. 10,
Oct. 1978, pp. 821–831.

[13] W. Chen and M. Winslett, “Automated tuning of parallel i/o
systems: an approach to portable i/o performance for scientific
applications,” in IEEE Transaction of Software Engineering,
vol. 26, no. 4, April 2000.

[14] W. Yu, J. Vetter, and S. Oral, “Performance characterization
and optimization of parallel i/o on the cray xt,” in IEEE
International Parallel and Distributed Processing Sympo-
sium(IPDPS’08), Miami, FL, USA, 2008.

