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Abstract. Modern high performance computer systems continue to in-
crease in size and complexity. Tools to measure application performance
in these increasingly complex environments must also increase the rich-
ness of their measurements to provide insights into the increasingly in-
tricate ways in which software and hardware interact. PAPI (the Per-
formance API) has provided consistent platform and operating system
independent access to CPU hardware performance counters for nearly a
decade. Recent trends toward massively parallel multi-core systems with
often heterogeneous architectures present new challenges for the mea-
surement of hardware performance information, which is now available
not only on the CPU core itself, but scattered across the chip and system.
We discuss the evolution of PAPI into Component PAPI, or PAPI-C, in
which multiple sources of performance data can be measured simulta-
neously via a common software interface. Several examples of compo-
nents and component data measurements are discussed. We explore the
challenges to hardware performance measurement in existing multi-core
architectures. We conclude with an exploration of future directions for
the PAPI interface.
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1 Introduction

The use of hardware counters to measure and improve software performance
has become an accepted and integral method in the software development cycle
[1]. Hardware counters, which are usually implemented as a small set of registers
onto which can be mapped a larger set of performance related events, can provide
accurate and detailed information on a wide range of hardware performance
metrics. PAPI, the Performance Application Programming Interface, provides
an easy to use, common API to application and tool developers to supply them
with the information they may need to analyze, model and tune their software
on a wide range of different platforms.

In addition to the counters found on CPUs, a large amount of hardware
monitoring information is also available in other sub-sytems throughout mod-
ern computer architectures. Many network switches and network interface cards
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(NICs) contain counters that can monitor various events related to performance
and reliability. Possible events include checksum errors, dropped packets, and
packets sent and received. Although the set of network events is necessarily
somewhat dependent on the underlying hardware, extending PAPI to the net-
work monitoring domain can provide a portable way to access native network
events and allow correlation of network events with other domains. Because com-
munication in OS-bypass networks such as Myrinet and Infiniband is handled
asynchronously to the application, hardware monitoring, in addition to being
low overhead, may be the only way to obtain some important data about com-
munication performance.

As processor densities climb, the thermal properties and energy usage of high
performance systems are becoming increasingly important. Such systems contain
large numbers of densely packed processors which require a great deal of elec-
tricity. Power and thermal management issues are becoming critical to successful
resource utilization [2, 3]. Standardized interfaces for accessing the thermal sen-
sors are available, but may be difficult to use for runtime power-performance
adaptation [4]. Extending the PAPI interface to simultaneously monitor pro-
cessor metrics and thermal sensors can provide clues for correlating algorithmic
activity with thermal system responses thus help in developing appropriate work-
load distribution strategies. We show the results of using the extended version of
PAPI to simultaneously monitor processor counters, ACPI thermal sensors, and
Myrinet network counters while running the FFTE and HPL HPC Challenge
benchmarks [12] on a AMD Opteron Linux cluster.

Modifying and extending a library with a broad user base such as PAPI
requires care to preserve simplicity and backward compatibility as much as pos-
sible while providing clean and intuitive access to important new capabilities.
We discuss modifications to PAPI to provide support for the simultaneous mea-
surement of data from multiple counter domains.

With the advent of multi-core processors and the inexorable increase in core
counts per chip, interactions between cores and contention for shared resources
such as last level caches or memory bus bandwidth become increasingly im-
portant sources of potential performance bottlenecks. Individual vendors have
chosen different paths to provide access to hardware performance monitoring
for these shared resources, each with their own problems and issues. We explore
some of these approaches and their implications for performance measurement,
and provide an example measurement of cache data on a real application in a
multi-core environment to illustrate these issues.

