
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2010)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1574

SmartGridRPC: The new RPC
model for high performance
Grid computing

Thomas Brady1,∗,†, Jack Dongarra2,Michele Guidolin1,
Alexey Lastovetsky1 and Keith Seymour2

1School of Computer Science and Informatics, University College Dublin,
Dublin, Ireland
2Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, TN, U.S.A.

SUMMARY

The paper presents the SmartGridRPC model, an extension of the GridRPC model, which aims to achieve
higher performance. The traditional GridRPC provides a programming model and API for mapping
individual tasks of an application in a distributed Grid environment, which is based on the client-server
model characterized by the star network topology. SmartGridRPC provides a programming model and
API for mapping a group of tasks of an application in a distributed Grid environment, which is based
on the fully connected network topology. The SmartGridRPC programming model and API and its
performance advantages over the GridRPC model are outlined in this paper. In addition, experimental
results using a real-world application are also presented. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

GridRPC [1] is a standard promoted by the Open Grid Forum, which extends the traditional RPC
for the Grid environment. A number of Grid middleware systems are GridRPC compliant, including
GridSolve [2], Ninf-G [3], and DIET [4].
A GridRPC system processes each GridRPC task call by first performing dynamic resource and

task discovery, then mapping the task to a server and then executing the task on the mapped server.
The important restriction of the GridRPC model is that for each GridRPC call these three operations
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(discovery, mapping, and execution) are executed atomically and cannot be separated. As a result,
each task will be mapped separately and independently of other tasks of the application. Therefore,
the model can only support the minimization of the execution time of each individual task of the
application rather than the minimization of the execution time of the whole application.
Another important aspect of the GridRPCmodel is its communicationmodel. The communication

model of GridRPC is based on the pure client-server model resulting in a star network topology. This
means that inputs/outputs for remote tasks executed on servers can only traverse the client-server
links.
Mapping tasks individually onto a star network results in mapping solutions that may be far from

optimal. If tasks are mapped individually, the mapping heuristic is unable to take into account any of
the tasks that follow the task being mapped. Consequently, the mapping heuristic does not have the
ability to optimally balance the loads of computation and communication. Another consequence of
mapping tasks in this way is that dependencies among tasks are not known at the time of mapping.
Therefore this approach forces bridge communication. Bridge communication occurs when the
output of one task is required as an input to another task. In this case, using the traditional GridRPC
model, the output of the first task must be sent back to the client and the client then subsequently
sends it to the server executing the second task when it is called.
In this paper, we propose an enhancement of the traditional GridRPC model, called Smart-

GridRPC, which would allow a group of tasks to be mapped collectively onto a fully connected
network. This would remove each of the limitations of the GridRPC model already described. The
SmartGridRPC model has extended the GridRPC model to support collective mapping of a group
of tasks by separating the mapping of tasks from their execution. This allows the group of tasks to
be mapped collectively and then executed collectively.
In addition, the traditional client-server model of GridRPC was extended so that the group of

tasks can be collectively executed on a network topology which is fully connected. This is a network
topology where all servers can communicate directly or servers can cache their outputs locally.
There are a number of advantages in mapping tasks collectively onto a fully connected network.

The mapping heuristics which are implemented under the SmartGridRPC model can improve the
performance of that group by:

• more effectively balancing the load of computation of the group of tasks;
• more effectively balancing the load of communication of the group of tasks;
• reducing the overall volume of communication of the group by eliminating bridge communi-

cation either by caching or direct data transfers among servers;
• increasing the parallelism of communication;
• reducing memory usage and paging.

These are the key benefits of executing an application using the SmartGridRPC model over the
GridRPC model and they will be described in more detail in Section 2.
The paper is outlined as follows. The motivation and key benefits of SmartGridRPC are described

in Section 2. The SmartGridRPC model and API are described in Section 3. Section 5 describes
Hydropad, the astrophysics application we used to evaluate the performance of the SmartGridRPC
model. Section 6 gives the experimental results that compare the GridRPC model with the Smart-
GridRPC model using the Hydropad application to evaluate the performance of both models. The
paper concludes with Section 8.
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2. SMARTGRIDRPC MODEL: MOTIVATION

This section describes each of the key benefits of SmartGridRPC outlined in the Introduction.

2.1. Improved balancing of computation load

In GridRPC, tasks get mapped to servers individually. This could result in poor load balancing of
computation. As tasks get mapped individually, it is impossible to balance the load of computation
of a group of tasks that are executed in parallel. If tasks are mapped individually, each task will be
mapped without the knowledge of any of the subsequent parallel tasks. For example, this means that
if two tasks of different computational loads are executed in parallel and if the larger task follows
the smaller task, the mapping heuristic will give the smaller task priority over the larger task.
This is because when the smaller task is mapped, the mapping heuristic cannot take into account

that a larger task will be executed in parallel. Therefore it maps the smaller task to the faster server
as this will yield the lowest execution time for this individual task. And when the mapping heuristic
maps the larger task, it will assign it to the next fastest server as the fastest server is busy executing
the previous task. This is poor load balancing of computation.
However, if you implement the collective mapping of the SmartGridRPC model, then the compu-

tation load of both tasks are considered collectively and can therefore be better distributed and
balanced over the network. In this case, if both tasks can be mapped collectively then the larger task
would be mapped to the faster server and the smaller to the slower server. This improved balancing
of the computation load will increase the performance of the execution of these parallel tasks.

