
Accelerating GPU kernels for dense linear
algebra!

Rajib Nath, Stanimire Tomov, and Jack Dongarra !!

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville

{rnath1, tomov, dongarra}@eecs.utk.edu

Abstract. Implementations of the Basic Linear Algebra Subprograms
(BLAS) interface are major building block of dense linear algebra (DLA)
libraries, and therefore have to be highly optimized. We present some
techniques and implementations that significantly accelerate the corre-
sponding routines from currently available libraries for GPUs. In particu-
lar, Pointer Redirecting – a set of GPU specific optimization techniques –
allows us to easily remove performance oscillations associated with prob-
lem dimensions not divisible by fixed blocking sizes. For example, applied
to the matrix-matrix multiplication routines, depending on the hardware
configuration and routine parameters, this can lead to two times faster
algorithms. Similarly, the matrix-vector multiplication can be accelerated
more than two times in both single and double precision arithmetic. Ad-
ditionally, GPU specific acceleration techniques are applied to develop
new kernels (e.g. syrk, symv) that are up to 20× faster than the currently
available kernels. We present these kernels and also show their accelera-
tion effect to higher level dense linear algebra routines. The accelerated
kernels are now freely available through the MAGMA BLAS library.
Keywords: BLAS, GEMM , GPUs.

1 Introduction

Implementations of the BLAS interface are major building block of dense lin-
ear algebra libraries, and therefore have to be highly optimized. This is true for
GPU computing as well, especially after the introduction of shared memory in
modern GPUs. This is important because it enabled fast Level 3 BLAS imple-
mentations for GPUs [2, 1, 4], which in turn made possible the development of
DLA for GPUs to be based on BLAS for GPUs [1, 3]. Earlier attempts (before
the introductions of shared memory) could not rely on memory reuse, only on
the GPU’s high bandwidth, and as a result were slower than the corresponding
CPU implementations.

Despite the current success in developing highly optimized BLAS for GPUs
[2, 1, 4], the area is still new and presents numerous cases/opportunities for im-
provements. This paper addresses several very important kernels, namely the
! Candidate to the Best Student Paper Award

!! Research reported here was partially supported by the National Science Foundation,
NVIDIA, and Microsoft Research.

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

CUDA 2.3, GTX 280

SGEMM

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

CUDA 2.3, GTX 280

DGEMM

(b) Double Precision

Fig. 1. GEMM Performance on Square Matrices.

matrix-matrix multiplication that are crucial for the performance throughout
DLA, and matrix-vector multiplication that are crucial for the performance of
linear solvers and two-sided matrix factorizations (and hence eigen-solvers). The
new implementations are included in the recently released and freely available
Matrix Algebra for GPU and Multicore Architectures (MAGMA) version 0.2
BLAS Library [3].

The rest of the paper is organized as follows. Section 2 gives some perfor-
mance results of current kernels and points out our optimization targets. Sec-
tion 3 presents the Pointer Redirecting techniques and their use to accelerate
the xAXPY, xGEMV, and xGEMM routines. Section 4 summarizes the results
on accelerating selected MAGMA BLAS kernels. Next, in Section 5 we give the
performance results for the new kernels. Finally, Section 6 summarizes this work
and describes on-going efforts.

2 Performance of Current BLAS for GPUs

One current BLAS library for GPUs is NVIDIA’s CUBLAS [2]. Figure 1(a)
shows the performance of the single precision matrix-matrix multiplication rou-
tine (SGEMM) for a discrete set of matrix dimensions. Figure 1(b) shows similar
data but for double precision arithmetic. Note that at some dimensions the per-
formance is much higher than at other dimensions, e.g. taken at odd numbers
like 65, 129, etc. These performance dips, that actually happen in the majority of
matrix dimensions are one of our acceleration targets. The reason for these dips
is very likely related to an implementation that has even inner-blocking size to
match various hardware parameters and considerations to get high performance.
The performance graphs illustrate a quite high performance loss for the cases
when the matrix dimension is obviously not a multiple of the inner blocking size.
In particular, the performance gap is more than 24 GFlops/s in double precision
(around.34% of the peak performance), and is worse for single precision.

There are ways around to work with these BLAS routines and still get high
performance in high level algorithms. One possible solution is to force the user

(a) GEMM for GPUs (b) Acceleration target

Fig. 2. The algorithmic view of GEMM for GPUs.

to allocate and work with matrices multiple of the blocking size. This though
leads to memory waste. Sometimes it is a burden to the user if the application
is already written, and in general is obviously not a good solution. Another
solution is padding with 0s to fit the blocking factor, do the computation and
keep this transparent to the user. This approach has the overhead of copying
data back and forth, and possibly some extra computation. A third approach
is to rewrite the kernels in such a way that there are no extra computations,
no data movement or any other overheads. This rewriting though is difficult
and time consuming, especially taken into account different GPU specifics as
related to data coalescing, data parallel computation, computation symmetry,
and memory bank layout.

