
Locality and Topology aware Intra-node
Communication Among Multicore CPUs

Teng Ma, George Bosilca, Aurelien Bouteiller and Jack J. Dongarra

Innovative Computing Laboratory,
University of Tennessee Computer Science Department
1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA
{tma, bosilca, bouteill, dongarra}@eecs.utk.edu

Abstract. A major trend in HPC is the escalation toward manycore,
where systems are composed of shared memory nodes featuring numer-
ous processing units. Unfortunately, with scale comes complexity, here
in the form of non-uniform memory accesses and cache hierarchies. For
most HPC applications, harnessing the power of multicores is hindered
by the topology oblivious tuning of the MPI library. In this paper, we
propose a framework to tune every type of shared memory communica-
tions according to locality and topology. An implementation inside Open
MPI is evaluated experimentally and demonstrates significant speedups
compared to vanilla Open MPI and MPICH2.

1 Introduction

Because the emergence of thermic and power issues have prevented further per-
formance improvements through the usual frequency scaling, CPU vendors have
resorted to multicore architectures to deliver the expected level of performance
progression. Unfortunately, incorporating more processing units does not give an
instant and automatic speed boost to applications; programmers have to take
into account numerous issues posed by the intrinsic parallel and heterogeneous
nature of multicore chips. Although HPC developers have become proficient at
harnessing the power of parallel systems, through the use of various program-
ming models such as Single Process Multiple Data (SPMD) and tools like MPI
or OpenMP, straight out applications of those paradigm on cluster of multicores
types of architecture have exhibited disappointing performance [1]. To enable
the integration of more cores inside a computing node, vendors are forced to
expose more complex architectures, exhibiting Non Uniform Memory Accesses
(NUMA) and several levels of partitioned cache hierarchies. Furthermore, design
and implementation of multi-core architecture present a large diversity among
vendors. As an example, Intel’s Tigerton CPUs feature a SMP architecture,
while AMD’s Istanbul and Intel’s Nehalem exhibit NUMA characteristics. In a
node, some cores reside on different sockets, interconnected by network-style fast
connections such as Intel’s QuickPath and AMD’s HyperTransport. Even inside
a single die, one can encounter different L2 caches, shared between exclusive

groups of cores, so that two cores of the same processor might or might not
share the same level of cache, depending on their respective position on the die.

While hybrid approaches and novel programming models are being investi-
gated, the large majority of applications available in the HPC ecosystem today
are based on the message passing paradigm (using the MPI standard). Convert-
ing every and each of those applications to take into account the fine subtleties
of the various and changing vendor implementations of multicore systems would
impose a significant and lasting burden to the community. Among the issues
preventing message passing from delivering performance on cluster of multicore
systems is the use of a flat set of tuning parameters for all shared memory com-
munications, regardless of the underlying hardware architecture, more precisely
the distance to different levels of cache and memory and the physical topology
imposed by the chips. In this paper, we propose to alleviate this issue by pro-
viding a topology aware framework inside the message passing middleware, in
order to unleash legacy application performance on the most recent architectures
without shifting the programming model. The prominent feature of this frame-
work is to optimize intra-node communication by selecting the optimal tuning
parameter set at runtime. Multiple communication parameter sets are provided
and can be selected, according to the run-time placement of the MPI processes
and considering the topology of the underlying hardware.

The rest of this paper is organized as follows: Section 2 introduces the related
work on multi-core intra-node communication. Section 3 formulates and outlines
the extent of the problem when considering modern multicore processors. Then
Section 4 describes our framework designed to combine locality and topology
information with intra-node communication, and its implementation in a lead-
ing MPI implementation. A performance study is presented in the Section 5,
substantiating the benefits of this approach when compared to the Open MPI
and MPICH2 implementations. Finally, Section 6 concludes the paper with a
discussion of the results and future directions.