2.2. Reduced volume of communication

As the GridRPC model maps tasks individually onto a client-server network, the model forces
bridge communication among tasks. This occurs because dependencies are not known among tasks
and data can only traverse the client-server links. As a result, the source task can only send the
dependent data to the destination task via the client. This requires two communication steps, the first
from the source task to the client and the second from the client to the destination task. However,
this can be eliminated with the SmartGridRPC model, where tasks can be mapped collectively onto
a network which is fully connected. As tasks are mapped collectively, dependencies among tasks
are known. These dependencies can then be mapped onto virtual links connecting the source server
to the destination server, which is only one communication step. Therefore, the overall volume of
communication required to be sent over the network and the client-server links will be reduced
which would result in improved application performance.
Moreover, if the source task and destination task are both executed on the same server then this

output could be cached to the local file system or cached in memory which would further reduce
the overall communication on the network and increase the performance of the application.

2.3. Improved balancing of communication load

As the GridRPCmodel is based on the pure client-server model, communication can only be mapped
to client-server links. This may result in the client-server links becoming heavily loaded.
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SmartGridRPC can increase the performance of an application by better distribution of the
communication load over the network. When tasks are mapped collectively, the volume of commu-
nication of each task in the group of tasks is known. As the sizes of inputs and outputs of each task
are known and this communication is mapped onto a network which is fully connected, this commu-
nication can be better distributed and balanced over the fully connected network. This improved
load balancing of communication will result in improved overall communication times and hence
improved application performance.

2.4. Increased parallelism of communication

In much the same way that the GridRPC model improves on the RPC model with the parallelism of
computation; the SmartGridRPC improves on the GridRPC model with the parallelism of commu-
nication.
With the GridRPC model, the parallelism of communication is limited to the sending of inputs

to a non-blocking task which is an asynchronous operation. With the SmartGridRPC model any
communication on one machine can be done in parallel with computation or communication on any
other. This asynchronous communication is only achievable since the dependencies among tasks
are known prior to the execution of the group due to the collective mapping.
This parallelism of communication can be advantageous if a task executing on one server has

a dependency on another task which will be executed on another server and the destination task
is not executed immediately after the source task. In this case, this communication can be done
asynchronously. This means that the server initiates the communication but does not wait for it
to finish. Therefore this communication can be done in parallel with any other computation or
any communication on any other machine (client or servers) which happens in the intervening
time.
In addition, this parallelism of communication can be beneficial if the client broadcasts an

argument to more than one task which are to be executed on different machines. If any of the tasks
are not executed immediately after the communication, then the communication to these tasks can
be done in parallel with any computation on the client machine and computation or communication
on any other server which happens in the intervening time. The same is true for server broadcast
communication.
This parallelism of communication reduces the overall impact that these communication trans-

actions have on the overall performance of the application.

2.5. Reduced memory usage and paging

The client machine is a real bottleneck of the GridRPCmodel as it needs to store all intermediate data
and communicate with all servers. A low-specification client machine can significantly deteriorate
the overall performance of GridRPC-based applications. The direct communication among servers
and the data caching that the SmartGridRPC model implements mean that intermediate results do
not have to be sent back and stored on the client. This minimizes the amount of memory used on
the client and the volume of communication necessary between the client and servers. Technically
speaking, this could eliminate paging on the client that would otherwise occur. This elimination
of paging would considerably increase the performance of an application. In terms of the overall
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Figure 1. Overview SmartGridRPC model and API.

design, this makes the performance of a SmartGridRPC application much less dependent on the
capacity of the client machine.

3. SMARTGRIDRPC PROGRAMMING MODEL AND API

The aim of the SmartGridRPC model is to enhance the GridRPC model by providing functionality
for collective mapping of a group of tasks on a fully connected network.
The SmartGridRPC programming model is designed so that when it is implemented it is inter-

operable with the existing GridRPC implementation (Figure 1). Therefore, if any middleware has
been upgraded to be made SmartGridRPC compliant, the application programmer has the option
whether their application is implemented for the SmartGridRPC model, where tasks are mapped
collectively onto a fully connected network or for the standard GridRPC model, where tasks are
mapped individually onto a client-server star network.
In addition, the SmartGridRPCmodel is designed so that when it is implemented it is incremental

to the GridRPC system. Therefore, if the SmartGridRPC model is installed only on the client side,
the system will be extended to allow for collective mapping. If the SmartGridRPCmodel is installed
on the client side and on only some of the servers in the network, the system will be extended to
allow for collective mapping on a partially connected network, where only SmartGridRPC-enabled
servers (SmartServers) can communicate directly. If it is installed on all servers, the system will be
extended to allow for collective mapping on the fully connected network.