3 Pointer Redirecting

The matrix-matrix multiplication (xGEMM; e.g. C = AB) algorithm for GPUs
is schematically represented in Figure 2(a). Matrix C is divided into blocks of
size blkM × blkN and each block is assigned to a block of nthdx ×nthdy threads.
Each thread inside a thread block computes a row of sub matrix blkM × blkN .
Each thread accesses corresponding row of matrix A as shown by an arrow and
uses the sub-matrix K × blkN of matrix B for computing the final result. As the
portion of matrix B needed by each thread inside a thread block is the same, they
load a sub-matrix of matrix B of size blkN ×blkK from global memory to shared
memory in a coalesced way, synchronize themselves, do the computation and
repeat until the computation is over. All these happen in a series of synchronized
steps. With an optimal selection of blkM , blkN , blkK , nthdX , nthdY , we can get
the best kernel for the matrix sizes that are divisible by blocking factors, i.e.
M%blkM = 0, N%blkN = 0, K%blkK = 0.

The question is how to deal with matrix dimensions that are not divisible by
the blocking factor. Whatever solution we choose, we have to keep it transparent
to the user while maintaining highest flexibility. The goal is to allow reasonable

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

SGEMM, GTX 280

SGEMM-IF

(a) Single Precision

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

DGEMM, GTX 280

DGEMM-IF

(b) Double Precision

Fig. 3. GEMM Implementation with Conditional Statement in Inner Loop.

overhead (if needed) and to achieve high performance in general cases. We show
in Figure 2(b) matrix C of a xGEMM operation (C = αC + βOp(A)Op(B))
where dimensions M and N are not divisible by the blocking factor. The matrix
has only one full block. We can do the computation for the full block and do the
other partial blocks by loading data and doing computation selectively. This will
introduce several if-else statements in the kernel which will prevent the threads
inside a thread-block to run in parallel. Figure 3 shows the performance of one
such implementation. Note that GPUs run all the threads inside a thread block
in parallel as long as they execute the same instruction on different data. If
the threads ever execute different instruction, their processing would become
temporary sequential until they start executing the same instructions again.

Another approach is to let the unnecessary threads do similar work so that
the whole thread block can run in data parallel mode. In Figure 2(b) the dashed
blue lines correspond to unnecessary flops that are done by respective thread.
It is not clear yet which data they will operate on, but it also does not matter
because the computation will be discarded. Lets take a look at the scenario
where all the threads assume that the matrix fits into the block and do the
work in a natural way until updating matrix C. In Figure 4, the shaded region
corresponds to original matrix and the outmost rectangle corresponds to the
largest matrix that best fits in terms of blocking factor. We are going to make
" M

dimM
× " N

dimN
number of grids and allow threads at the partial block to

compute the same way as it is done in a full block. It is evident that memory
accesses inside the shaded region in Figure 4, denoted by white diamond, are
always valid. Memory accesses denoted by red diamonds are always invalid.
Memory accesses represented by green diamond could be valid or illegal. As we
can see in the Figure 4, the leftmost green diamond could be an element from
the next column, e.g. when lda ! blkM × " M

blkM
#. It could be an element in the

same column when lda > blkM ×" M
blkM

#, or it could be invalid memory reference.
In Figure 5(Left), the blue lines in last row and last column are last valid

memory reference irrespective of any values of lda, M , N , K, blkM , blkN , nthdX ,
nthdY . If some thread needs to access some memory location beyond this last

Fig. 4. Possible Illegal Memory Reference in Matrix Multiply.

Fig. 5. (Left) Last Valid Access (Middle) Pointer Redirecting (Right) Mirroring

row/column, we are going to force him reference to this last row/column by
adjusting the pointer. These threads will be doing unnecessary computation, we
don’t care from where this data is coming from. All we care is that together
they make best use of memory bandwidth and layout, access data in a coalesced
manner. Figure 5(Middle) depicts the complete scenario how the memory is
referenced. As a result the matrix will have some virtual row where rows beyond
the last row are replication of last row and columns beyond the last column are
replication of last column. It is shown in Figure 5.