2 Extending PAPI to Multiple Measurement Components

The PAPI library was originally developed to address the problem of accessing
the processor hardware counters found on a diverse collection of modern mi-
croprocessors in a portable manner [1]. Other system components besides the
processor, such as heterogeneous processors (GPUs), memory interface chips,
network interface cards, and network switches, also have hardware that counts
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various events related to system reliability and performance. Furthermore, other
system health measurements, such as chip or board level temperature sensors,
are available and useful to monitor in a portable manner. Unlike on-processor
counters, the off-processor counters and sensors usually measure events in a
system-wide rather than a process or thread-specific context. However, when an
application has exclusive use of a machine partition, or runs in a single core of a
multi-core node, it may be possible to interpret such events in the context of the
application. Even with execution on multiple cores on a single node it may be
possible to deconvolve the temperature or power signatures of separate threads
to develop a coarse picture of single thread response. The current situation with
off-processor counters is similar to the situation that existed with on-processor
counters before PAPI. A number of different platform-specific interfaces exist,
some of which are poorly documented or not documented at all.

Several software design issues became apparent in extending the PAPI in-
terface for multiple measurement domains. The classic PAPI library consists of
two internal layers: a large portable layer optimized for platform independence;
and a smaller hardware specific layer, containing platform dependent code. By
compiling and statically linking the independent layer with the hardware specific
layer, an instance of the PAPI library could be produced for a specific operating
system and hardware architecture. At compile time the hardware specific layer
provided common data structure sizes and definitions to the independent layer,
and at link time it satisfied unresolved function references across the layers.
Since there was a one-to-one relationship between the independent layer and the
hardware specific layer, initialization and shutdown logic was straightforward,
and control and query routines could be directly implemented. In migrating to
a multi-component model, this one-to-one relationship was replaced with a one-
to-many coupling between the independent, or framework, layer and a collection
of hardware specific components, requiring that previous code dependencies and
assumptions be carefully identified and modified as necessary.

When linking multiple components into a common object library, each com-
ponent exposes a subset of the same functionality to the framework layer. To
avoid name-space collisions in the linker, the entry points of each component
are modified to hide the function names, either by giving them names unique to
the component, or by declaring them as static inside the component code. Each
component contains an instance of a structure, or vector, with all the necessary
information about opaque structure sizes, component specific initializations and
function pointers for each of the functions that had been previously statically
linked across the framework/component boundary. The only symbol that a com-
ponent exposes to the framework at link time is this uniquely named component
vector. All accesses to the component code occur through function pointers in
this vector, and empty vector pointers fail gracefully, allowing components to
be implemented with only a subset of the complete functionality. In this way,
the framework can transparently manage initialization of and access to multi-
ple components by iterating across a list of all available component structures.
Our experiments have shown that the extra level of indirection introduced by
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calls through a function pointer adds a small but generally negligible additional
overhead to the call time, even in time-critical routines such as reading counter
values. Timing tests were done on hardware including Intel Pentium4, Core2,
and Nehalem, AMD Opteron and IBM POWER6 architectures. Over 1M iter-
ations of a loop including 10 calls to empty subroutines the average execution
time difference between direct and indirect calls was in the range of 6.9% for
Nehalem to 46% for POWER6. In the context of real PAPI workloads on these
same machines, a start/stop operation was slowed by between 0.13% and 1.36%,
while a read of two counters was slowed by between 1.26% and 11.3%. Table 1
shows these results in greater detail.

Table 1. Costs of PAPI calls

Pentium4 Core2 Nehalem Opteron POWER6

direct cycles/call 13.8 8.4 5.8 9.6 106.3

indirect cycles/call 17.8 10.3 6.2 11 155.2

% slowdown 29.00% 22.60% 6.90% 14.60% 46.00%

PAPI start/stop slowdown 0.66% 0.52% 0.13% 0.39% 1.36%

PAPI read 2 counters slowdown 9.76% 6.40% 2.47% 11.30% 1.26%

Countable events in PAPI are either preset events, defined uniformly across
all architectures, or native events, unique to a specific component. To date preset
events have only been defined for processor hardware counters, making all events
on off-processor components native events.