3.1. SmartGridRPC: API and semantics

3.1.1. The grpc map() function

The grpc map() function of the SmartGridRPC API allows a user to specify a group of tasks that
should be mapped collectively on a fully connected network. The SmartGridRPC map function is
used for specifying the block of code, which consists of the group of GridRPC task calls that is to
be mapped collectively.
In addition, the application programmer specifies the mapping heuristic to implement by passing

it in as a parameter to the grpc map() function.

grpc_map(char * mapping_heuristic_name){
...
// group of tasks to map collectively
...

}
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The grpc map() ‘function’ is in fact a macro that inserts a while loop around the code block enclosed
by the parentheses. When the grpc map() function is called the code within the parentheses of the
function is iterated through twice and during these iterations the discovery, mapping and execution
of tasks are performed for all tasks collectively.

3.1.1.1. Discovery phase. On the first iteration through the group of tasks, the task graph for the
group of tasks and the performance model of the fully or partially connected network are discovered
and generated. During this first iteration, each GridRPC task call within parentheses is discovered
but not executed, hence all tasks in the group can be discovered collectively. This is different from
the GridRPC model, which only allows a single task to be discovered at any one time.
This allows for the discovery of the computation load, the communication load and the dependen-

cies of all tasks in the group, which is used to generate the task graph. The dependencies among tasks
are discovered by analyzing the pointer values of the input and output arguments. The computation
and communication loads are discovered using the parameters passed into the calling sequence of
the tasks and the performance models of the tasks. In addition during this phase, the performance
of the servers on the network, the performance of the client-server links and the performance of
links connecting SmartServers to other SmartServers are discovered. This information is used to
generate the performance model of the fully or partially connected network.
Possible implementations for generating the task graph and the network performance model are

described in Section 3.2.

3.1.1.2. Mapping phase. Based on the task graph and the performance models of the network, the
mapping heuristic produces a mapping solution, which satisfies a certain criterion, for example
minimizing the execution time of tasks. The mapping heuristic is specified by the application
programmer using the SmartGridRPC API.
There is an extensive number of possible mapping heuristics that could be implemented and

therefore they are not bound by the SmartGridRPC model. However, the SmartGridRPC framework
allows different mapping heuristics to be added and therefore provides an ideal framework for
testing and evaluating these mapping heuristics.
The mapping solution outlines a task-to-server mapping and also the communication operations

among tasks. These communication operations include:

• Client-server communication—which is standard GridRPC communication.
• Server-server communication—when the server sends a single argument to another server.
• Client broadcasting—when the client sends a single argument to multiple servers.
• Server broadcasting—when the server sends a single argument to multiple servers.
• Server caching—when the server stores an argument locally for future tasks.

As a result, the network may have:

• A fully connected topology—where all the servers are SmartServers, which can communicate
directly with each other.

• A partially connected topology—where only some of the servers are SmartServers, which can
communicate directly. The standard servers can only communicate with each other via the
client.
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• A star connected topology—where all servers are standard servers and they can only commu-
nicate with each other via the client.

3.1.1.3. Execution phase. The execution phase occurs on the second iteration through the group
of tasks. In this phase, each GridRPC call is executed according to the mapping solution generated
by the mapping heuristic on the previous iteration. The mapping solution not only outlines the
task-to-server mapping but also the remote communication operations among the tasks in the
group.

3.1.2. The grpc local() function

The SmartGridRPCmodel also requires a method for identifying the client code that has no influence
on the task graph and therefore should not be executed at the discovery phase. This can be achieved
using many possible approaches. For example, a preprocessor approach could be used to identify
the client code transparently. Where the client code cannot be automatically identified, we provide
a grpc local() function call, which the application programmer can use to explicitly specify client
computation.

grpc_map(char * mapping_heuristic_name){

//reset data objects which have been updated
// during the discovery phase

grpc_local(){
//code to ignore when generating task graph
}
...
// group of tasks to map collectively
...
}

The grpc local() function is used to specify the code block that should be ignored during the first
iteration through the scope of grpc map(). The function will return false during the task discovery
phase and true during the execution phase.
Thus, any segments of client code that are not part of the GridRPC API should be identified

using this function. There is one exception to this rule, when the client code directly affects any
aspect of the task graph. For example, if a data object is updated on the client that determines which
remote tasks get executed or determines the size of inputs/outputs of any task, then the operations
on this data object should not be enclosed by the grpc local() function. For example, this should be
considered if there are remote task calls within a while, for or if statement. Then local operations
on any data object that affects the results of these conditional statements should not be enclosed
in the grpc local() function. As a result these operations will be executed during the discovery
phase. If any data object is updated during the task discovery cycle it should be restored to its
original value before the execution cycle begins. If a data object that affects the results of these
conditional statements is updated remotely, then the grpc map() function should be placed inside
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the conditional statement. In that way, the number of tasks getting mapped is not affected by the
conditional statement.

