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SUMMARY

Over the past decade the number of processors used in high performance computing has increased to
hundreds of thousands. As a direct consequence, and while the computational power follows the trend,
the mean time between failures (MTBF) has suffered and is now being counted in hours. In order to
circumvent this limitation, a number of fault tolerant algorithms as well as execution environments have
been developed using the message passing paradigm. Among them, message logging has been proved to
achieve a better overall performance when the MTBF is low, mainly due to a faster failure recovery.
However, message logging suffers from a high overhead when no failure occurs. Therefore, in this paper
we discuss a refinement of the message logging model intended to improve failure free message logging
performance. The proposed approach simultaneously removes useless memory copies and reduces the
number of logged events. We present the implementation of a pessimistic message logging protocol in Open
MPI and compare it with the previous reference implementation MPICH-V2. Results outline a several order
of magnitude improvement on performance and a zero overhead for most messages.

KEY WORDS: High Performance Computing, Fault Tolerance, Message Logging, Uncoordinated Checkpoint

1. Introduction

The Top500 list, the list of the 500 most powerful supercomputers in the world, highlights a
constant increase in the number of processors. An attentive reading shows that the top 10 of these
supercomputers contain several thousands of processor each. Despite a more careful design of the
components in these supercomputers, the increase in the number of components directly affects
the reliability of these systems. Moreover, the remaining systems in the Top500 list are built using
commodity components, which greatly affects their reliability. While the Mean Time Between Failures
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(MTBF) on the BlueGene/L [18] is counted in days, the commodity clusters exhibit a usual MTBF
of tens of hours. With a further expected increase in the number of processors in the next generation
supercomputers, one might deduct that the probability of failures will continue to increase, leading to
a drastic decrease in reliability.

Fault tolerant algorithms have a long history of research. Only recently, since the practical issue has
been raising, High Performance Computing (HPC) software has been adapted to deal with failures. As
most HPC applications are using the Message Passing Interface (MPI) [19] to manage data transfers,
introducing failure recovery features inside the MPI library automatically benefits a large range of
applications. One of the most popular automatic fault tolerant technique, coordinating checkpoint,
builds a consistent recovery set [12, 15]. As today’s HPC users are facing occasional failures, they
have not suffered from the slow recovery procedure, involving restarting all the computing nodes even
when only one has failed. Considering future systems will endure higher fault frequency, recovery
time could become another gap between the peak performance of the architecture and the effective
performance users can actually harvest from the system.

Because message logging does not rely on such coordination, it is able to recover faster from
failures. From previous results [12], it is expected that a typical application makespan will be better
than coordinated checkpoint when the MTBF is less than 9 hours while coordinated checkpoint will
not be able to progress anymore for a MTBF less than 3 hours. Still, message logging suffers from
a high overhead on communication performance. Moreover, the better the latency and bandwidth
offered by newer high performance networks, the higher the relative overhead. Those drawbacks needs
to be addressed to provide a resilient and fast fault tolerant MPI library to the HPC community. In
this paper we propose a refinement of the classical model of message logging, closer to the reality
of high performance network interface cards, where message receptions are decomposed in multiple
dependent events. We better categorize message events allowing 1) the suppression of intermediate
message copies on high performance networks and 2) the identification of deterministic and non-
deterministic events, thus reducing the overall number of messages requiring latency disturbing
management. We demonstrate how this refinement can be used to reduce the fault free overhead of
message logging protocols by implementing it in Open MPI [9]. Its performance is compared with the
previous reference implementation of message logging MPICH-V2. Results outline a several orders
of magnitude improvement of the fault free performance of pessimistic message logging and a drastic
reduction in the overall number of logged events.

The rest of this paper is organized as follows: in the next section we recall classical message logging
and then depict the modifications we introduce to better fit HPC networks. In the third section we depict
the implementation issues of the prototype in Open MPI. The fourth section presents experimental
evaluation, followed by related work and the conclusion.

2. Message Logging

2.1. Classical Message Logging

Message logging is usually depicted using the more general model of message passing distributed
systems. Communications between processes are considered explicit: processes explicitly request
sending and receiving messages, and a message is considered as delivered only when the receive
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operation associated with the data movement completes. Additionally, from the perspective of the
application each communication channel is FIFO, but there is no particular order on messages traveling
along different channels. The execution model is pseudo-synchronous: there is no global shared clock
among processes but there is some (potentially unknown) maximum propagation delay of messages
in the network. An intuitive interpretation is to say the system is asynchronous and there is some
eventually reliable failure detector.