2.1 Preset Events

Preset events can be defined as a single event native to a given CPU, or can be
derived as a linear combination of native events, such as the sum or difference of
two such events. More complex derived combinations of events can be expressed
in reverse polish notation and computed at run-time by PAPI. The number
of unique terms in these expressions is limited by the number of counters in
the hardware. For many platforms the preset event definitions are provided in
a comma separated values file, papi_events.csv, which can be modified by
developers to explore novel or alternate definitions of preset events. Because not
all preset events are implemented on all platforms, a utility called papi_avail
is provided to examine the list of preset events on the platform of interest. A
portion of the output for an Intel Nehalem (core i7) processor is shown below:

Available events and hardware information.
--------------------------------------------------------------------------------
PAPI Version : 4.0.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel Core i7 (21)
CPU Revision : 5.000000
CPUID Info : Family: 6 Model: 26 Stepping: 5
CPU Megahertz : 2926.000000
CPU Clock Megahertz : 2926
Hdw Threads per core : 1
Cores per Socket : 4
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NUMA Nodes : 2
CPU’s per Node : 4
Total CPU’s : 8
Number Hardware Counters : 7
Max Multiplex Counters : 32
--------------------------------------------------------------------------------
The following correspond to fields in the PAPI_event_info_t structure.

Name Code Avail Deriv Description (Note)
PAPI_L1_DCM 0x80000000 No No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 Yes No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Yes Level 2 data cache misses
...
PAPI_FP_OPS 0x80000066 Yes Yes Floating point operations
PAPI_SP_OPS 0x80000067 Yes Yes Floating point operations;

optimized to count scaled single precision
vector operations

PAPI_DP_OPS 0x80000068 Yes Yes Floating point operations;
optimized to count scaled double precision
vector operations

PAPI_VEC_SP 0x80000069 Yes No Single precision vector/SIMD instructions
PAPI_VEC_DP 0x8000006a Yes No Double precision vector/SIMD instructions
-------------------------------------------------------------------------
Of 107 possible events, 34 are available, of which 8 are derived.

2.2 Native Events

PAPI components contains tables of native event information allowing native
events to be programmed in essentially the same way as a preset event. Each
native event may have a number of attributes, called unit masks, that can act
as filters on exactly what gets counted. These attributes can be appended to a
native event name to tell PAPI exactly what to count. An example of a native
event name with unit masks from the Intel Nehalem architecture is shown below:

L2_DATA_RQSTS:DEMAND_M_STATE:DEMAND_I_STATE

Attributes can be appended in any order and combination, and are sepa-
rated by colon characters. Some components such as LM-SENSORS may have
hierarchically defined native events. An example of such a hierarchy is shown
below:

LM_SENSORS.max1617-i2c-0-18.temp2.temp2_input

In this case, levels of the hierarchy are separated by period characters. Com-
plete listings of these and other native events can be obtained from a utility
analogous to papi_avail, called papi_native_avail. A portion of the out-
put of papi_native_avail for Nehalem configured with multiple components is
shown below:
...
--------------------------------------------------------------------------------
0x40000032 L1I_OPPORTUNISTIC_HITS | Opportunistic hits in streaming |
--------------------------------------------------------------------------------
0x40000033 L2_DATA_RQSTS | All L2 data requests |

40000433 :ANY | All L2 data requests |
40000833 :DEMAND_E_STATE | L2 data demand loads in E state |
40001033 :DEMAND_I_STATE | L2 data demand loads in I state (misses) |
40002033 :DEMAND_M_STATE | L2 data demand loads in M state |
40004033 :DEMAND_MESI | L2 data demand requests |
40008033 :DEMAND_S_STATE | L2 data demand loads in S state |
40010033 :PREFETCH_E_STATE | L2 data prefetches in E state |
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40020033 :PREFETCH_I_STATE | L2 data prefetches in the I state (misses) |
40040033 :PREFETCH_M_STATE | L2 data prefetches in M state |
40080033 :PREFETCH_MESI | All L2 data prefetches |
40100033 :PREFETCH_S_STATE | L2 data prefetches in the S state |

--------------------------------------------------------------------------------
0x40000034 L2_HW_PREFETCH | Count L2 HW Prefetcher Activity |