2 Related Work

MPICH2 [2] and OpenMPI [3,4] are the two major implementations of the MPI
standard. Both feature an optimized device to handle shared memory commu-
nications: Nemesis [5] for MPICH2 and the SM BTL for Open MPI. In both
MPI implementations, large messages are divided into fragments to establish
a pipeline. The smallest message to use the pipeline protocol as well as the
fragment size are examples of crucial parameters to reach maximum bandwidth
without sacrificing latency. The OPTO tool [6] has been proposed to optimize
the run-time parameters of the Open MPI environment. It uses a brute-force
searching of the parameter space by evaluating benchmarks such as NetPipe, for
point-to-point communication, and SkaMPI, for collective communication. This
set of tuned parameters is then used for every communication of any application.

In regular MPI shared memory implementations, any transfer actually in-
volves two memory copies: one from the user buffer to the shared memory buffer

C
0

L2

C
12

C
8

C
4

L2

C
1

L2

C
13

C
9

C
5

L2

C
2

L2

C
14

C
10

C
6

L2

C
3

L2

C
15

C
11

C
7

L2

Memory
Controller

HUB (MCH)

Memory

Socket 0 Socket 1 Socket 2 Socket 3

Memory Memory Memory

(a) Four sockets Intel Tigerton node

C0

L3

C6
C4
C2

C1

L3

C7
C5
C3

QPI

Memory

Socket 0

Socket 1

(b) Two sockets Intel Nehalem node

Fig. 1. Architecture comparison between 2 generations of Intel multicore CPUs

and another to the destination user buffer. The LiMIC [7] kernel module can
decrease the number of necessary memory copies to one by doing the memory
movement with kernel access rights. KNEM [8] is a similar kernel module that
also features DMA (Direct Memory Access) copy by using Intel I/O acceleration
technique (I/OAT). DMA copy can decrease cache pollution and CPU noise from
communication. However, DMA performance suffers when multiple communica-
tions overload a single DMA device, which is very likely with the current trend
to increase the number of cores. In that context, rather than easing the tuning
process, using kernel-based DMA methods is another parameter that changes
according to the communication workload.

Several efforts have proposed to embrace the hierarchical nature of Grid sys-
tems network [9,10,11]. These papers propose different approaches to map the
collective communication topology to the actual network topology, an idea that
applies as well to multicore processors. Yet, our work focuses on the optimization
of point-to-point message, and its indirect improvement on collective communi-
cation performance. The optimization and tuning of the collective algorithm
itself, according to the hardware topology, is left for future works.

While shared memory communication tuning has been an active research
area, using the underlying hardware topology to define different tuning param-
eter sets, as we propose in our framework, has never been attempted.

3 Multicore and Multifarious Hierarchies

Modern CPUs exhibit several levels of cache, with non uniform memory accesses.
The communication distance between two cores of a single node varies depending
on those hierarchies. Furthermore, each vendor exhibits different characteristics
that tends to radically change between successive CPU generations. Figure 1(a)
and Figure 1(b) illustrate such differences by describing two typical cluster nodes
featuring different generations of Intel multicore CPUs. Figure 1(a) shows the ar-
chitecture of a node with four Intel’s Tigerton CPUs (16 cores). In this machine,

all sockets are interconnected by one memory controller. Thus, the apparent
distance to the memory is the same for every core. However, three different com-
munication path exist with distinct costs. The first one is between core 0 and
core 8 which are on the same die and share the L2 cache. While core 0 and core
4 do not share L2 cache, communication inside the same socket are significantly
faster than resorting to the FSB (front side bus). Between core 0 and core 2,
hosted in different sockets, the FSB is the only option. Figure 1(b) describes the
architecture of a node with two Intel Nehalem CPUs (8 cores). Each processor
has an independent memory controller, which makes it a NUMA architecture.
While all cores of a socket share a common L3 cache, the Nehalem architecture
also exhibits different communication performance whether the cores are on the
same socket or not.

SPMD had been a very successful programming model for single core archi-
tectures. Consequently, numerous applications and libraries have been developed
following this approach, and have benefited from its easy portability across dif-
ferent vendors, and excellent level of performance. However, in the context of
multicore CPUs, not considering the locality and topology of the cores distri-
bution inside the CPUs dreadfully affects the overall application experienced
communication performance.