Failures can affect both the processes and the network. Usually, network failures are managed by
some CRC and message reemission provided by the hardware or low level software stack and do not
need to be considered in the model. We consider that processes endure definitive crash failures, where
a failed process stops sending any message.

Events Each computational or communication step of a process is an event. An execution is an
alternate sequence of events and process states, with the effect of an event on the preceding state
leading the process to the new state. As the system is basically asynchronous, there is no direct time
relationship between events occurring on different processes. However, Lamport defines a causal partial
ordering between events with the happened before relationship [11]. It is noted e ≺ f when event f is
causally influenced by e.

These events can be classified into two categories: deterministic and non-deterministic. An event
is deterministic when, from the current state, there is only one outcome state for this event. On the
contrary, if an event can result in several different states depending on its outcome, then it is non-
deterministic. Examples of deterministic events are internal computations and message emissions,
which follow the code-flow. Examples of non-deterministic events are message receptions, which
depend on time constraints of message deliveries.

Checkpoints and Inconsistent States Checkpoints (i.e., complete images of the process memory
space) are used to recover from failures. The recovery line is the configuration of the application
after some processes have been reloaded from checkpoints. Unfortunately, checkpointing a distributed
application is not as simple as storing each single process image without any coordination, as illustrated
by the example execution of Figure 1. When process P1 fails, it rolls back to checkpoint C1

1 . Messages
from the past crossing the recovery line (m3,m4) are in transit messages: the restarted process will
requests their reception while the source process never sends them again, thus it is needed to save
these messages. Messages from the future crossing the recovery line (m5) are orphan: following the
Lamport relationship, current state of P0 depends on reception of m5 and by transitivity on any event
that occurred on P1 since C1

1 (e3, e4, e5). Since the channels between P0 and P1 and between P2 and
P1 are asynchronous, the reception of m3 and m4 could occur in a different order during re-execution,
leading to a recovered state of P1 that diverges from the initial execution. As the current state of P0

depends on states that P1 could never reach anymore, the overall state of the parallel application after
the recovery could be inconsistent. Checkpoints leading to an inconsistent state are useless and must be
discarded; in the worst case, all checkpoints are useless and the computation may have to be restarted
from the beginning.

Recovery In event logging, processes are considered as Piecewise deterministic: only sparse non-
deterministic events occur, separating large parts of deterministic computation. Considering that non-
deterministic events are committed during the initial execution into some safe repository, a recovering
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Figure 1. Example execution of a distributed system with checkpoints and inconsistent recovery line.

process is able to replay exactly the same order for all non-deterministic events. Therefore, it is able
to reach exactly the same state as before the failure. Furthermore, message logging considers the
network as the only source of non-determinism and only logs the relative ordering of message from
different senders (e3, e4 in fig. 1). The sufficient condition ensuring a successful recovery requires that
a process must never depend on an unlogged event from another process. As the only way to create a
dependency between processes is to send a message, all non-deterministic events occurring between
two consecutive sends can be merged and committed together.

Event logging only saves events in the remote repository, without storing the message payload.
However, when a process is recovering, it needs to replay any reception that happened between
last checkpoint and the failure and therefore requires the payload of those messages (m3,m4 in
fig.1). During normal operation, every outgoing message is saved in the sender’s volatile memory:
a mechanism called sender-based message logging. This allows for the surviving processes to serve
past messages to recovering processes on demand, without rolling back. Unlike events, sender-based
data do not require stable or synchronous storage. Should a process holding useful sender-based data
crash, the recovery procedure of this process replays every outgoing send and thus rebuilds the missing
messages.