40000434 :HIT | Count L2 HW prefetcher detector hits |
40000834 :ALLOC | Count L2 HW prefetcher allocations |
40001034 :DATA_TRIGGER | Count L2 HW data prefetcher triggered |
40002034 :CODE_TRIGGER | Count L2 HW code prefetcher triggered |
40004034 :DCA_TRIGGER | Count L2 HW DCA prefetcher triggered |
40008034 :KICK_START | Count L2 HW prefetcher kick started |

--------------------------------------------------------------------------------
...
--------------------------------------------------------------------------------
0x44000000 ACPI_STAT | kernel statistics |
--------------------------------------------------------------------------------
0x44000001 ACPI_TEMP | ACPI temperature |
--------------------------------------------------------------------------------
0x48000000 LO_RX_PACKETS | LO_RX_PACKETS |
--------------------------------------------------------------------------------
0x48000001 LO_RX_ERRORS | LO_RX_ERRORS |
--------------------------------------------------------------------------------
...
--------------------------------------------------------------------------------
0x4c0000b3 LM_SENSORS.w83627hf-isa-0290.cpu0_vid.cpu0_vid |
--------------------------------------------------------------------------------
0x4c0000b4 LM_SENSORS.w83627hf-isa-0290.beep_enable.beep_enable |
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
Total events reported: 396

2.3 API Changes

An important consideration in extending a widely accepted interface such as
PAPI is to make extensions in such a way as to preserve the original interface
as much as possible for the sake of backward compatibility. Several entry points
in the PAPI user API were augmented to support multiple components, and
several new entry points were added to support new functionality.

By convention, an event to be counted is added to a collection of events in an
EventSet, and EventSets are started, stopped, and read to produce event count
values. Each EventSet in Component PAPI is bound to a specific component and
can only contain events associated with that component. Multiple EventSets can
be active simultaneously, as long as only one EventSet per component is invoked.
The binding of EventSet and component can be done explicitly at the time it is
created with a call to the new API:

PAPI_assign_eventset_component() - assign a component index to an existing

but empty EventSet

Explicit binding allows a variety of attributes to be modified in an EventSet even
before events are added to it. To preserve backward compatibility for legacy
applications, binding to a specific component can also happen automatically
when the first event is added to an EventSet.

Three entry points in the API allow access to settings within PAPI. These
entry points are shown below:

PAPI_num_hwctrs() - return the number of hardware counters for the cpu
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PAPI_get_opt() - query the option settings of the PAPI library or

a specific event set

PAPI_set_domain() - set the default execution domain for new event sets

Component specific versions of these calls are:

PAPI_num_cmp_hwctrs() - return the number of hardware counters for the cpu

PAPI_get_cmp_opt() - query the option settings of the PAPI library

or a specific event set

PAPI_set_cmp_domain() - set the default execution domain for new event sets

These modified callse have been implemented with an additional parameter to
allow specification of given component within the call. Backward compatibility
is preserved by assuming that the original calls are always bound to the original
cpu component.

Finally two new calls were added to provide housekeeping functions. The
first simply reports the current number of components, and the second returns
a structure of information describing the component:

PAPI_num_components()

PAPI_get_component_info()

Neither of these calls are required. In this way legacy code instrumented with
PAPI calls compiles and runs with no modification needed.

Example components have been implemented in the initial release of PAPI
for ACPI temperature sensors, the Myrinet network counters, and the lm-sensors
interface. An implementation of an Infiniband network component is under in-
vestigation, along with several other components for disk sub-systems such as
Lustre.

2.4 The CPU Component

The CPU component is unique for several reasons. Historically it was the only
component that existed in earlier versions of PAPI. Within Component PAPI
one and only one CPU component must exist and occupy the first position in
the array of components. This simplifies default behavior for legacy applications.
In addition to providing access to the hardware counters on the main processor
in the system, the CPU component also provides the operating system specific
interface for things like interrupts and threading support, as well as high resolu-
tion time bases used by the PAPI Framework layer. The necessity for a unique
CPU component has been identified as a restriction from the perspective of
implementations that may not need or wish to monitor the CPU and also im-
plementations that may contain heterogeneous CPUs. This is an open research
issue in Component PAPI and mechanisms are under investigation to relax these
restrictions.

