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ABSTRACT
The goal of this paper is to present an efficient implementation of
an explicit matrix inversion of general square matrices on multicore
computer architecture. The inversion procedure is split into four
steps: 1) computing the LU factorization, 2) inverting the upper tri-
angular U factor, 3) solving a linear system, whose solution yields
inverse of the original matrix and 4) applying backward column
pivoting on the inverted matrix. Using a tile data layout, which rep-
resents the matrix in the system memory with an optimized cache-
aware format, the computation of the four steps is decomposed into
computational tasks. A directed acyclic graph is generated on the
fly which represents the program data flow. Its nodes represent
tasks and edges the data dependencies between them. Previous im-
plementations of matrix inversions, available in the state-of-the-art
numerical libraries, are suffer from unnecessary synchronization
points, which are non-existent in our implementation in order to
fully exploit the parallelism of the underlying hardware. Our al-
gorithmic approach allows to remove these bottlenecks and to exe-
cute the tasks with loose synchronization. A runtime environment
system called QUARK is necessary to dynamically schedule our
numerical kernels on the available processing units. The reported
results from our LU-based matrix inversion implementation signif-
icantly outperform the state-of-the-art numerical libraries such as
LAPACK (5X), MKL (5X) and ScaLAPACK (2.5X) on a contem-
porary AMD platform with four sockets and the total of 48 cores
for a matrix of size 24000. A power consumption analysis shows
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that our high performance implementation is also energy efficient
and substantially consumes less power than its competitors.

1. INTRODUCTION
Forsythe, Malcolm, and Moler [?, p. 31] famously pointed out that
“In the vast majority of practical computational problems, it is un-
necessary and inadvisable to actually compute A−1”. The minority
of the cases where the explicit inverse is needed include parame-
ter estimation [?, sec. 7.5], mathematical modeling [?, p. 342ff],
computing matrix sign function [?], and polar matrix decompo-
sition [?]. Additional applications of explicit inverse come from
wireless networks design [?, ?, ?, ?], optimal control theory [?, ?],
and signal analysis [?]. Even though the explicit matrix inversion
is not as numerically stable as the application of the L and U fac-
tors [?, ?], the loss of a few digits of accuracy is often justified in
the above applications. Pair-wise pivoting, on the other hand, intro-
duces a prohibitive loss of accuracy [?] and hence is a poor choice
for matrix inversion. We therefore make use of partial pivoting ver-
sion of tile LU factorization [?] that gives satisfactory accuracy for
the L and U factors. From the purely performance-oriented per-
spective, explicit inverse has a clear advantage. In order to apply
the computed inverse on a multi-column matrix of unknowns, one
should use a BLAS routine called GEMM [?, ?, ?] that efficiently
implements a matrix-matrix multiplication operation. On the other
hand, an implicit application of inverse by applying L and U factors
from the LU decomposition calls for the TRSM routine from Level
3 BLAS. While both operations may be implemented with affine
and properly nested loops, the latter is always at the disadvantage
as it has inherent loop-carried data dependencies and achieves a
substantially smaller percentage of the peak performance of a given
system.

This paper introduces a new implementation of the LU-based ma-
trix inversion. The standard numerical algorithm, as it is imple-
mented in LAPACK [?], is composed of four stages: 1) calculating
the LU factorization, 2) inverting the upper triangular U factor, 3)
solving a linear system, whose solution yields inverse of the orig-
inal matrix and 4) applying backward column pivoting on the in-
verted matrix. Based on block formulation, this standard algorithm
is characterized by artifactual synchronization points imposed not
only between the different stages but also within each stage, due
to the expensive fork-join paradigm. By the same token, the paral-
lelism clearly becomes limited and the algorithm can simply not



exploit and fully benefit from the fine-grain parallelism offered
by the underlying multicore hardware. To overcome those bottle-
necks, tile algorithms have shown promising results by drastically
weakening the synchronization points as well as by exposing more
parallelism to the user. Applied to the LU-based matrix inversion
algorithm, the whole computation is split into fine-grain loosely-
coupled computational tasks. The program data flow can then be
represented as a directed acyclic graph, where nodes represent tasks
and edges the data dependencies between them. A dynamic run-
time system QUARK [?] is used to efficiently schedule the various
tasks across the available processing units. This may actually result
to an out-of-order scheduling, where tasks from multiple stages can
concurrently run.