3.2. Performance models

In the discovery phase, performance models are generated for estimating the execution time of the
group of tasks on the fully connected network. In the mapping phase, the performance models are
used by the mapping heuristic to generate a mapping solution for the group of tasks.
In the context of this paper, a performance model is any structure, function, parameter, tool etc.

which is used to estimate the execution time of tasks in the distributed environment. The job of
generating the performance models is divided among the different components of the GridRPC
architecture (i.e. client, server, and registry). In this paper, the registry is an abstract term for the
entity or entities, which stores information about the registered tasks and the underlying network.
Each component in the architecture may only be capable of constructing parts of the performance

model. Therefore, the registry accumulates these parts from the different components and generates
the required performance models.
There are numerous methods for implementing performance models, hence they are not specified

in the SmartGridRPC model. Examples of performance models are the ones currently implemented
in SmartGridSolve [5], which have extended the performance models used in GridSolve.
In the future, SmartGridSolve will implement performance models such as the Functional Perfor-

mance Model, described in [6,7]. Other possible implementations could include the Network
Weather Service [8], FAST (DIET) [4], the MDS directories (Globus, Ninf) [3], and the Historical
Trace Manager (GridSolve) [9]. Implementing these performance models under the SmartGridRPC
model would allow for collective discovery of the task graph for a group tasks and the discovery of
the performance model of the fully or partially connected network. The task graph and performance
model of the network are used by the mapping heuristics to estimate the execution time of the group
on the fully or partially connected network.
In general, in the SmartGridRPC model, the performance models are used to estimate:

• The execution time of a task on a server.
• The execution time of multiple tasks on a server and the effect the execution of each task has

on the other (perturbation).
• The communication time of sending inputs and outputs between client and server.
• The communication time of sending inputs and outputs among different servers.

The following paragraphs describe the programmingmodel of SmartGridRPC in the circumstance
where the performance models are generated on the registry and the group of tasks is mapped by
a mapping heuristic on the registry. However, the SmartGridRPC model could have an alternative
implementation. These performance models could be generated on the client and the group of tasks
could also be mapped by a mapping heuristic on the client. This may be a more suitable model
for systems, such as Ninf-G, which have no central daemon like the GridSolve Agent or the DIET
Global Agent.
The servers provide the part of the performance model that would facilitate the estimation of the

execution time of its available tasks on the underlying network. This partial model can either be
automatically generated by the server or has to be explicitly specified or both. The partial model
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will be referred to as the server PM. This part of the performance model is server specific such
as the performance of the server and its communication links and a partial model of its available
tasks.
As previously mentioned, the SmartGridRPCmodel does not specify how to implement the server

PM as there are many possible implementations. Exactly when the server PM is sent to the registry
is also not specified by the SmartGridRPC model as this would depend on the type of performance
model implemented. For example, the server PM could be sent to the registry upon registration and
then updated after a certain event has occurred (i.e. when the CPU load or communication load has
changed beyond a certain threshold) or when a certain time interval has elapsed. Alternatively, it
may be updated during the run-time of the application when actual running times of tasks are used
to build the performance model. Suffice it to say that the server PM is updated on the registry and
is stored there until it is required during the run-time of a client application.
The client also provides a part of the performance model that is sent to the registry during

the run-time of the client application. This will be referred to as the client PM. This part of
the performance model specifies the list of tasks in the group, their order, the dependencies
among tasks and the values of the scalar arguments in the calling sequences. This discovery
of the group of tasks is enabled by the grpc map() function, which is part of the Smart-
GridRPC API. In addition, the client PM also specifies the performance of the client-server
links.
At the end of the discovery phase, the client PM and the server PM are combined on the registry

to generate a task graph representation of the group of tasks and the performance model of the
fully or partially connected network. These are then used by the mapping heuristic to generate a
mapping solution for the group of tasks.

4. IRREGULAR ALGORITHMS

There are certain situations where the automatic task graph generation will not work. A typical
example is when a conditional construct exists that checks a value that cannot be known without
executing a remote task call. A technique to avoid this problem is to create the task graph from
a smaller block of code within the construct whereas the resulting group of tasks to be mapped
generates a less optimal execution. A comprehensive solution to this problem is to permit the
application programmer to explicitly specify a task graph that best represents the run-time execu-
tion of the irregular algorithm. As the application programmer usually has an in-depth knowledge
of the algorithm used inside his application, he can generate the most representative task graph
possible in the situation where the output of a remote task call can change the flow of execu-
tion. Therefore, a SmartGridRPC middleware that uses an explicitly generated representative task
graph can achieve high performance also for applications with irregular algorithms. This permits
any type of scientific distributed application to obtain high performance using a GridRPC-based
programming system. A common method to directly specify a task graph-like structure is to
use a specific high level language.
The Algorithm Definition Language (ADL) was designed as a tool to help an application

programmer to easily specify a task graph for all kinds of algorithms [10]. It is demonstrated in
[10] that ADL in conjunction with the SmartGridRPC model improves the performance of the
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example applications, that comprise irregular algorithms, over the individual use of SmartGridRPC
and GridRPC.