Let’s see how it fits into xGEMM’s(Op(A) = Op(B) =Non-Transposed) con-
text in terms of accessing matrix A. As in Figure 6(a), thread t1, t2, t3, t4 will
be accessing valid memory location. And all the threads beyond thread t4, e.g.
thread t5, t6 will be accessing same memory thread t4 is accessing. As a result
no separate memory read operation will be issued and no latency will be experi-
enced for this extra load. If we look at Figure 6(b), blkK × blkN data of matrix

(a) Accessing Matrix A (b) Accessing Matrix B

Fig. 6. Algorithmic view of GEMM for GPUs with Pointer Redirecting.

B are brought into shared memory by nthdX × nthdY threads in a coalesced
manner. The left blkK × blkN block is necessary as we can see. But the right
blkK × blkN is partially needed. The black portions are unnecessary memory
access. As discussed before, it will access the last row or column that is needed
instead of accessing invalid memory. This will still be done in a coalesced way
and it is accessing less memory now. Some memory are accessed more than once,
which doesn’t hamper performance. This a simple solution to the problem with
little overhead that doesn’t break the pattern of coalesced memory access. Note
that we will not be doing any extra computation in K dimension, so we don’t
need to zeroing out values to keep the computation valid.

4 MAGMA BLAS kernels

MAGMA BLAS includes a subset of CUDA BLAS that are crucial for the per-
formance of MAGMA routines. The pointer redirecting technique were applied
to most of the kernels. Here we mention a few of the new kernels and their use
in high level MAGMA routines.
xGEMM: Various kernels were developed as an extension to the approach
previously presented in [4]. The extensions include more parameters to explore
xGEMM’s design space to find best performing versions in an auto-tuning ap-
proach. The new algorithms are of extreme importance for both one-sided and
two-sided matrix factorizations as they are in general based on xGEMMs involv-
ing rectangular matrices, and these are the cases that we managed to accelerate
most significantly.
xGEMV: Similarly to xGEMM, various implementations were developed and
parametrized to prepare them for auto-tuning based acceleration. Different im-
plementations are performing best in different settings. xGEMVs are currently
used in MAGMA’s mixed-precision iterative refinement solvers and the Hessen-
berg reduction algorithm.
xSYMV: Similarly to xGEMM and xGEMV, various implementations were
developed. xSYMV is used similarly to when xGEMV is used with the difference
when symmetric matrices are involved. This is again the mixed-precision iterative
refinement solvers and the reduction to three diagonal form.

xTRSM: Algorithms that trade off parallelism and numerical stability, espe-
cially in algorithms related to triangular solvers, have been known and studied
before, but now are getting extremely relevant with the emerging highly parallel
architectures, like the GPUs. We use an approach where diagonal blocks of the
matrix are explicitly inverted and used in a block algorithm. Multiple kernels,
including kernels where the inverses are computed on the CPU or GPU, with
various block sizes (e.g., recursively increasing it from 32), are developed.
xSYRK: A block index reordering technique is used to initiate and limit the
computation only to blocks that are on the diagonal or in the lower (corre-
spondingly upper) triangular part of the matrix. In addition, all the threads in a
diagonal block are responsible to compute redundantly half of the block in a data
parallel fashion in order to avoid expensive conditional statements that would
have been necessary otherwise. Some threads also load unnecessary data so that
data is fetched from global memory in a coalesced manner. These routines are
used in both some one-sided and two-sided matrix factorization algorithms.

5 Performance

For the unnecessary computation there will be some overhead. Figure 7 shows
the percentage of extra flops needed for different dimensions of matrix with pa-
rameters blkM = 64, blkN = 16, blkK = 16, nthdX = 16, nthdY = 4 for different
matrix sizes. The overhead is scaled to 100 for visibility. Figure 9 and Figure 8
shows the performance results for GEMM in single and double precision respec-
tively. In double precision we are seeing an improvement of 24 GFlops/s and
in single precision it is like 170 GFlops/s. As we have discussed before other
than small dimensions the improvement is significant The zig-zag patterns in
performance graph resembles the blocking factor of the kernel.

As we have discussed before, if the matrices are in CPU memory one can
use padding, e.g., as in [5]. We have to allocated a bigger dimension of matrix
in GPU memory, put zeroes in the extra elements, then transfer the data from
CPU to GPU and then call the Kernel. Figure 10 shows the performance com-
parison when data is in CPU memory. It is evident that for small matrix size
our implementation is better and for higher dimension they are very identical.
We note that the pointer redirecting approach does not use extra memory, does
not require a memory copy if non padded matrix is given on the GPU memory,
and finally does not require initialization of the padded elements.