The results reported in this paper are unprecedented. Our high per-
formance implementation achieves a 5-fold improvement against
LAPACK with multithreaded MKL BLAS as well as Intel MKL
and a 2.5-fold improvement against ScaLAPACK on a quad-socket
AMD Opteron Magny-Cours Processor with a total of 48 cores for
a matrix of size 24000. A study on power consumption is also pro-
vided showing that our high performance algorithm is also energy
efficient and substantially consumes less power than the numerical
libraries aforementioned.

The reminder of the paper is as follows. Section ?? gives a detailed
overview of previous projects in this area. Section ?? recalls the
block LU-based matrix inversion algorithm, as implemented in LA-
PACK [?] and explains its main deficiencies. Section ?? describes
our new implementations of the matrix inversion using tile algo-
rithms. Section ?? shows some parallel implementations details
using the runtime QUARK. Section ?? presents the performance
results. Comparison tests are run on shared-memory architectures
against the state-of-the-art, high performance dense linear algebra
software libraries, LAPACK [?] (open-source package), Intel MKL
10.2 [?] (commercial package) and ScaLAPACK [?]. Section ??
highlights the power efficiency of our high performance implemen-
tation. Finally, Section ?? summarizes the results of this paper and
presents the ongoing work.

2. RELATED WORK
Matrix inversion has been an established procedure in statistical
community [?, ?] but has mostly concerned symmetric positive
definite matrices. As mentioned in Section ??, there are plenty of
applications of the explicit inverse for general square matrices and
most of the time the numerical accuracy of obtaining the inverse is
is satisfactory for the application at hand regardless of the method
chosen to compute [?] – provided the original matrix is not singular
nor nearly so. The symmetric positive definite matrices that origi-
nate in statistics may use Cholesky factorization as the first step of
inversion. The performance of such methods have been studied on
multicore computers proving tile algorithms to be beneficial for ex-
tracting parallelism [?]. The analysis of available concurrency for
explicit inversion was performed by using critical paths of multiple
variants of the algorithm [?].

Our work complements these efforts by studying performance and
power constraints and opportunities when applied to inversion of
general matrices.

3. BLOCK LU-BASED MATRIX INVERSION
ALGORITHM

Block algorithms in LAPACK [?] were a software solution to
the emergence of cache-based architectures. Such algorithms are
characterized by a sequence of two computational phases: panel
factorization and an update to the trailing submatrix. The former
phase uses transformations that memory-bound while the latter ap-
plies the accumulated transformations in a block fashion (hence the
name) to the trailing submatrix which, by design, is a much more
cache friendly operation and, consequently, is compute-bound in
practice. This two-phase sequence has an unwelcome feature of re-
quiring unnecessary synchronization points between the steps. This
in turn creates a load imbalance which might be alleviated with the
look-ahead technique if the existing block-oriented code is rewrit-
ten.

The common practice in LAPACK-derived libraries is for the par-
allelism to be relegated to the BLAS library. Such implementations
are customarily categorized as fork-join or bulk synchronous par-
allelism (BSP). In the end, the block implementation of LU factor-
ization suffers from the atomicity of the pivot selection has further
exacerbated the problem of the lack of parallelism and the synchro-
nization overhead. Last but not least, the LAPACK-based imple-
mentations also uses the standard column-major layout as is prac-
ticed in Fortran. This becomes less appropriate in the current and
next generation of multicore architectures due the resulting false
sharing of cache lines and increased overload of the Translation
Look-aside Buffer (TLB).

A valid parallelization strategy that turned out quite successful in
practice [?] involves making all components of the factorization
to run in parallel especially the panel factorization which would
severely limit the performance for large matrices if execute seri-
ally. The success here is more remarkable as the data partition-
ing for such parallelization is mostly limited to one dimension:
across rows in the panel and across columns for the triangular solve.
Only the Schur’s complement may use good scalability properties
of two-dimensional data and work partitioning because it is based
on matrix-matrix multiplication that is internal free from data de-
pendencies.

Algorithm ?? shows in detail the operations and BLAS calls in-
volved the block implementation. The four stages of the algorithm
are clearly visible and, in LAPACK, they correspond to multiple
functions calls. This produces the second set of synchronization
points in addition to the synchronization occurring inside each rou-
tine.