Nowadays MPI implementations provide a specific optimized device to handle
shared memory communications. This device is usually applied directly to core-
to-core communications with a single set of tuning parameter oblivious of the
topology between the sender and receiver cores. As an example, in the Nemesis
device of MPICH2, when the message size is smaller than PIPELINE THRESHOLD
(128KBytes), the copy limit, defining the pipeline size, is set to 16KBytes. For
larger messages, this parameter is changed to MPID MEM COPY BUF LEN which is
often 32KBytes. Open MPI also has a set of similar communication parameters
(btl eager limit and btl max send size) which are used for protocol switch
point and pipeline size respectively. Unlike MPICH2, in Open MPI users can
tune those parameters without recompiling the MPI library. Despite this added
flexibility, users rarely have the expertise and time to properly tune parameters
for the communication pattern of their application, leading most runs to use the
default parameters. Furthermore, for any run of an application, a single set of
tuning parameters can be used. Therefore, it is impossible to apply a different set
of tuning parameters to communications to account for different characteristics
of the links between cores. The experimental section of this paper (5) provides
an evaluation of the extent of the performance issue induced.

4 Multi-tuning Framework

Because Open MPI is based on a modular and component model while at the
same time retaining outstanding performance, it is a very convenient vessel
to investigate new features. Thus, while the principles presented are generic,
our topology aware multicore communication framework is implemented into
Open MPI. The framework is composed of three main components: the rule dis-

CPU locality btl eager limit pipe size use knem DMA min

Tigerton no shared L2 cache 2096 0.5 * L1 cache 1 2196608

Nehalem EP no shared L2 cache 4192 0.5 * L1 cache 0 null

Tigerton shared L2 cache 2096 L1 cache 1 4804864

Table 1. An example of rule discovery table

covery module, the machine topology discovery module and the runtime com-
munication tuning module.

The rule discovery module is used offline to construct a table storing knowl-
edge about best tuning parameters for a particular architecture. In this table,
we store common knowledge about the relationship between CPU architecture,
locality, topology and tuning parameters. Table 1 is an example of a generated
rule table, where the tuning of various pipeline length and the use of a DMA
engine is governed by the sharing of an L2 cache. Rules are inferred from a math-
ematical model taking into account the size of the L1 data cache, L2 cache and
the sharing of cache hierarchies between cores. As an example, if two cores share
the L2 cache, the heuristic is to use half of L1 data cache size as the pipeline
size. Most rules depends on the cache reuse policy and the snoopy cache proto-
col. Different sets of rules have been defined for different families of processors.
While more experimental evaluations are needed to assert the soundness of the
models proposed, the results presented in the experimental section of this paper
are encouraging. Should some architecture be difficult to describe with a mathe-
matical model, the previously discussed parameter exhaustive OPTO tool could
also be used to build the rule table.

The machine topology discovery module discover, once for every run, all
information about the cache hierarchies, core mapping and proximity between
each pair of cores. This module is based on the Portable Hardware Locality
(hwloc) [12] project. It provides a portable abstraction (OS, versions, archi-
tectures, etc.) of the hierarchical topology of modern CPUs, including NUMA
memory nodes, sockets, shared caches, cores and hyper-threading. It also gathers
various system attributes such as cache and memory information.

Based on the tables generated by the two discovery modules, the runtime
communication tuning modules instantiates several distinct SM BTL with ad-
equate tuned parameters for each type of communications. Then, among the
available instantiation of the SM BTL, for every message, the best one [13] is
selected to actually transfer the data, based on the rules applied to this type
and size of message and the source to destination core distance.

5 Experimental Evaluation

Experimental Conditions. Our experimental setup includes two different Intel
based machines. The first one is based on four Intel Xeon E7340 at 2.4GHz
(Tigerton), as described by Figure 1(a). Its L1 data cache is 32KB and L2 data
cache is 4MB. The four sockets are interconnected each other by the front side
bus. The second system is based on two Intel Xeon E5520 at 2.27GHz (Nehalem),

 2

 4

 6

 8

 10

 12

 14

 4
k

 16k
 64k

256k
 1M 4M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Tuned
Vanilla

(a) MPICH2 off-die

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4
k

 16k
 64k

256k
 1M 4M

Message Size (Bytes)

Tuned
Vanilla

(b) MPICH2 on-die

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4
k

 16k
 64k

256k
 1M 4M

Message Size (Bytes)