2.2. Non-blocking Communications

To reach top performance, the MPI standard defines a more sophisticated set of communication routines
than simple blocking send and receive. One of the most important optimizations for a high throughput
communication library is zero copy, the ability to send and receive directly in the application’s user-
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Figure 2. Steps in a zero copy MPI receive operation

space buffer without intermediary memory copies. Figure 2 shows the basic steps of non-blocking zero
copy communications in MPI. First the application requests a message to be received, specifying the
message source, tag and reception buffer. When a message arrives from the network, the source and
the tag are compared to the pending requests. If the message does not match any pending request it is
copied in a temporary buffer (m1 is tagged tagB and all pending requests want tagA) until a matching
request is posted by the application. If the message matches a pending request like m3 and m4 it is
directly written in the receive buffer without intermediate copy. Because requests can be ANY SOURCE
the result of the matching may depend on the order of reception of the first fragment of the message
(if m2 had arrived earlier it would have been delivered in buffer1). The next step for the application
might be to probe for message delivery readiness. The result of those probe functions may depend on
the message transfer termination time, but is not related to the matching order (m3 is matched first but
lasts longer than m2).

Because the classical message logging model assumes the message reception is a single atomic
event, it cannot catch the complexity of zero copy MPI communications involving distinct matching
and delivery events. As an example in MPICH, only the lowest blocking point-to-point transport layer
called the device matches the classical model, explaining why previous state of the art message logging
implementations, such as MPICH-V, replaces the low level device with the ch v fault tolerant one
(see Figure 3(a)). This device has adequate properties regarding the hypothesis of message logging:
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1) messages are delivered in one single atomic step to the application (though message interleave is
allowed inside the ch v device), 2) intermediate copies are made for every message to fulfill this
atomic delivery requirement, and the matching needs to be done at delivery time, 3) as the message
logging mechanism replaces the regular low level device, it cannot easily benefit from zero copy
and OS bypass features of modern network cards and 4) because it is not possible to distinguish the
deterministic events at this software level, every message generates an event (which is obviously useless
for deterministic receptions). We will show in the performance analysis section how these strong model
requirements lead to dramatical performance overhead in an MPI implementation when considering
high performance interconnects.

2.3. Refinements for Zero Copy Messages

By relaxing the strong model described previously, it is possible to interpose the event logging
mechanism inside the MPI library. Then it is only necessary to log the communication events at the
library level and the expensive events generated by the lower network layer can be completely ignored.
This requires consideration of the particularity of the internal MPI library events, but allows to use the
optimized network layers provided by the implementation. The remainder of this section describes this
improved model.

Network Events From the lower layer come the packet related events: let m denote a message
transferred in length(m) network packets. We note that ri

m equals the ith packet of message m,
where 1 ≤ i ≤ length(m). Because the network is considered reliable and FIFO, we have
∀1 ≤ i ≤ length(m) − 1, ri

m ≺ ri+1
m . We denote tag(m) the tag of message m and src(m) its

emitter. Packets are received atomically from the network layer.

Application Events From the upper layer comes the application related events. We note that
Post(tag, source) is a reception post, Probe(tag, source) is the event of checking the presence of
a message, and Wait(n, {R}) is the event of waiting n completions of the request identifier set {R}.
Because the application is considered piecewise deterministic, we can assign a totally ordered sequence
of identifiers to upper layer events. Let r0 be a request identifier obtained by the Post0(tag0, source0)
event. Since posting is the only way to obtain a request identifier, if r0 ∈ {R}, Post0(tag0, source0)
≺ Wait0(n, {R}). There is at most one event Post per message and at least one Wait event per
message. If r1

m0
≺ Probe0(tag0, source0) ≺ Post0(tag0, source0), then Probe0(tag0, source0)

must return true. Otherwise, it must return false. The main difference between Probe and Post is
that in case r1

m0
precedes one of these events, Probe0(tag0, source0) will not discard r1

m0
, while

Post0(tag0, source0) will always do so.

Library Events The library events are the result of the combination of a network-layer event and an
application-layer event. There are two categories of library events: 1) Matching (denoted by M ) and
2) Completing (denoted by C). Matching binds a network communication with a message reception
request; Completing checks the internal state of the communication library to determine the state of a
message (completed or not).
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Figure 3. Comparison between the MPICH and the Open MPI architecture and the interposition level of fault
tolerance (fault tolerant components are dashed)