2.5 Accessing the CPU Hardware Counters

CPU Hardware counter access is provided in a variety of ways on different sys-
tems. When PAPI was first released almost 10 years ago, there was significant
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diversity in the operating systems and hardware of the Top500 list. AIX, Solaris,
UNICOS and IRIX shared the list with a number of variants of Unix [8]. Linux
systems made up a mere 3.6 percent of the list. Most of these systems had vendor
provided support for counter access either built-in to the operating system, or
available as a loadable driver. The exception was Linux, which had no support
for hardware counter access. This is in sharp contrast to today [9], when nearly
90 percent of the systems run Linux or Linux variants.

Several options were available to access counters on Linux systems. One of
the earliest was the perfctr patch [10] for x86 processors. Perfctr provided
a low latency memory-mapped interface to virtualized 64-bit counters on a per
process or per thread basis, ideal for PAPI’s “first person” counting and sam-
pling interface. With the introduction of Linux on the Itanium processor, the
perfmon [5] interface was built-in to the kernel. When it became apparent that
perfctr would not be accepted into the Linux kernel, perfmon was rewritten and
generalized as perfmon2 [11] to support a wide range of processors under Linux,
including the IBM POWER series in addition to x86 and IA64 architectures.
After a continuing effort over several years by the performance community to
get perfmon2 accepted into the Linux kernel, it too was rejected and supplanted
by yet another abstraction of the hardware counters, first called perf_counters
in kernel 2.6.31 and then perf_events [6] in kernel 2.6.32. The perf_events
interface is young and maturing rapidly. It has the overwhelming advantage of
being built-in to the kernel, requiring no patching on the part of system admin-
istrators. PAPI continues to support hardware counter access through perfctr
wherever it is available. Perfmon access is available through the 2.6.30 kernel. In
addition, PAPI also supports the perf_events interface.

2.6 The ACPI and MX Components

The ACPI component enables the PAPI-C library to access the ACPI temper-
ature sensors, while the MX component allows monitoring of run-time charac-
teristics of the Myrinet network communications. To demonstrate simultaneous
monitoring of CPU metrics as well as temperature and data transfer, we collected
data from the HPC Challenge suite. This suite is a set of scalable, computation-
ally intensive benchmarks with different memory access patterns that examine
the performance of HPC architectures [12]. For our experiments, we chose two
global kernel benchmarks, High Performance Linpack (HPL) and FFT. The HPL
kernel solves a linear system of equations and the FFT kernel computes a dou-
ble precision complex one-dimensional discrete Fourier transform, which ensures
two highly computationally intense test cases. We instrumented both bench-
marks to gather total floating-point operations, temperature and packets sent
and received through the Myrinet network. With Component PAPI, we were
able to easily instrument the program by simply providing the desired event
names in PAPI calls. We ran our experiments on a 65-node AMD Opteron clus-
ter. Both benchmarks ran on eight nodes. We instrumented functions fft235 in
FFT and pdgesvK2 in HPL, since profiling indicated that these were the most
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computationally active routines, and gathered data for each iteration that called
these functions.

The measurements for the FFT benchmark on two of the nodes are shown in
Fig. 1. We can see the periodic nature of the computation and communication.
The measured data for the second case study - the HPL benchmark - is depicted
in Fig. 2 and shows a completely different computation and communication
pattern. In both test cases, we are able to observe a difference in the temperature
between the two nodes.

Fig. 1. FLOPS, temperature and communication monitoring using the CPU, ACPI
and MX component of PAPI-C for an FFT benchmark running on an AMD Opteron
cluster

2.7 The LM-SENSORS Component

The LM-SENSORS component enables the PAPI-C library to access all com-
puter health monitoring sensors as exposed by the lm_sensors [13] library. The
user is able to closely monitor the system’s hardware health as an attempt to get
more performance out of environmental conditions of the hardware. What fea-
tures are available and what exactly can be monitored depends on the hardware
setup.