Tuned
Vanilla

(c) Open MPI off-die

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4
k

 16k
 64k

256k
 1M 4M

Message Size (Bytes)

Tuned
Vanilla

(d) Open MPI on-die

Fig. 2. Impact on bandwidth of pipeline fragment size tuning according to core
distance on the Tigerton machine for MPICH2 and Open MPI

as described by Figure 1(b). Its L1 data cache is 32KB, and each core has an
independent L2 data cache whose size is 256KB. CPUs are interconnected by
Intel QuickPath. The same operating system (Linux 2.6.30) is deployed on both
machines. MPICH2-1.2.1 and Open MPI trunk (r22930) are used. We used Net-
PIPE [14], Intel MPI benchmarks [15] and the NAS parallel benchmarks [16] to
evaluate the performance of our tuning framework. All benchmarks are compiled
with gcc 4.1.2, with the -O3 flag.

Assessment of the Severity of the Performance Issues. The first set of exper-
iments evaluates the performance loss incurred by using a single set of tuning
parameters, regardless of core locality. Figure 2 presents the performance com-
parison between a vanilla version of MPICH-2 and Open MPI with a similar
version where pipeline size has been hand-tuned for maximum inter-socket band-
width. In vanilla MPICH-2, for messages larger than 128KB, the pipeline size
switches from 16KB to 32KB. As the steep bandwidth drop illustrates in Fig-
ure 2(a), this is a very inappropriate tuning for communications between cores
located in different sockets. The hand tuned version, that retains the original
16KB pipeline for larger messages, is capable of sustaining a higher bandwidth,
up to a very significant 2.5 times improvement. Open MPI exhibit the same
behavior (Figure 2(c)), illustrating that the issue is not implementation specific.
However, as illustrated by the Figures 2(b) and 2(d), when communicating inside
the same die, the default parameters are perfectly tuned and perform slightly
better. While the hand tuned parameters yield significant benefits in certain
cases (inter-socket communications), using them in certain cases decrease per-
formance, illustrating the need for using simultaneously different sets of tuning
parameters for different types of communications.

Effectiveness of the Multi-tuning Framework. The four Figures 3 presents the
comparison between vanilla MPICH2, vanilla Open MPI and multi-tuned Open
MPI in the NetPIPE ping-pong benchmark for a variety of machines and core
distributions. The bandwidth values for message smaller than 4KB have been
removed for clarity, as the performance of the three versions were similar. On the

 2

 4

 6

 8

 10

 12

 14

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(a) Tigerton, inter-socket C0 ⇀↽ C2

 5

 10

 15

 20

 25

 30

 35

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(b) Nehalem, inter-socket C0 ⇀↽ C1

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(c) Tigerton, intra-socket C0 ⇀↽ C8

 20

 25

 30

 35

 40

 45

 50

 55

 60

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(d) Nehalem, intra-socket C0 ⇀↽ C2

Fig. 3. Bandwidth of the ping-pong test for vanilla MPICH2, vanilla OpenMPI
and multi-tuned Open MPI

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 4
k

 16k
 64k

256k
 1M 4M

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

Message size (Bytes)

(a) Tigerton platform

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 4
k

 16k
 64k

256k
 1M 4M

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

Message size (Bytes)

Vanilla Open MPI
AllReduce

AlltoAll
Broadcast

(b) Nehalem platform

Fig. 4. Run time of the IMB collective tests of the multi-tuned Open MPI (nor-
malized to the vanilla Open MPI performance, lower is better)

Tigerton machine, the multi-tuned version outperforms both vanilla Open MPI
and MPICH2 for inter-socket communications (Figure 3(a)), thanks to using bet-
ter tuning. Contrarily to the naive hand-tuned version presented in the previous
experiment (Figure 2(d)), it does not suffer from any performance degradation
for intra-socket communication (Figure 3(c)). The same holds with the Nehalem
processor; though initially MPICH2 performs better than Open MPI, the multi-

tuned Open MPI version outperforms both vanilla MPI for intra-socket com-
munications. Though all cores are on the same die, they don’t share L2 cache,
which is the prominent performance affecting factor.