We show how these synchronization overheads may be rendered
unnecessary in the tile-based implementation. While at the same
time, we take advantage of the fact the LU factorization is numeri-
cally stable, and, in practice, produces a reasonable growth factor.

4. TILE LU-BASED MATRIX INVERSION
ALGORITHM

Synchronization reduction as well as fine-grain computations are
not an option in a multicore environment anymore and one has to
employ those key concepts to fully take advantage of the hardware
specifications. This is exactly the aim of tile algorithms in the con-
text of dense linear algebra. The main idea is to split the original
dense matrix into tiles as shown in Figure ??, in which elements are
contiguous in memory, in order to drastically remove the overhead
of TLB misses, as seen in block algorithms (see Section ??). The
common coarse grain parallelism is then replaced by a fine-grain
computation, alleviating all together the artifactual synchronization



Algorithm 1 Block LU-based matrix inversion. A is an N×N ma-
trix with a panel size of NB.
1: {Stage 1: Compute A = L×U (DGETRF)}
2: for j = 1 to N step NB do
3: DGETF2(A j:N, j: j+NB−1, IPIV j) {Panel factorization}
4: DLASWP(A:,1: j−1, IPIV j) {Swap behind the panel}
5: DLASWP(A:, j+1:N , IPIV j) {Swap in front of the panel}
6: DTRSM(A j: j+NB−1, j: j+NB−1, A j: j+NB−1, j+NB:N) {Com-

pute block row of U}
7: if j+NB≤ N then
8: DGEMM(A j+NB−1:N, j: j+NB−1,
9: A j: j+NB−1, j+NB−1:N , A j+NB−1:N, j+NB−1:N)

10: end if
11: end for
12: {Stage 2: Calculate U−1 (DTRTRI)}
13: for j = 1 to N step NB do
14: DTRMM(A1: j−1, j: j−1, A1: j−1, j: j+NB−1)
15: DTRSM(A j: j+NB−1, j: j+NB−1, A j: j+NB−1, j+NB:N)
16: DTRTI2(A j: j+NB−1, j: j+NB−1)
17: end for
18: {Stage 3: Solve the equation A−1×L = U−1 for A−1}
19: for j = N to 1 step -NB do
20: {Copy current block column of L to WORK and replace

with zeros}
21: DLACPY(WORK j:N,1:NB, A j:N, j: j+NB−1
22: DLASET(A j:N, j: j+NB−1, 0
23: {Compute current block column of A−1}
24: if j+NB≤ N then
25: DGEMM(A1:N, j+NB:N ,
26: WORK j+NB:N,1:NB, A1:N, j: j+NB−1)
27: end if
28: DTRSM(WORK j: j+NB−1,1:NB, A1:N, j: j+NB−1)
29: end for{Stage 4: Apply column interchanges}
30: DLASWP(A, IPIV )

points. The parallelism is rather brought to the fore and does not
reside in the BLAS calls.

Algorithm ?? describes the tile version of the four stages LU-based
matrix inversion. The first stage i.e., LU factorization, has been
replaced by a tile recursive parallel panel LU factorization, intro-
duced by the authors in [?]. The major differences with the block
LU factorization are twofold. The panel computation has been en-
hanced in terms of level 3 BLAS operations using a parallel recur-
sive scheme. The update of the trailing submatrix now operates on
tiles, which increases the degree of parallelism and allows look-
ahead techniques. The second stage computes the inverse of the U
factor. The LAPACK function call DTRTRI has been unrolled to fit
the new tile algorithmic design, which generates a multitude of in-
dependent tasks and removes, within the stage, the synchronization
points aforementioned. And these significant algorithmic changes
apply to the third and fourth stage following the same principle.

This new tile implementation of the LU-based matrix inversion
considerably weakens the synchronization points within each of
the four stages. But it can clearly be seen also that the in-between
synchronization points may be removed, whenever data dependen-
cies permit. Indeed, the second and third stages can start executing
while the first stage has not finished yet. However, the fourth stage
i.e., column interchange application, requires that previous stages
are totally completed before proceeding, since no practical assump-

Figure 1: Column-major (left) and tile data layout (right) for a
matrix.

tion is possible due to the natural atomicity of the column pivoting
operation.

Once the various numerical kernels defined, a runtime environment
system becomes crucial to schedule the operations on the available
processing units, which is the topic of the next Section.