1) To build a Matching event from a reception event and a Post event, we define a reception-
matching pair of events: r1

m and Post0(tag0, source0) match for reception if and only if
(source0 = src(m) ∨ source0 = ANY ) ∧ (tag0 = tag(m) ∨ tag0 = ANY ). The Matching
event built from the reception-matching events is causally dependent from the two elements of
the matching pair: Post0(tag0, source0) ≺ M0 and r1

m ≺ M0. The reception-matching pair is
determinist if and only if source0 6= ANY . Additionally, based on the same rules, we can build
a Matching from a Probe event and a reception event. In this case, the result of the Matching M0

is successful if and only if r1
m ≺ Probe0(tag0, source0). Otherwise, the Matching event takes

a special value (undefined source). Because the order between r1
m and Probe0(tag0, source0)

is non-deterministic, all probe-matching pair events are non-deterministic.
2) Similarly, to build a Completing event from a reception event and a Wait event, we define a

completion-matching pair of events: r
length(m)
m and Wait(n, {R}) match for completion if

and only if there is a matching event M0 built from r1
m containing the request identifier r0

and r0 ∈ {R}. The Completing event built from the completion-matching events is causally
dependent on the two elements of the matching pair: Wait(n, {R}) ≺ C0 and r

length(m)
m ≺ C0.

All the ri
m events are non-deterministic per definition. Thus, every Wait(n, {R}) event is non-

deterministic, because the result of these events depends upon the internal state of the library,
which depends upon the r

length(m)
m events. However, according to the matching and completion

rules, if r
length(m)
m and Wait(n, {R}) is a completion-matching pair, the Completing event

built is deterministic if and only if n0 = |R0| (case of Wait, WaitAll, Recv).

Although the refinement introduces many new events, most of them are not necessarily logged,
since they are deterministic. Only non-deterministic events (non-deterministic Matching due to ANY
sources; non-deterministic Matching due to probe-matching events; non-deterministic completion
due to WaitSome, WaitAny, TestAll, Test, TestAny and TestSome) are logged and introduce a
synchronization with the event logger.
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8 A. BOUTEILLER, G. BOSILCA, J. DONGARRA

3. Implementation in Open MPI
3.1. Generic Fault Tolerant Layer

The Open MPI architecture is a typical example of the new generation MPI implementations.
Figure 3(b) summarizes the Open MPI software stack dedicated to MPI communications. Regular
components are summarized with plain lines, while the new fault tolerant components are dashed. At
the lowest level, the BTL expose a set of communication primitives appropriate for both send/receive
and RDMA interfaces. A BTL is MPI semantics agnostic; it simply moves a sequence of bytes
(potentially non-contiguous) across the underlying transport. Multiple BTLs might be in use at the
same time to strip data across multiple networks. The PML implements all logic for point-to-point
MPI semantics including standard, buffered, ready, and synchronous communication modes. MPI
message transfers are scheduled by the PML based on a specific policy according to short and long
protocol, as well as using control messages (ACK/NACK/MATCH). Additionally, the PML is in
charge of providing the MPI matching logic as well as reordering the out-of-order fragments. All
remaining MPI functions, including some collective communications, are built on top of the PML
interface. While in the current implementation of the fault tolerant components only point-to-point
based collectives are supported, we plan to support, in the near future, other forms of collective
communication implementations (such as hardware based collectives).

In order to integrate the fault tolerance capabilities in Open MPI, we added one new class of
components, the Vprotocol (dashed in the figure 3(b)). A Vprotocol component is a parasite
enveloping the default PML. Each is an implementation of a particular fault tolerant algorithm; its goal
is not to manage actual communications but to extend the PML with message logging features. As
all of the Open MPI components, the Vprotocol module is loaded at runtime on user’s request and
replaces some of the interface functions of the PML with its own. Once it has logged or modified the
communication requests according to the needs of the fault tolerant algorithm, it calls the real PML
to perform the actual communications. This modular design has several advantages compared to the
MPICH-V architecture: 1) it does not modify any core Open MPI component, regular PML message
scheduling and device optimized BTL can be used, 2) expressing a particular fault tolerant protocol is
easy, it is only focused on reacting to some events, not handling communications and 3) the best suited
fault tolerant component can be selected at run time.

3.2. Pessimistic Message Logging Implementation

The Vprotocol pessimist is the implementation based on our refined model. It provides four
main functionalities: sender-based message logging, remote event storage, any source reception event
logging, and non-deterministic delivery event logging. Each process has a local Lamport clock, used
to mark events; during Send, iSend, Recv, iRecv and Start, every request receives the clock stamp as a
unique identifier.