5. EXPERIMENTAL COMPARISON OF THE SMARTGRIDRPC AND GRIDRPC

Snavely et al. [11] identify a trend of the types of scientific applications that may benefit from Grid
computing. They classified Grid applications in four large groups by comparing the difference in the
computation of the tasks, the amount of memory and data used and the inter-task communications
required. The first class defined (class I) contains applications that are embarrassingly parallel in
nature. These applications can be divided into many tasks where there are no data dependencies
among them. Thus, these tasks can easily run simultaneously on many systems of the Grid envi-
ronment. The applications of second class (class II) compute continuous streams of data. Thus,
they are called pipeline or stream applications. The tasks that compose an application of this class
are data intensive and, while there is parallelism between them, there are minimal data depen-
dencies between tasks. Class III applications have tasks with a high level of data synchronization
between them. Thus, data dependencies and inter-task communication have an important impact
on the performance and possible task parallelism of the application. The applications of this class
are called tightly synchronized applications. Finally, class IV contains applications that perform
data-related workloads, such as search or distributed database applications. The tasks employed by
these applications are usually not computational and memory intensive.
Classes I and II of distributed scientific applications are ideal to get top performance in a

distributed environment and therefore in a Grid environment. This happens since their tasks have
high computation and minimal data dependencies and they can be easily executed in parallel on
many different remote systems. In fact, these two classes of applications are still mainly developed
and executed using batch management systems specific for Grid computing (e.g. Condor-G [12]) or
Grid middlewares specific for stream processing (e.g. gLite [13]). On the other hand, the class III
group is more important since it contains a large amount of scientific applications that are largely
used and that are difficult to execute in a distributed environment, for example climate, astrophysics,
aerodynamic, and molecular simulations.
High performance is an important design objective of the GridRPC model, since its target users

are computational scientists. If we consider that many available systems for Grid computing are
highly specialized in executing class I and II applications and are already widely used, the main aim
of GridRPC must be to achieve high performance in the execution of class III distributed scientific
applications.
This is the only way that GridRPC will attract interest from a large number of scientific users,

since an easy to use and easy to develop paradigm that obtains high performance for such appli-
cations in Grid computing is still missing. The main problem of GridRPC is that there has been
no comprehensive performance analysis showing its potential and limitations for executing task
parallel tightly synchronized applications. The overwhelming majority of applications chosen, or
artificially created, to demonstrate the performance of GridRPC middlewares are of class I and II.
We believe that to justify the use of GridRPC, we should not use an extremely suitable application

to demonstrate the performance potential of GridRPC systems but a real-life application of class III
that shows the eventual limits and benefits of the GridRPCmiddleware tested.We propose Hydropad
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[14,15], a real-life astrophysical application, to be used as a tool for experimental performance
evaluation of GridRPC and SmartGridRPC models. This application is composed of tasks that have
a balanced ratio between computation and communication with a high level of data synchronization
between them. Therefore, this application can be classified as class III.
The Hydropad application simulates the evolution of clusters of galaxies in the Universe.

Hydropad requires high processing resources because it has to simulate an area comparable with
the dimensions of the Universe.
The cosmological model, which this application is based on, assumes that the Universe is

composed of two different kinds of matter. The first is baryonic matter, which is directly observed
and forms all bright objects. The second is dark matter, which is theorized to account for most
of the gravitational mass in the Universe. The evolution of this system can only be described by
treating both components at the same time, looking at all of their internal processes, while their
mutual interaction is regulated by a gravitational component.
An important characteristic of Hydropad is the difference in the computational and memory

load of its tasks. The computational load of the baryonic matter component is far greater than the
dark matter, Cbm�Cdm, when the number of particles is equal to the number of cells in the grid,
Np =Ng . Furthermore, the quantity of data used by the dark matter computation is much greater
than the baryonic matter, Ddm�Dbm.
Hydropad was executed using GridSolve in order to evaluate middleware systems that imple-

ment the GridRPC model and SmartGridSolve in order to evaluate systems that implement the
SmartGridRPC model.

5.1. GridRPC implementation of Hydropad

Table I outlines the GridRPC implementation of the main loop of Hydropad that simulates the
evolution of the Universe. At each iteration of the loop, the first grpc call() results in the gravitational
task being mapped and then executed. When this task is completed, the client proceeds to the next
call, which is a non-blocking call of the dark matter task. This call returns after the task is mapped
and its execution is initiated. Then, the baryonic matter call is executed in the same way. Therefore,
the baryonic and dark matter tasks are executed in parallel. After this, the client waits for the outputs
of both these parallel tasks using the grpc wait() calls.