5. PARALLEL IMPLEMENTATION DETAILS
USING THE QUARK FRAMEWORK

Our approach to extracting parallelism is based on the principle of
separation of concerns. We define high performance computational
kernels and submit them to the QUARK [?] scheduler for parallel
execution as dependent tasks.

In fact, the execution flow in our implementation is not driven by a
set of loops or recursive calls, as seen in Algorithm ??, but rather
by the data dependencies that are communicated to the QUARK [?]
runtime scheduling system in a form of tasks. In practice, this re-
sults in an asynchronous out-of-order scheduling. The dynamic
runtime environment ensures that enough parallelism is available
throughout the entire execution as is assured by the right looking
formulation of the algorithm. The advancement of the critical path
for the look-ahead purposes, prominently featured in the left look-
ing formulation, is achieved with locality-based task selection and
may be enhanced with scheduler hints.

Indeed, computational tasks residing in the critical path (e.g., panel
factorization) have a higher priority. On the opposite, the row in-
terchange operations behind the panel during the first stage are not
critical to pursue the computation forward and can be delayed as
much as possible in favor of critical tasks scheduling. The strict
right-looking variant available in LAPACK [?] and ScaLAPACK [?]
cannot then be guaranteed anymore. The asynchronous nature of
the DAG execution provides sufficient look-ahead opportunities for
many algorithmic variants to coexist with each other regardless of
the visitation order of the DAG [?].

6. PERFORMANCE RESULTS
This Section reports the performance results on a cutting-edge shared-
memory multicore system based on Non Uniform Memory Access
(NUMA). Directed acyclic graphs have been also generated along
with execution traces to highlight the strength of our high perfor-
mance implementation. A power consumption study is also pre-
sented to show its power efficiency.

6.1 Experimental Setup



Algorithm 2 Tile sequential in-place LU-based matrix inversion.
A is an NT ×NT tile matrix.
1: {Stage 1: Compute A = L×U using parallel recursive

panel}
2: for k = 0 to NT−1 do
3: CORE_DGETRFR(Ak,k, IPIVk)
4: for n = k+1 to NT−1 do
5: CORE_DLASWP(Ak,n, IPIVk) {Apply row interchange

after the panel}
6: for m = k+1 to NT−1 do
7: CORE_DGEMM(Am,k, Ak,n, Am,n)
8: end for
9: end for

10: for n = 0 to k−1 do
11: CORE_DLASWP(Ak,n, IPIVk) {Apply row interchange

behind the panel}
12: end for
13: end for
14: {Stage 2: Calculate U−1 (DTRTRI)}
15: for m = 0 to NT−1 do
16: for n = m+1 to NT−1 do
17: CORE_DTRSM(Am,m, Am,n)
18: end for
19: for n = 0 to m−1 do
20: for k = m+1 to NT−1 do
21: CORE_DGEMM(An,m, Am,k, An,k)
22: end for
23: CORE_DTRSM(Am,m, An,m)
24: end for
25: CORE_DTRTRI(Am,m)
26: end for
27: {Stage 3: Solve the equation A−1×L = U−1 for A−1}
28: for k = NT−1 to 0 step −1 do
29: for m = k to NT−1 do
30: CORE_DLACPY(WORKm, Am,k)
31: CORE_DLASET(Am,k, 0)
32: end for
33: for m = 0 to NT−1 do
34: for p = k+1 to NT−1 do
35: CORE_DGEMM(Am,p, Wp, Am,k)
36: end for
37: CORE_DTRSM(WORKk, Am,k)
38: end for
39: end for
40: {Stage 4: Apply column interchanges}
41: for k = NT−1 to 0 step −1 do
42: for m = 0 to NT−1 do
43: CORE_DLASWP(Am,k, IPIVk)
44: end for
45: end for

All of our performance experiments were done on a single hard-
ware system that we will call MagnyCour-48. MagnyCour-48 is
composed of a mother board with four sockets each featuring an
AMD Opteron 6172 processor, code named Magny-Cours. Each
processor consisted of twelve cores, which made it 48 cores in to-
tal. The operating frequency was 2.1 GHz and the main memory
size was 128 GB. The theoretical peak for this machine in double
precision arithmetic is 403.2 Gflop/s (8.4 Gflop/s per core). All the
results were obtained with the Intel MKL 10.3.2 library which was
selected as the best BLAS implementation for this system in terms
of sequential and parallel performance.