Sender-Based Logging The improvements we propose to the original model still rely on a sender-
based message payload logging mechanism. We integrated the sender-based logging to the data-type
engine of Open MPI. The data-type engine is in charge of packing (maybe non-contiguous) data into
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REDESIGNING THE MESSAGE LOGGING MODEL FOR HIGH PERFORMANCE 9

a flat format suitable for the receiver’s architecture. Each time a fragment of the message is packed,
we copy the resulting data in a mmaped memory segment. Because the sender-based copy progresses
at the same speed as the network, it benefits from cache reuse and releases the send buffer at the same
date. Data is then asynchronously written from memory to disk in background to decrease the memory
footprint.

Event Logger Commits Non-deterministic events are sent to event loggers processes (EL). An
EL is a special process added to the application outside the MPI COMM WORLD; several might
be used simultaneously to improve scalability. Events are transmitted using non blocking MPI
communications over an inter-communicator between the application process and the event logger.
Though asynchronous, there is a transactional acknowledgement protocol to ensure that every event is
safely logged before any MPI send can progress.

Any Source Receptions Any source logging is managed in the iRecv, Recv and Start functions. Each
time an any source receive is posted, the completion function of the corresponding request is modified.
When the request is completed, the completion callback logs the event containing the request identifier
and the matched source. During recovery, the first step is to retrieve the events related to the MPI
process from the event logger. Then every promiscuous source is replaced by the well specified source
of the event corresponding to the request identifier. Because channels are FIFO, enforcing the source
is enough to replay the original matching order.

Non-Deterministic Deliveries Non-deterministic deliveries (NDD) are the iProbe, WaitSome,
WaitAny, Test, TestAll, TestSome and TestAny functions. The Lamport clock is used to assign a unique
identifier to every NDD operation. When a NDD ends, a new delivery event is created, containing the
clock and the list of all the completed request identifiers. During replay, when the NDD clock is equal
to the clock of the first event, the corresponding requests are completed by waiting for each of them.

It sometimes happens that no request is completed during a NDD. To avoid creating a large number
of events for consecutive unsuccessful NDD, we use lazy logging; only one event is created for all the
consecutive failed NDD. If a send operation occurs, any pending NDD have to be flushed to the EL.
If a NDD succeeds, any pending lazy NDD is discarded. During recovery, NDD whose clock is lower
than the first NDD event in the log have to return no request completed.

4. Performances

4.1. Experimental testbed

The experimental testbed includes two clusters. In the first cluster, each node is a dual Opteron 246
(2GHz) with 2GB DDR400 memory and a Myrinet 2000 PCI-E interconnect with a 16 ports Myrinet
switch; this machine is used only for Myrinet 2000 experiments. In the second cluster, each node
is a dual Xeon Woodcrest with 4GB DDR5300 memory. Two different networks are available on
this machine, a Gigabit Ethernet and a Myrinet 10G interconnect with a 128 ports Myrinet switch.
Software setup is Linux 2.6.18 using MX 1.2.0j. Benchmarks are compiled using gcc and gfortran
4.2.1 with the -O3 flag. We used NetPIPE [16] to perform ping-pong tests, while the NAS Parallel
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BT SP LU
#processors all 4 32 64 256 512 1024
%non-deterministic 0 0 1.13 0.66 0.80 0.80 0.75 0.57

FT CG MG
#processors all 4 32 64 256 512 1024
%non-deterministic 0 0 40.33 29.35 27.10 22.23 20.67 19.99

Table I. Percentage of non-deterministic events to total number of exchanged messages on the NAS Parallel
Benchmarks (Class B).

Benchmarks 3.2.1 (NPB) and High Performance Linpack (HPL) are used to investigate application
behavior. Applications are deployed with one MPI process per node; HPL uses threaded GotoBLAS to
make full use of available cores. Because the proposed approach does not change the recovery strategy
used in previous works, we only focus on failure free performance.