We monitored three fan speeds as well as the CPU temperatures on a quad-
core Intel Nehalem (core i7) machine using the LM-SENSORS component of
PAPI-C. Multiple iterations of numeric operations are performed to heat up the
compute cores. In total, 128 threads have been created and distributed over 8
compute cores and each of them executes the numeric code. The fan speeds as
well as CPU temperatures are monitored every 10 seconds. Figure 3(a) shows
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Fig. 2. FLOPS, temperature and communication monitoring using the CPU, ACPI
and MX component of PAPI-C for an HPL benchmark running on an AMD Opteron
cluster

the collected speed data of three fans while Fig. 3(b) depicts the temperature
of the two quad-core CPUs. From those graphs, it is evident that the rotational
speed of the fans responds to changes on the CPU temperature sensors. Note
once more the difference in temperature between the two CPUs. We have seen
similar correlation betweeen temperature and workload before in section 2.6 on
a the Opteron architecture.

3 Multi-core Performance Measurement

With the arrival of the multi-core era for modern Petascale computing, more
discussions are turning to the future implications of multi-core processors. The
main focus in this section is the impact of shared resources of multi-core pro-
cessors on the CPU component of PAPI-C which is described in 2.4. With the
help of an application test case, we will discuss the difference between hardware
performance data collection for on-core versus off-core resources. The current
approach of collecting hardware performance counters shows serious limitations
for off-core resources. However, measurement of performance counter data from
shared resources is crucial in the analysis of scientific applications on multi-core
processors due to the fact that this is where resource contention occurs. The
key is to minimize the contention of shared resources such as caches, memory
bandwidth, bus and other resources.

The multi-core transition in hardware design also reflects an impact on soft-
ware development which remains a big challenge. To illustrate issues associated
with the measurement of performance events for shared resources, we quanti-
tatively evaluate the performance of the memory sub-system on Jaguar, the
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(a)

(b)

Fig. 3. (a) Fan speed monitoring; (b) CPU temperature monitoring - both metrics
have been investigated on an Intel Nehalem (core i7) machine using the LM-SENSORS
component of PAPI-C

fastest computer on the November 2009 Top500 list [14]. The Jaguar system
at Oak Ridge National Laboratory (ORNL) has evolved rapidly over the last
several years. When the work reported here was done, Jaguar was based on
Cray XT4 hardware and utilized 7,832 quad-core AMD Opteron processors with
a clock frequency of 2.1 GHz and 8 GBytes of memory (maintaining the per
core memory at 2 GBytes). For more information on the Jaguar system and the
quad-core AMD Opteron processor, the reader is referred to [15, 16].

The application test case is drawn from workload configurations that are
expected to scale to large number of cores and that are representative of Petas-
cale problem configurations. The massively parallel direct numerical simulation
(DNS) solver (S3D) - developed at Sandia National Laboratories - solves the full
compressible Navier-Stokes, total energy, species, and mass continuity equations
coupled with detailed chemistry [17–19]. The application was run in SMP (one
core per node) as well as VN mode (four cores per node) on Jaguar. Both test
cases apply the same core count. The total execution time for runs using the two
different modes shows a significant slowdown of 25% in VN mode (813 seconds)
when compared to single-core mode (613.4 seconds). The unified L3 cache is
shared between all four cores. We collected hardware performance events using
the PAPI library that confirms our findings. L3 cache requests are measured and
computed using the following PAPI native events:

L3 REQUESTS = READ REQUESTS TO L3 + L3 FILLS CAUSED BY L2 EVICTION

Note: In VNM all L3 cache measurements have been divided by 4 (4 cores per node)
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Figure 4 (a) depicts the number of L3 cache misses and requests when using
four cores versus one core per node for the 13 most expensive functions of the
S3D application. It appears that the performance degradation in VN mode is
due to the L3 cache behavior. In VN mode we see roughly twice as many L3
cache requests and misses compared to SMP mode. It is not surprising that
L3 cache misses increase with VN mode since if every thread is operating on
different data, then one thread could easily evict the data for another thread if
the sum of the four working threads is greater than the size of the L3 cache.
However, the increase in L3 requests is rather questionable. The L3 cache serves
as a victim cache for L2. In other words, a datum evicted from L2 (the victim)
is deposited in L3. If requested data is not in L2 cache then the L3 cache is
checked which results in an L3 request. While the L3 cache is shared between all
four cores, the L2 cache remains private. Based on this workflow, it is not clear
why the number of L3 requests increases so dramatically when using all four
cores per node. As verification we measure the L2 cache misses in SMP and VN
mode and Fig. 4 (b) presents the comparison. It clearly shows that the number
of L2 cache misses does not increase when all four cores are used compared to
SMP mode. All the more, the question persists as to where the double L3 cache
requests come from when VN mode is used. It is important to note, the policy
on the Jaguar system defines that by default a task - independent of process
or thread - is not allowed to migrate to a CPU core within a socket or to any
CPU core on either socket [20]. For the S3D test case, we applied this default
configuration which pins a task to a specific CPU core.

(a) (b)

Fig. 4. (a) L3 cache misses and requests (mean); (b) L2 cache misses (mean)

3.1 Various Multi-core Designs

Recent investigations and discussions have suggested that the high L3 cache
request rate in S3D may be an artifact of the measurement process. Current
Opteron hardware is not designed for first-person counting of events involving
shared resources [21]. The L3 events in AMD Opteron quad-core processors are
not monitored in four independent sets of hardware performance registers but
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in a single set of registers not associated with a specific core (often referred to
as ”shadow” registers). Each core has four independent counter registers which
are used for most performance events. When an L3 event is programmed into
one of these counters on one of these cores, it gets copied by hardware to the
shadow register. Thus, only the last event to be programmed into any core is the
one actually measured by all cores. When several cores try to share a shadow
register, the results are not clearly defined. Performance counter measurement
at the process or thread level relies on the assumption that counter resources
can be isolated to a single thread of execution. That assumption is generally
no longer true for resources shared between cores - like the L3 cache in AMD
quad-core processors.

This problem is not isolated just to AMD Opteron processors. Early Intel
dual-core processors addressed the issue of measuring shared resources by pro-
viding SELF and BOTH modifiers on events involving shared caches or other
resources. This allowed each core to independently monitor the event stream
for a shared resource and to either collect only counts for its activity or for
all activities involving that resource. However, with the introduction of the Ne-
halem (core i7) architecture, Intel, too, moved measurement of chip level shared
resources off the cores and onto the chips. The Nehalem architecture includes
eight “Uncore” counters [22] that are shared among all the cores of the chip.
There is presently no mechanism for a given core to reserve counter resources
from the Uncore. These events can be monitored by the perfmon2 [5] patch,
but only in system-wide counting mode. Thus these counter measurements can-
not be performed with a first-person measurement paradigm such as PAPI’s,
and cannot be intermixed with per process measurements of other events. The
built-in perf_events [6] module in the Linux kernel has no support for Uncore
counters as of the 2.6.32 kernel release.

A final example of the multi-core problem of measuring activities on shared
resource is IBM’s Blue Gene series. Blue Gene/L is a dual-core processor and
Blue Gene/P is a quad-core processor. In both cases hardware counters are
implemented in the UPC, a Universal Performance Counter module that is com-
pletely external to any core. In Blue Gene/P for example, the UPC contains
256 independent hardware counters [23]. Events on each core can be measured
independently, but the core must be specified in the event identifier. This can
create great difficulty for code that in general does not know or care on which
core it is running. Further, these counters can only be programmed to measure
events on either core 0 and 1, or core 2 and 3, but not on a mixture of all four
cores at once.

As the above examples illustrate, hardware vendors are searching for ways
to provide access to performance events on shared resources. There is presently
no standard mechanism that provides performance information in a way that
is useful for software tuning. New methods need to be developed to appropri-
ately collect and interpret hardware performance counter information collected
from such multi-core systems with interesting shared resources. PAPI research
is underway to explore these issues.
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4 Future Directions

With the release of PAPI-C, the stage is set for a wide range of development
directions. Our major goals with the first release were stability and compatibility.
As with any research and development effort there are always open issues to be
explored. Here are some of the issue under investigation with Component PAPI:

– Event Naming: PAPI presently expresses all events as 32-bit event codes.
With the richness of current events and attributes and modifiers, we find
this too restrictive, and will be migrating to a model in which all events are
referenced by name.