6.2 Performance Comparisons
We compare five different versions of the LU inversion algorithm.
First, we present the performances of the two versions that can
be used in a shared memory system: the Netlib LAPACK library
linked with the multi-threaded BLAS from MKL, as well as the
multi-threaded MKL LAPACK version of the algorithm. The re-
sults from Figure ?? show that even if the MKL library has a better
implementation of the LU factorization, no efforts have been made
for the triangular inversion to outperform the Netlib version of LA-
PACK, resulting in similar performances for both libraries.

Second, we present results obtained with the MKL implementation
of SCALAPACK using one process per core and the sequential
MKL BLAS internally. This version shows how the distributed
memory implementation, with good memory locality by default,
performs on a NUMA architecture opposed to a shared-memory
implementation. We observe that the performances are far better
than the MKL multi-threaded version, but require the user to move
to a distributed memory implementation of the algorithm. Finally,
we present the results of our algorithms implemented in PLASMA
library. For both algorithms, threads are bind linearly to each core
thanks to the Hardware Locality library [?], HWLOC. This, with
the QUARK scheduler, ensures a good data locality and reuse which
are necessary to achieve performances on NUMA architectures. It
is noteworthy to mention that we could not reproduce the same
setup for MKL-based implementations since we do not have ac-
cess to the software package internals. Furthermore, the ColMajor
version takes as input the matrix in column major layout as the stan-
dard of LAPACK. The LU factorization is then performed on the
matrix and a layout conversion to tiles is required to perform the
three last stages as well as to return the result to the user in column
major layout. The Tile version takes directly as input the matrix
stored in the block layout format and perform all four stages with-
out changes in the data storage. We observe on the Figure ?? than
this layout provides 50Gflop/s more than the ColMajor version, and
both outperform SCALAPACK for matrix sizes over 5000 to reach
more than 60% of efficiency. The block size chosen for these ex-
periments is 280, and 320 for the Tile version when the size is over
20000.

6.3 Data Flow Representation using Directed
Acyclic Graphs

This section presents the DAGs of the four stages of the GETRFR +

GETRI operations obtained with the scheduler QUARK. Figure ??
shows the DAGs of the four different stages in the routine: the LU
Factorization (Figure ??), the computation of the inverse of L (Fig-
ure ??), the triangular solve for U−1 (Figure ??) and the column
swapping (Figure ??). Figure ?? shows the interleaving of these
four DAGs, with the same color code than the previous ones, when
you performed them in an asynchronous way while the scheduler
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preserves the dependencies. The nature of the third stage with its
backward panel by panel computations naturally delays the begin-
ning of the last stage. Indeed, the first set of swapping are applied,
which are to the last column of A, is blocked by the input depen-
dencies of this same block column within the update of the first
columns of the stage three (solve for U−1). Then, by limitation
of the algorithm to one block column of workspace, the column
swapping stage can not proceed before the last step of stage three
has started and tiles Am,NT−1 with m ∈ [0,NT −1] have been used
for the update.

6.4 Execution Traces
Figure ?? shows the execution traces of the PLASMA LU inver-
sion algorithm with or without synchronization between each stage.
For both figures, the LU factorization is in red, the computation of
L−1 in yellow, the triangular solve for U−1 in blue and the column
swapping in green. By comparison to the synchronous case shown
in Figure ??, the second trace shown in Figure ?? indicates that the
interleaving steps in mainly between the first and the second stages
which are respectively the LU factorization and the computation of
the inverse of L. This result is expected as shown in the complete
DAG of the LU inversion in Figure ??.

7. POWER PROFILING
The goal of this Section is to show that our high performance im-
plementation is also energy efficient. The experiments have been
conducted on a single node of a distributed system named sys-
temg.cs.vt.edu from Virginia Tech composed of 324 nodes with In-
finiband interconnect. Each node is a dual-socket quad-core Intel
Xeon 2.8GHz (2592 cores total) with 8GB of memory. It is actually
the largest power-aware compute system in the world. It has over
30 power and thermal sensors per node and relies on PowerPack [?]
to obtain measurements of the major system components’ power
consumption (e.g., the CPU, memory, hard disk, and motherboard)
using power meters attached to the hardware of the system.