name Nehalem (8 cores) name Tigerton (16 cores)

Open MPI Tuned Speedup Open MPI Tuned Speedup

IS.C 3.72s 3.48s 6.9% IS.C 6.27s 6.22s 0.8%

FT.B 15.81s 15.31s 3.3% FT.B 24.53s 24.45s 0.32%

LU.C 278.34s 276.81s 0.55% LU.C 209.07s 204.64s 2.16%

MG.B 2.60s 2.57s 1.2% MG.B 4.94s 4.91s 0.61%

CG.C 46.42s 46.34s 0.17% CG.C 97.31s 96.21s 0.93%

Table 2. Run time of the NAS benchmarks

Collective Communications. Figure 4(a) and Figure 4(b) present the run time of
multi-tuned OpenMPI for Broadcast, AlltoAll, and AllReduce collective commu-
nication, on the Tigerton and Nehalem machines, normalized to the run time of
the similar algorithm in vanilla Open MPI. In this experiment, the multi-tuning
only takes place at the the point-to-point communication level underlying the
collective algorithm; the collective algorithm itself is left unchanged. For mes-
sages smaller than 4KB, the physical page size, multi-tuned and vanilla Open
MPI always use the same eager protocol, exhibiting equal performance (thus not
presented on the graph); yet significant performance improvement are visible for
larger message sizes.

In the AlltoAll test, while multi-tuned Open MPI reduces the execution time
by only 2% on the Tigerton platform, it yields up to 17% improvement on the
Nehalem platform. This result can be explained by the communication pattern of
the shared memory AlltoAll collective operation: it does not use a tree topology.
On the Tigerton platform, the cross bandwidth of the FSB is consequently easily
saturated by this naive algorithm, negating the inter-socket bandwidth benefit
achieved on the simple point-to-point benchmark. As multi-tuning does not yield
much gains for the intra-socket communication on the Tigerton architecture, the
overall benefit is small. On the contrary, the Nehalem platform features only two
sockets connected through the much faster QPI interface and adapts better to
cross-traffic. Moreover, intra-socket point-to-point bandwidth is also improved
on this system, which transfers as well to the collective performance.

In the AllReduce test, multi-tuned OpenMPI benefits from a 12% run time
reduction on Nehalem and up to 23% for the very common 256KB message size
on Tigerton. Both platform exhibit a close to 25% performance improvement for
some message sizes on the Broadcast collective operation. In these two collectives,
the shared memory collective algorithm uses a tree topology which does not
saturate the inter-socket link; therefore, benefits of multi-tuning on point-to-
point performance are reflected in the collective performance. For the entire
range of message sizes, multi-tuned collective operations compare favorably to
vanilla Open MPI, except for 32KB on the Tigerton platform.

Applications. Additionally, we used application benchmarks to evaluate the per-
formance of our framework. We used IS, FT, LU, MG and CG from the NAS
benchmarks. Table 2 shows the comparison between the runtime of the multi-
tuned version of Open MPI and vanilla Open MPI for these benchmarks. Com-
pared with regular MPI, the multi-tuned approach always decreases the over-
all application runtime. As communication are using the extremely fast shared
memory device, the communication to computation ratio is balancing toward
computation bound performance. As a consequence, the overall impact of com-
munication performance on the application runtime is small, an effect more
pronounced on the benchmark achieving good communication overlap by com-
putations such as MG and CG. Though the CG benchmark is communication
intensive, only its latency bound communications are difficult to overlap, an area
where tuning is already adequate by default. The FT benchmark, which uses an
all-to-all collective communication, exhibits a similar performance profile as the
AlltoAll test, with almost no gain on the Tigerton platform but some improve-
ment on the Nehalem. The maximum performance improvement of multi-tuning
is achieved in the communication intensive IS benchmark on the Nehalem plat-
form, with close to 7% application run time improvement.