– Data Types: PAPI supports returned data values expressed as unsigned
64-bit integers. This is appropriate for counting events, but may not be as
appropriate for expressing other values. We are exploring ways to encode
and specify other 64-bit data formats including: signed integer, IEEE double
precision, fixed point, and integer ratios.

– Dynamic Configurability: The current mechanism for adding new com-
ponents is workable, but not well suited to introducing new components
between releases of the PAPI Framework. Methods are needed for an auto-
mated discovery process for components, both at build time and at execution
time.

– Synchronization: Components can report values with widely different time
scales and remote measurements may exhibit significant skew and drift in
time from local measurements. Mechanisms need to be developed to acco-
modate these artifacts.

– Component Management: To encourage users and third parties to be-
come component contributors, efforts will be invested in documenting the
component development process and in managing 3rd party components.

At a recent brainstorming session by the PAPI developers, a number of future
directions for the PAPI project were identified. In a somewhat whimsical fashion,
and building on the idea of the PAPI-C name, several new letters for the PAPI
”alphabet soup” were put forth:

– PAPI-M: Multi-core. The issue of how to measure shared resource per-
formance on a variety of multi-core architectures remains unresolved. This
may require more kernel development than PAPI development, but is an
important issue that should be addressed.

– PAPI-G: GPUs. GPGPUs and other heterogenous compute elements will
be an increasingly important part of our computing eco-system as we move
from Petascale to Exascale. They present radically different sorts of perfor-
mance information to the user and provide a challenging opportunity for
performance presentation.

– PAPI-V: Virtual. With access to performance hardware now part of the
Linux kernel, it becomes possible to introduce this information into the hy-
pervisors that comprise virtual, or cloud, computing space. With support in
the hypervisors, it becomes possible to consider what it means to measure
hardware performance in the cloud.
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– PAPI-N: Networks. As core counts rise exponentially on the march to Ex-
ascale, communication becomes even more dominant over computation as a
determinant of execution time. PAPI-C components can be developed either
in the open source community or by vendors to monitor hardware charac-
teristics of either open network standards such as Infiniband or proprietary
hardware such as Cray’s SeaStar or Gemini network chips.

– PAPI-D: Disks. Several users of PAPI have suggested and begun work
on the development of PAPI Components to measure remote Disk storage
activities for file systems like Lustre. Such information could prove useful
in managing and measuring the impact of storage operations on execution
performance.

– PAPI-H: Health. System health measurements are often done out-of-band
from compute activities. PAPI-C components may be developed to run on
system nodes in parallel with jobs on compute nodes to assess the impact of
application activities on temperature or power consumption, or to warn of
impending resource failure and the need for remedial action.

5 Conclusion

For most of the past decade, PAPI has been the de-facto choice to provide the
tool designer and application engineer with a consistent interface for access-
ing hardware performance counters on a wide range of computer architectures.
PAPI has ridden the evolutionary wave of processor development as clock rates,
pipeline depth and instruction level parallelism increased through the decade.
That smooth evolution has recently ended with the flattening of clock rates,
the introduction of multi-core architectures, the adoption of heterogeneous com-
puting approaches and the need for more careful monitoring of system health
required for fault tolerance and resiliency in the Petascale domain of hundreds
of thousands of processors. We are now in a period of punctuated equilibrium
where the paradigms of the recent past are being swept away by a tidal wave of
changes at a number of levels.

The development of Component PAPI for the simultaneous monitoring of
multiple measurement domains positions this library to remain as a central tool
in the acquisition of performance data across a spectrum of architectures and
activities. This extension has been done in such a way as to cause minimal
disruption to the current user base while providing flexible opportunities to gain
new insights into application and system performance.
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