Figures ??, ?? and ?? show the power consumptions of the LU-
based matrix inversion using LAPACK (with multithreaded MKL
BLAS), MKL, and PLASMA, respectively. The findings presented
below coincide with the analysis of power consumptions in dense
linear algorithms studied before [?]. In particular, we are able to ob-

(a) DAG for the first stage: LU factorization.

(b) DAG for the second stage: inverse com-
putation of L.

(c) DAG for the third stage: triangular solve for U−1.

(d) DAG for the fourth stage: col-
umn swapping.

Figure 3: DAGs of the four stages composing the GETRI opera-
tion on a 4-by-4 tiles matrix.
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Figure 6: LAPACK LU-based matrix inversion (N=10000) on a dual-socket quad-core Intel Xeon at 2.80GHz (8 cores total).
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Figure 7: MKL LU-based matrix inversion (N=10000) on a dual-socket quad-core Intel Xeon at 2.80GHz (8 cores total).
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Figure 8: PLASMA LU-based matrix inversion (N=10000) on a dual-socket quad-core Intel Xeon at 2.80GHz (8 cores total).



1:1 GETRF

TRSM TRSM TRSM

LASWP

TRSMTRSM TRSM

LASWP

LASWP

LASWPLASWP

2:3

GEMM

GEMM GEMM

GEMM

GEMM GEMM

GEMM

GEMM GEMM

LASWP

LACPY

TRSM

GEMM GEMM

3:3

GEMM GEMMGEMM GEMM

GETRF

TRSM

LASWP

TRSM

4:6

5:4

LASWP

TRSM GETRF

GEMM

TRSM

LASWP

TRSM

TRSM

LASWP

LASWP

LASWPLASWP

LACPY

6:3

GEMM GEMM

LASWP

LACPY

LACPY

TRSM

GEMM

7:5

GEMM GEMMGEMM

GEMM

LACPY

LACPY8:4

TRSM GETRF

TRSM TRSM

LASWP

LASWP

LASWPLASWP

LACPY

LACPY

TRSM

TRSM

TRSMTRSM

9:6

TRSM TRSM

LASWP

LASWP

LASWPLASWP

10:2

GEMM

LACPY

GEMM

TRSM

GEMM

GEMM

GEMMGEMM

LACPY

TRSM

GEMM GEMM

GEMM

LACPY

11:3

LACPY

GEMM

12:4

LACPY

TRSM TRSM

TRSM

TRSM

13:8

TRSM

TRSM

TRSM TRSM

14:2

GEMM

GEMM

GEMMGEMM GEMM

LACPY

GEMM

GEMM

LACPY

GEMM

GEMM

LACPY

TRSM

LACPY

TRSM

15:2

LACPY

TRSM

TRSM

16:5

17:2

LACPY

LACPY

TRSM

18:4

19:4

20:2

21:2

22:4

23:5

24:6

25:3

26:4

27:4

28:4

29:4

30:4

31:4

32:4

33:4

34:1

Figure 4: DAG containing the four stages which are interleaved
with the dependencies preserved on a 4-by-4 tiles matrix. The
same color code as in Figure ?? is used.
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(b) With interleaved stages.

Figure 5: Execution traces of the DGETRI routine with a 5000-
by-5000 matrix and NB = 250 on a 16-cores architecture.

serve phases of the computation from the power charts. Although
the number of cores is small (i.e., 8 cores total), PLASMA is sub-
stantially more power efficient than LAPACK and to a lesser ex-
tent than MKL. PLASMA would even consume less power in the
context of many cores against it competitors because this is where
PLASMA excel the most thanks to the tremendous amount of in-
dependent computational tasks generated through tile algorithms.

8. SUMMARY AND FUTURE WORK
We have presented a tile implementation of the matrix inversion al-
gorithm based on LU factorization. Our core shares the desirable
numerical properties with the formulations that use partial pivoting.
At the same time, however, we introduce plentiful opportunities
for parallel execution and data partitioning that is cache-friendly
and works well across complex memory hierarchies of multicore
architectures. In the end, our approach yields vast improvements
from the performance perspective. In fact, we observed many-fold
speedup against the best implementations of numerically compara-
ble codes.

As a future direction, we consider extending our methodology to
distributed memory machines using a different version of DAG
scheduler called DAGuE [?, ?, ?, ?, ?].
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