4.2. Benefits from Event Distinction

One of the main differences of the refined model is the split of message receptions into two distinct
events. In the worst case, this might lead to logging twice as many events compared to the model used
in other message logging implementations. However, better fitness between model and MPI internals
allows for detecting (and discarding) deterministic events. Table I characterizes the amount of non-
deterministic (actually logged in Open MPI-V) events compared to the overall number of exchanged
messages. Though we investigated all the NPB kernels (BT, MG, SP, LU, CG, FT) to cover the widest
spectrum of application patterns, we detected non-deterministic events in LU and MG only. In all other
benchmarks, Open MPI-V does not log any event, thanks to the detection of deterministic messages.
On both MG and LU, the only non-deterministic events are any source messages; there are no non-
deterministic deliveries or probes. In MG, two thirds of the messages are deterministic, while in LU
less than 1% are using the any source flag, outlining how the better fitting model drastically decrease
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REDESIGNING THE MESSAGE LOGGING MODEL FOR HIGH PERFORMANCE 11

the overall number of logged events in the most usual application patterns. As a comparison, MPICH-
V2 logs at least one event for each message (and two for rendez-vous messages). According to our
experiments, the same results hold for class A, C and D of the NAS. The ratio of logged events does
not correlate with the number of computing processes in LU and decreases when more processes are
used in MG, meaning that the fault tolerant version of the application is at least as scalable as the
original one.

Avoiding logging of some events is expected to lower the latency cost of a pessimistic protocol.
Figure 4 presents the overhead on Myrinet round trip time of enabling the pessimistic fault tolerant
algorithm. We normalize Open MPI-V pessimist (labeled Open MPI-V with sender-based in the figure)
according to a similar non fault tolerant version of Open MPI, while we normalize the reference
message logging implementation MPICH-V2 according to a similar version of MPICH-MX; in other
words, 100% is the performance of the respective non fault tolerant MPI library. We deem this as
reasonable as 1) the bare performance of Open MPI and MPICH-MX are close enough that using a
different normalization base introduces no significant bias on the comparison between fault tolerant
protocols, and 2) this ratio reflects the exact cost of fault tolerance compared to a similar non fault
tolerant MPI implementation, which is exactly what needs to be outlined. IPoMX performance is also
provided as a reference only to break down MPICH-V2 overhead.

In this ping-pong test, all Recv operations are well specified sources and there is no WaitAny. As a
consequence, Open MPI-V pessimist does not create any event during the benchmark and reaches
exactly the same latency as Open MPI (3.79µs). To measure the specific cost of handling non-
deterministic events in Open MPI-V pessimist, we modified the NetPIPE benchmark code; every Recv
has been replaced by the sequence of an any source iRecv and a WaitAny. This altered code generates
two non-deterministic events for each message. The impact on Open MPI-V pessimist latency is a
nearly three time increase in latency. The two events are merged into a single message to the event
logger; the next send is delayed until the acknowledge comes back. This is the expected cost on
latency of pessimistic message logging. Still, the better detection of non-deterministic events removes
the message logging cost for some common types of messages.

Because MPICH-V does not discard deterministic events from logging, there is a specific overhead
(40µs latency increase to reach 183µs) for every message, even on the original deterministic
benchmark. This specific overhead comes on top of those from memory copies.

4.3. Benefits from zero-copy receptions

Figure 4 shows the overhead of MPICH-V. With the pessimistic protocol enabled, MPICH-V reaches
only 22% of the MPICH-MX bandwidth. This bandwidth reduction is caused by the number of memory
copies in the critical path of messages. Because the message logging model used in MPICH-V assumes
delivery is atomic, it cannot accommodate the MPI matching and buffering logic; therefore it does not
fit the intermediate layer of MPICH (similar to the PML layer of Open MPI). As a consequence, the
event logging mechanism of MPICH-V replaces the low level ch mx with a TCP/IP based device. The
cost of memory copies introduced by this requirement is estimated by considering the performance of
the NetPipe TCP benchmark on the IP emulation layer of MX: IPoMX. The cost of using TCP, with its
internal copies and flow control protocol, is as high as 60% of the bandwidth and increases the latency
from 3.16µs to 44.2µs. In addition, the ch v device itself needs to make an intermediate copy on the
receiver to delay matching until the message is ready to be delivered. This is accountable for the 20%
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Figure 5. Ping-pong performance comparison between Open MPI and Open MPI-V pessimist on various networks.

remaining overhead on bandwidth and increases the latency to 96.1µs, even without enabling event
logging.