Finally Figure 11 gives an illustration on the effect of optimized BLAS on
high level routines. We see similar results throughout MAGMA algorithms. Table
1 shows the performance of the one-sided QR factorization using CUBLAS and
MAGMA BLAS for matrix sizes not divisible by the kernel’s block size. The
pointer redirecting approach brings 20% to 50% performance improvement over
CUBLAS in this case.

0

20

40

60

80

100

0 1024 2048 3072 4096 5120 6144 7168 8192 921610240

G
F
l
o
p
/
s

Matrix size

ExtraFlop Overheads for GEMM

Overhead (% of total FLops)

(a) All Dimension

0

20

40

60

80

100

0 64 128 192 256 320 384 448 512

G
F
l
o
p
/
s

Matrix size

ExtraFlop Overheads for GEMM

Overhead (% of total FLops

(b) Small Dimension

0

2

4

6

8

10

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F
l
o
p
/
s

Matrix size

ExtraFlop Overheads for GEMM

Overhead (% of total FLops

(c) Large Dimension

Fig. 7. Flops overhead in xGEMM

0

10

20

30

40

50

60

70

80

0 64 128 192 256 320 384 448 512

G
F
l
o
p
/
s

Matrix size

DGEMM, GTX 280

MAGMA
Cudablas-2.3

(a) Small Dimension

0

10

20

30

40

50

60

70

80

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F
l
o
p
/
s

Matrix size

DGEMM, GTX 280

MAGMA
Cudablas-2.3

(b) Large Dimension

Fig. 8. Performance dGEMM

0

50

100

150

200

250

300

350

400

0 64 128 192 256 320 384 448 512

G
F
l
o
p
/
s

Matrix size

SGEMM, GTX 280

MAGMA
Cudablas-2.3

(a) Small Dimension

0

50

100

150

200

250

300

350

400

4096 4160 4224 4288 4352 4416 4480 4544 4608

G
F
l
o
p
/
s

Matrix size

SGEMM, GTX 280

MAGMA
Cudablas-2.3

(b) Large Dimension

Fig. 9. Performance sGEMM

0

50

100

150

200

250

300

350

400

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

SGEMM (Input and Output in CPU Memory)

MAGMA
Pad/Cudablas-2.3

(a) SGEMM

0

10

20

30

40

50

60

70

80

0 1024 2048 3072 4096 5120 6144

G
F
l
o
p
/
s

Matrix size

DGEMM (Input and Output in CPU Memory)

MAGMA
Pad/Cudablas-2.3

(b) DGEMM

Fig. 10. Performance xGEMM with Padding (Data In/Out in CPU Memory).

Matrix Size CUBLAS MAGMA BLAS

1001 47.65 46.01
2001 109.69 110.11
3001 142.15 172.66
4001 154.88 206.34
5001 166.79 226.43
6001 169.03 224.23
7001 175.45 246.75
8001 177.13 251.73
9001 179.11 269.99

10001 180.45 262.90

Table 1. Performance comparison between MAGMA BLAS with pointer redirecting
and CUBLAS for the QR factorization in single precision arithmetic

0

50

100

150

200

0 1536 3072 4608 6144 7680 9216

G
F
l
o
p
/
s

Matrix size

GTX 280,Intel(R) Xeon(R)@2.33GHzx8 core

magmablas0.2
cudablas2.3

MKL10.1

Fig. 11. Effect of optimized SGEMV on the Hessenberg reduction.

6 Conclusions and On-going Work

We presented techniques to accelerate GPU BLAS kernels that are crucial for the
performance of DLA algorithms. Performance results, demonstrating significant
kernels acceleration and the effect of this acceleration on high level DLA, were
also presented. On-going work includes the extension of these techniques to more
routines, and their inclusion in the MAGMA BLAS library.

References

1. V. Volkov and J. Demmel. Benchmarking gpus to tune dense linear algebra. In
Proc. of SC ’08, pages 1–11, Piscataway, NJ, USA, 2008.

2. CUDA CUBLAS Library. http://developer.download.nvidia.com.
3. S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA version 0.2 Users’ Guide.

http://icl.cs.utk.edu/magma, 11/2009.
4. Y. Li, J. Dongarra, and S. Tomov. A Note on Auto-tuning GEMM for GPUs. In

Proc. of ICCS ’09, pages 884–892, Baton Rouge, LA, 2009.
5. S. Barrachina, M. Castillo, F. Igual, R. Mayo, and E. Quintana-Orti Evaluation

and Tuning of the Level 3 CUBLAS for Graphics Processors In PDSEC ’08.