6 Conclusion and Future Work

In this paper, we studied the problem of intra-node communication inside mul-
ticore CPUs. Our experiments show that ignoring the locality and topology
information in the MPI software stack is an obstacle to harness the optimal
communication performance on multicore systems. We then introduced a frame-
work to 1) build tuning rules for different models of CPUs, 2) discover the
run-time information such as CPU type, cache size, locality and etc. and 3) take
advantage of this knowledge to finely tune the internals of the MPI library for
different kind of communications. Our experiments show that the multi-tuned
Open MPI version based on this framework, always exhibits better application
performance, thanks to improved communication speed for both point-to-point
and collective communication patterns. With the future increase in the number
of cores per node this benefit is expected to be magnified.

Future Works While fine tuning of point-to-point communication to adapt to
the multicore topology has proven beneficial indirectly to the collective com-
munications, tuning the collective itself according to the same information has
the potential to further increase performance. We expect to witness the same
hardware locality dependent tuning for the selection and parametrization of the
collective algorithm itself, an area where we believe our multi-tuning approach
will be valuable.

References

1. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: Parallel, Distributed and Network-based
Processing. (2009) 427 –436

2. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Computing
22(6) (1996) 789–828

3. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary (2004) 97–104

4. Graham, R.L., Woodall, T.S., Squyres, J.M.: Open MPI: A flexible high perfor-
mance MPI. In: Proceedings, 6th Annual International Conference on Parallel
Processing and Applied Mathematics, Poznan, Poland (2005)

5. Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of Nemesis, a scalable,
low-latency, message-passing communication subsystem. Cluster Computing and
the Grid, 2006. Sixth IEEE International Symposium on 1 (2006) 10–20

6. Chaarawi, M., M.Squyres, J., Gabriel, E., Feki, S.: A tool for optimizing runtime
parameters of Open MPI. In: Proceedings, 15th European PVM/MPI Users’ Group
Meeting. Number 5205 in LNCS, Springer Verlag (2008) 210–217

7. Jin, H.W., Sur, S., Chai, L., Panda, D.: LiMIC: support for high-performance MPI
intra-node communication on linux cluster. Parallel Processing, 2005. ICPP 2005.
International Conference on (2005) 184–191

8. Buntinas, D., Goglin, B., Goodell, D., Mercier, G., Moreaud, S.: Cache-Efficient,
Intranode Large-Message MPI Communication with MPICH2-Nemesis. In: Pro-
ceedings of the 38th International Conference on Parallel Processing (ICPP-2009),
Vienna, Austria, IEEE Computer Society Press (2009) 462–469

9. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: Magpie:
Mpi’s collective communication operations for clustered wide area systems. In:
Proceedings of the 1999 ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPOPP’99). (1999) 131–140

10. Karonis, N.T., de Supinski, B.R., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.:
Exploiting hierarchy in parallel computer networks to optimize collective oper-
ation performance. The 14th International Parallel and Distributed Processing
Symposium (2000) 377

11. Filgueira, R., Singh, D.E., Pichel, J.C., Isaila, F., Carretero, J.: Data Locality
Aware Strategy for two-phase Collective I/O. In: VECPAR 2008: 8th Intl. Con-
ference High Performance Computing for Computational Science. (2008) 137–149

12. Broquedis, F., Clet Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G.,
Thibault, S., Namyst, R.: hwloc: a Generic Framework for Managing Hardware
Affinities in HPC Applications. In: The 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Computing. (2010)

13. Shipman, G.M., Woodall, T.S., Bosilca, G., Graham, R.L., Maccabe, A.B.: High
performance RDMA protocols in HPC. In: Proceedings, 13th European PVM/MPI
Users’ Group Meeting. LNCS, Bonn, Germany, Springer-Verlag (2006)

14. Snell, Q.O., Mikler, A.R., Gustafson, J.L.: NetPIPE: A network protocol indepen-
dent performance evaluator. In: in IASTED International Conference on Intelligent
Information Management and Systems. (1996)

15. Intel: Intel MPI benchmarks 3.2. http://software.intel.com/en-us/articles/intel-
mpi-benchmarks/ (2010)

16. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V., Weer-
atunga, S.K.: The NAS parallel benchmarks. Technical report, The International
Journal of Supercomputer Applications (1991)

	Locality and Topology aware Intra-node Communication Among Multicore CPUs
	Teng Ma, George Bosilca, Aurelien Bouteiller and Jack J. Dongarra