On the contrary, in Open MPI-V the model fits tightly with the behavior of MPI communications.
The only memory copy comes from the sender-based message payload logging; there are no other
memory copies. As a consequence, Open MPI-V is able to reach a typical bandwidth as high as
1570Mbit/s (compared to 1870Mbit/s for base Open MPI and 1825Mbit/s for MPICH-MX). The
difference between Open MPI-V with or without sender-based logging highlights the benefits of our
cache reuse approach. While the sender-based copy fits in cache, the performance overhead of the extra
copy is reduced to 11% and jumps to 28% for messages larger than 512kB.

4.4. Sender-based impact

While the overall number of memory copies has been greatly reduced, the sender-based message
payload copy is mandatory and can’t be avoided. Figure 5 explains the source of this overhead by
comparing the performance of Open MPI and Open MPI-V pessimist on different networks. As the
sender-based copy is not on the critical path of messages, there is no increase in latency, regardless of
the network type. On Ethernet, bandwidth is unchanged as well, because the time to send the message
on the wire is much larger than the time to perform the memory copy, thus a perfect overlap.

Counter-intuitively, Open MPI bandwidth for the non fault tolerant version is better on Myrinet
10G than on shared memory: the shared memory device uses a copy-in copy-out mechanism between
processes, producing one extra memory access for each message (i.e., physically reducing the available
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Figure 6. Application behavior comparison between Open MPI and Open MPI-V pessimist on Myrinet 10G.

bandwidth by two). Adding a third memory copy for handling sender-based logging to the two involved
in regular shared memory transfer has up to 30% impact on bandwidth for large messages, even when
this copy is asynchronous. This is the expected result considering that the performance bottleneck for
shared memory network is the pressure on memory bus bandwidth.

As the sender-based message logging speed depends on memory bandwidth, the faster the network,
the higher the relative copy time becomes. Myrinet 2G already exhibits imperfect overlap between
memory copies and network transmission, though when the message transfer fits in cache, the overhead
is reduced by the memory reuse pattern of the sender-based mechanism. With the faster Myrinet 10G,
the performance gap widens to 4.2Gbit/s (44% overhead). As the pressure on the memory subsystem
is lower when using Myrinet 10G network than when using shared memory, one could expect sender-
based copy to be less expensive in this context. However the comparison between Open MPI-V on
Myrinet 10G and shared memory shows a similar maximum performance on both media, suggesting
that some memory bandwidth is still available for improvements from better software engineering.
Similarly, the presence of performance spikes for message sizes between 512kB and 2MB indicates
that the cache reuse strategy does not fit well with the DMA mechanism used by this NIC.

4.5. Application performance and scalability

Figure 6(a) presents performance overheads of various numerical kernels on a Myrinet 10G network
with 64 nodes. Interestingly, the two benchmarks exhibiting non-deterministic events suffer from a
mere 1% overhead compared to a non fault tolerant run. The more synchronous CG shows the highest
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performance degradation, topping at only a 5% increase in execution time. Because there are no non-
deterministic events in CG, overhead is solely due to sender-based payload logging.

Figure 6(b) compares the performance of a fault tolerant run of HPL with regular Open MPI on
90 quad core processors connected through Myrinet 10G, one thread per core. While the performance
overhead is limited, it is independent of the problem size. Similarly, for CG and LU (figures 6(c) and
6(d)), the scalability when the number of processes increase follows exactly the same trend for Open
MPI and Open MPI-V. For up to 128 nodes, the scalability of the proposed message logging approach
is excellent, regardless of the use of non-deterministic events by the application.

5. Related Works

Fault tolerance can be managed fully by the application [14, 4]. However software engineering costs
can be greatly decreased by integrating fault tolerant mechanisms at the communication middleware
level. FT-MPI [7, 8] aims at helping an application to express its failure recovery policy by taking care
of rebuilding internal MPI data structures (communicators, rank, etc.) and triggering user provided
callbacks to restore a coherent application state when some failure occurs. Though this approach is
very efficient to minimize the cost of failure recovery technique, it still adds a significant level of
complexity to the design of the application code.