5.2. SmartGridRPC implementation of Hydropad

The code in Table II shows themodifications required to implementHydropad for the SmartGridRPC
model. In Table II, the grpc map() and grpc local() functions have been added to the GridRPC
code in Table I to make Hydropad SmartGridRPC enabled.
On the first iteration through the map block, each task is discovered. The specified mapping

heuristic, in this case the greedy mapping heuristic, generates a mapping solution for this group of
tasks. On the second iteration through the group of tasks the group is executed according to the
mapping solutions generated.
The grpc local() function is used by the application programmer to identify code that should not

be executed during the discovery phase. Any local computations that do not affect the generation
of the task should be encapsulated by the grpc local(). This prevents the encapsulated code being
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Table I. Hydropad implementation in GridRPC.

while(t sim<t total){
grpc call(grav hndl, phiold, . . .);
if(t sim=0){

grpc call(intvel hndl, phi, . . .);
}
grpc call async(dark hndl,&sid dark,xl, . . .);
grpc call async(bary hndl,&sid bary,n, . . .);
/* wait for non blocking calls */
grpc wait (sid dark);
grpc wait(sid bary);
print info (xl, n,...);
t sim+=t step;

}

Table II. Hydropad implementation in SmartGridRPC.

t sim old=t sim;
grpc map(”greedy map”){

t sim=t sim old;
while(t sim<t total){

grpc call(grav hndl, phiold, . . .);
if(t sim=0){

grpc call(intvel hndl, phi, . . .);
}
grpc call async(dark hndl,&sid dark,xl, . . .);
grpc call async(bary hndl,&sid bary,n, . . .);
/∗waitfornonblockingcalls∗/
grpc wait(sid dark);
grpc wait(sid bary);
grpc local(){

print info(xl,n, ..);
}
t sim+=t step;

}
}

executed during the discovery phase, which happens during the first iteration through the group
of tasks.
However, if a local computation directly affects the task graph , then the grpc local() function

should not be used. This would be the case if a local computation affects whether certain remote
tasks get executed or affects the size of the computation of tasks. For example, in Table II the t sim
is updated within the scope of the grpc map function and determines the number of remote tasks
that will be executed.
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Figure 2. Task graph for two evolution steps.

Local operations on the t sim variable are therefore not enclosed by the grpc local() function. In
addition this variable is reset to its original value at the beginning of the scope of the grpc map()
function. This is required as all data objects updated during the discovery phase must be reset to
their original values before the beginning of the execution phase.
Once the discovery phase is completed, a task graph is generated. Figure 2 is a task graph

generated for only two cycles of the evolution step. The mapping heuristic then generates a mapping
solution based on this task graph and the performance model of the network. On the second iteration,
during the execution phase all the code in grpc map() function is executed normally (i.e. the local
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Table III. Dynamically specify the size of the group of mapped tasks.

while(t sim<t total){
t sim old=t sim;
grpc map(”greedy map”){

t sim=t sim old;
for(i=0;(i<nb evol)&(t sim<t total);i++){

grpc call(grav hndl,phiold, . . .);
if(t sim==D){

grpc call(intvel hndl,phi, . . .);
}
grpc call async(dark hndl,&sid dark,xl, . . .);
grpc call async(bary hndl,&sid bary,n, . . .);
/∗ waitfornonblockingcalls ∗/
grpc wait(sid dark);
grpc wait(sid bary);
grpc local(){

print info(xl,n, . . .);
}
t sim+=t step;

}
grpc local(){

end time=get time();
exec time=start time−end time;
nb evol=calc nb evol(exec time,nb evol,prev evol times);
start time=get time();

}
}

}

computation is also executed) and remote tasks and remote communication transactions are executed
according to the mapping solution generated.
The mapping in the code of Table II is performed for all iterations of the main while loop.

This type of coarse mapping would be more favorable on a highly stable distributed environment,
for example a distributed environment that consisted of dedicated servers or servers that are idle.
However, Grids are usually dynamic in nature, consisting of machines that are not dedicated to
a single application and therefore it may be more favorable to generate more frequent mapping
solutions. To generate more frequent mapping solutions in Table II, the grpc map could be placed
inside the while loop. This would generate a mapping solution for each evolution step.
Furthermore, since Grids are usually dynamic in nature it may be favorable to make the frequency

inwhichmapping solutions are generatedmore dynamically adaptive. In Table III, the value assigned
to the variable nb evol indicates how many evolution steps should be mapped collectively at the
next point of execution of the application. This value can be fine-tuned during the execution of
the application to determine the optimal number of evolutions to map collectively at the various
stages of the execution of the application. In this example, the value for nb evol is updated and fine-
tuned using an evaluation function. In this example, we use calc nb evol() function to dynamically
determine the number of evolution steps to map collectively after each mapping solution is executed.

Copyright q 2010 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2010)
DOI: 10.1002/cpe



SMARTGRIDRPC FOR HIGH PERFORMANCE GRID COMPUTING

This function changes the value of the variable nb steps based on an evaluation of the performances
of previous executions of collectivemappings. However, this is just given as an example of a possible
implementation as there are many conceivable implementations of this type of evaluation function.