Automatic fault tolerant MPI libraries are totally hiding failures from the application, thus avoiding
any modification of the user’s code. A good review of the various techniques used to automatically
ensure the successful recovery of distributed applications from a checkpoint set is provided by [6].

Consistent recovery can be achieved automatically by building a coordinated checkpoint set where
there exists no orphan message (with the Chandy & Lamport algorithm [3], CIC [10] or blocking
the application until channels are empty). The blocking checkpointing approach has been used in
LAM/MPI [15] while the Chandy & Lamport algorithm has been used in CoCheck [17], MPICH-
Vcl [2] and Déjà-vu. In all coordinated checkpoint techniques, the only consistent recovery line is
when every process, including non failed ones, restarts from checkpoint. The message logging model
we propose does not have this requirement, which according to [12] allows for faster recovery.

Another way to ensure automatic consistent recovery is to use message logging. Manetho [5],
Egida [13] and MPICH-V [1] are using several flavors of message logging (optimistic, pessimistic
and causal). All are relying on the classical message logging model, and as a consequence, they are
hooked into the lowest MPI level. Compared to our current work, they cannot distinguish between
deterministic and non-deterministic events and they introduce some extra memory copies leading to a
performance penalty on recent high throughput networks.

6. Conclusion

In this paper we introduced a refinement of the message logging model intended to reduce the raw
overhead of this fault tolerant protocol. Unlike the classical model, it does not consider the message
delivery as a single atomic step. Instead, a message may generate two kinds of events: matching events
at the beginning of any source receptions and deliver events to count the number of times a message
has been involved in a non-deterministic probe before delivery. Advantages of this model are 1) better
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fitting the actual MPI communication pattern, 2) removing the need for an intermediate copy of each
message, and 3) allowing implementation of fault tolerant mechanisms at a higher level of the software
hierarchy and then distinguishing between non-deterministic and deterministic events.

We implemented a pessimistic message logging algorithm according to this model in Open MPI and
compared its performance to the previous reference implementation of pessimistic message logging
MPICH-V2. Results outline a drastically lower cost of the fault tolerant framework. Thanks to the
removal of intermediate message copies, Open MPI-V latency is 10.5 times better than MPICH-V2
in the worst case, while bandwidth is multiplied by 4. Furthermore, because of the better detection
of deterministic events, most common types of messages do not have any message logging overhead,
leading to a 35 times better latency.

As a consequence, uncoordinated checkpointing results in less than 5% overhead on application
performance, while scalability both in terms of number of nodes and data volume is close to perfect.
This is a major improvement compared to previous uncoordinated fault tolerant approaches.

Future works

A direct consequence of our study is to try to eliminate the remaining cost from sender-based message
logging. We plan to improve the pipelining between the fragment emission into the network and the
sender-based copy to increase overlap and improve the cache reuse. Though it is impossible to reduce
sender-based overhead on shared memory, the failure of a single core usually strongly correlates with
the breakdown of the entire computing node. Therefore, coordinating checkpoint inside the same node
and disabling intra-node sender-based copy could totally remove this cost while retaining the better
scalability of the uncoordinated approach from a node perspective.

Next, we plan to better characterize the source of non-deterministic events. Those events may be
generated either by the numerical algorithm itself, using any source receptions or non-deterministic
probes, or by the implementation of collective communications over point-to-point inside the MPI
library. In this second case, some collaborative mechanisms may be involved to better reduce
the cost of semantically determinist messages. With deeper modifications, we could even envision
completely disabling logging during collective communication by adding some collective global
success notification, which would allow for replaying collectives as a whole instead of individual point-
to-point messages.

One of the weaknesses of message logging, when compared to coordinated checkpoint, is a higher
failure free overhead. Because it has been greatly improved by our work, the relative performance
ordering of those two protocols could have changed. We plan next to make a comprehensive
comparison between improved message logging and coordinated checkpoint, in terms of failure free
overhead, recovery speed and resiliency.

Last, we could investigate the consequence of using application threads on the piecewise
deterministic assumption, a scenario which will be more common with the dominance of multi-core
processors. Because of a different ordering of MPI operations, the unique request identifier and the
probe clock may vary during recovery. Some mechanisms may be designed to ensure that the same
identifiers are assigned during replay of threaded applications.
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