6. EXPERIMENTAL RESULTS

In the experiments performed in this section, we use three different implementations of Hydropad:
the original sequential implementation, a GridSolve and a SmartGridSolve implementation. For each
implementation, we present the average computation time of one evolution step of the Hydropad
application. The average time is calculated from five separate executions. In the SmartGridSolve
version the ten evolution cycles are mapped collectively. A more comprehensive analysis of the
time spent on communication/computation/paging is given in [16].
The hardware configuration used in the experiments consists of three machines: a client and

two remote servers, S1 and S2. The two servers are heterogeneous. However, they have similar
performance, 498 and 531 MFlops, respectively, and they have equal amount of main memory,
1GB each. The bandwidth of the communication link between the two servers is 1Gb/s. The
client machine, C, is a computer with low hardware specifications, 248MFlop of performance.
The experiments were conducted for two different hardware setups, where the client-server link
speed and the client memory size were varied. In the first configuration setup (C100-256), the
client-server link is 100Mb/s and the client memory size is 256MB. In the second configuration
setup (C1-1), the client-server link is 1Gb/S and the memory size is 1GB. For each experimental
setup, the evolution steps were calculated for increasing number of simulated particles. In these
experiments, the amount of memory required to run the application (data or problem size), increases
proportionally with the number of particles simulated.
In Section 6.1, we compare the local sequential, the GridSolve and the SmartGridSolve imple-

mentation of Hydropad executed on the low-specification client machine. Then in Section 6.2 we
compare the local sequential, the GridSolve and the SmartGridSolve implementation of Hydropad
executed on high-specification client machine. Finally, in Section 6.3 we compare the performance
of the GridSolve and SmartGridSolve implementations on both configuration setups.

6.1. Experiments with the low-specification client machine

Figure 3 shows the results obtained by the local, GridSolve and SmartGridSolve implementations
of Hydropad when the client machine has a slow client-to-servers connection of 100Mb/s and only
256MB of memory available. This hardware configuration simulates a common situation that can
happen in real life. A user has access only to a slow client machine with low hardware specification,
which is not suitable to perform large simulations, and wants to use a powerful Grid environment
through a relatively slow network link.
When the local sequential implementation of Hydropad was run, paging occurred when the

problem size was equal to or greater than the main memory on the client machine which was
256MB.
The GridSolve implementation is slower than the local computation when the client machine is

not paging. This happens because there is a large amount of data communication among tasks. So for
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Figure 3. Evolution time step on the low-specification client machine.

this configuration, the time gained by executing the computation in parallel on faster remote servers
does not compensate for the time sent communicating the data to those servers. However when the
problem size passes 256MB, the speedup of GridSolve over the local implementation increases
due to the increased paging on the client during the execution of the local implementation. This
speedup is achieved despite the slow communication links between the client and server machines.
Figure 3 also shows that the SmartGridSolve implementation is much faster than the GridSolve

and the local sequential implementation. The speedup is around four times that of GridSolve
and the speedup versus the local sequential implementation is nearly six in the case of larger
problems. These performance improvements are due to the key features of the SmartGridRPC
model: improved balancing of computation load, reduced volume of communication, improved
balancing of communication load, increased parallelism of communication and reduced memory
usage on the client.
SmartGridSolve improved the mapping by improving the load balancing of computation of bary-

onic matter and dark matter tasks. The baryonic task is computationally far larger than the dark
matter,Cbm�Cdm.When a GridRPC systemmaps these two tasks, it does so without the knowledge
that they are a part of a group to be executed in parallel. Its only goal is to minimize the execu-
tion time of an individual task as it is called by the application. If the smaller dark matter task
is called first, it will be mapped to the fastest available server (S2). With the fastest server occupied,
the larger baryonic task will then be mapped to a slower server (S1) and the overall execution time
of the group of tasks will be sub-optimal.
In the SmartGridSolve implementation because the computation load of all tasks in the group

were considered collectively as a group, the baryonic matter task was assigned to the faster server
(S2) and to baryonic matter the slower server (S1). This improves the load balancing of computation
and the execution of both tasks executing in parallel will be decreased. Secondly whenever there
were dependencies among tasks that reside on different servers, this dependency was mapped onto
the link connecting the source server to the destination server. This eliminates bridge communication
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and reduces the overall volume of communication on the network and on the client-server links.
Whenever there were dependencies among tasks that reside on the same server the output was
cached to the local file system and retrieved from the file system by the subsequent destination
task. This further decreases the overall volume of communication and increases the performance of
the application. In addition, all remote communication and caching was performed asynchronously,
hence whenever it can be done in parallel with other computation or communication in the group,
these operations were overlapped. Furthermore, since intermediate data are not sent back to the client
and temporarily stored there, this decreases the amount of memory used on the client and would
eliminate paging that would otherwise occur. This significantly increases the performance of Smart-
GridSolve over GridSolve when the GridSolve implementation begins to page at around 310MB.

6.2. Experiments with the high-specification client machine

Figure 4 shows the results obtained by the local sequential, the GridSolve and the SmartGridSolve
implementations of Hydropad on the second network configuration where the client machine has a
fast network connection and a large quantity of memory.
One can see that the GridSolve implementation is faster than the local sequential computation.

The speedup obtained is over 1.50 for all problem sizes. As the communication links are faster,
the speedup due to the parallel execution of the two tasks on faster remote machines is increased
compared with the experiments on the low-specification client machine. The fluctuation in speedup
obtained by GridSolve depends on the varying ratio of the data size used by the two parallel tasks
for different problem sizes.
For the GridSolve implementation, the paging again occurs later than for the local implemen-

tation, when the problem size is around 310MB, whereas paging occurs at 256MB in the local
implementation. The GridRPC implementation can save memory due to the temporary data allocated
remotely in the tasks and consequently increasing the problem size will not cause the significant
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Figure 4. Evolution time on the high-specification client machine.
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paging that happens during the execution of the location implementation. Furthermore, in the local
sequential execution, the paging takes place during a local task computation, whereas for the Grid-
Solve implementation the paging occurs during a remote task data communication. Hence, for
the GridSolve implementation of Hydropad, the remote paging on the server machines does not
negatively affect the execution time of the application.
The speedup of SmartGridSolve over GridSolve in Figure 3 is not as significant as the first

configuration shown in Figure 4. This is because the penalty for bridge communication in the
GridSolve implementation is not as severe as when the client-server links are fast in this case. In
addition the penalty for temporary allocation of intermediate data on the client is not as severe as
there is 1GB of memory capacity on the client. Thus in this case, the client will not page in the
GridSolve implementation of Hydropad. However, SmartGridSolve still achieves over two times
speedup over GridSolve.

6.3. GridSolve vs SmartGridSolve: influence of the client machine on the performance

The new features of SmartGridRPC also have a secondary benefit. In these experiments, SmartGrid-
Solve implementation obtains similar results for both configurations when the client memory and the
client-to-server link are largely different. Consequently, the hardware configuration of the client has
less impact on the application performance than in the case of GridRPC. Figure 5 shows this trend.

Figure 5. Execution times of the GridSolve and SmartGridSolve implementation of Hydropad when the client
machines are C1-1 and C100-256.
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It is possible to see that in the case of GridSolve the performance changes dramatically depending
on the hardware used whereas for SmartGridSolve the performance is similar. This is because the
SmartGridSolve implementation is less dependent on the performance of the client-server links and
the memory capacity on the client.
Additionally this shows that the SmartGridSolve implementation is more scalable than the Grid-

Solve implementation. This is because the major limitation when scaling up applications is the
client-server bottleneck. Typically, the more an application is scaled up the more the client-server
links will be used and the larger the amount of memory capacity that will be required on the client to
store the intermediate data. But this is not the case with the SmartGridRPCmodel, where even when
the problem size increases, the performance of the SmartGridSolve implementation remains linear.
However, in the GridSolve implementation the performance degrades at an increasing rate due to
the client-server links being heavily loaded and paging occurring on the client. These experiments
show that the SmartGridRPC model is a more scalable solution than the GridRPC model.

7. RELATED WORK

A significant body of research has been done in the area of workflow management systems in Grid
computing [17–21]. In addition, the inspector-executor [22,23] approach for run-time parallelization
has some similarities to the application discovery of the SmartGridRPC model. However, little has
been done in the area of workflow management and application discovery in the context of the
GridRPC programming model.
In DIET, which is a GridRPC-basedmiddleware, a special agent calledMADAGwas implemented

to handle workflow submissions [24]. However, the task graph was not automatically discovered
and had to be explicitly specified in an XML file. This approach of using XML files to handle task
graph submissions is similar to the approach of SmartNetSolve [25] which was the predecessor of
SmartGridSolve. In addition, the DIET approach does not adhere to the GridRPC model as the task
graph submission is done instead of executing RPC calls.
In GridSolve, distributed task sequencing was developed for the GridRPCmodel [26]. This allows

data dependencies to be discovered among a set of tasks and whenever data dependencies exist
the data are sent directly among servers executing those tasks. However, the SmartGridRPC model
provides the advantage of also determining the computation and communication loads of tasks in the
group by using the performance models described in Section 3.2. Consequently, the SmartGridRPC
model can achieve improved optimization as it has a more comprehensive representation of the
group of tasks.
The original design of SmartGridRPC was inspired by the mpC [27] and HeteroMPI [28]

programming systems for heterogeneous parallel computing based on the optimal mapping of the
implemented parallel algorithm on the executing heterogeneous platform.

8. CONCLUSION

In this paper, we have presented the SmartGridRPC model, which is an extension to the GridRPC
model that aims to achieve higher performance.
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Using the Hydropad application for performance analysis, it was shown that the SmartGridRPC
model reduces the influence that the client machine and the client links have on the performance of
the executing application. This removes the client machine as the major bottleneck when executing
GridRPC applications. In summary, the experimental results have shown that the SmartGridRPC
model can increase the performance of an application by:

• Improving the load balancing of computation;
• Improving the load balancing of communication;
• Reducing the overall volume of communication;
• Parallelizing communication;
• Reducing memory usage on the client (reduce paging).
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