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I. PORTABLE GPU PROGRAMMING

With the help of of CUDA [7], [6], many applications
improved their performance by using GPUs. In our project
called Matrix Algebra on GPU and Multicore Architec-
tures (MAGMA) [10], we mainly focus on dense linear
algebra routines similar to those from LAPACK [1]. Other
than CUDA, there exist other frameworks that allow platform-
independent programming for GPUs. The main three frame-
works are:

1) DirectCompute from Mircosoft,
2) OpenGL Shading Language (GLSL), and
3) OpenCL

The first one allows access to graphics cards from multiple
vendors. However, it is specific to Microsoft Windows and
therefore it is not portable between host Operating Sys-
tems (OS).

OpenGL Shading language [8] is portable across both GPU
hardware and the host OS. However, it is specifically geared
towards programming new graphics effects – GLSL does not
have the scientific focus.

OpenCL [3] has been designed for general purpose com-
puting on GPUs (GPGPU). It is an open standard maintained
by the Khronos group with the backing of major graphics
hardware vendors as well as large computer industry vendors
interested in off-loading computations to GPUs. As a result,
there exist working OpenCL implementations for graphical
cards and, in addition, there is an implementation that works
without a GPU by off-loading computations to multi-core
processors. As a result, OpenCL offers portability across
GPU hardware, OS software, as well as multicore processors.
Therefore OpenCL is our choice of implementing a portable
numerical linear algebra library.

II. COMPARISON BETWEEN CUDA AND OPENCL

CUDA and OpenCL have many conceptual similarities but
they diverge on terminology. Table I shows the corresponding
terms in both frameworks. In addition, Table II shows the
platform details in between two different NVIDIA GPUs and
one GPU from ATI/AMD.

Figure 1 shows side-by-side differences of the kernel codes
for triangular inversion routine (TRTI2) for OpenCL and
CUDA. The changes are in the lines annotated in red. They
belong to the following categories:

CUDA term OpenCL term

host CPU host
streaming multiprocessor (SM) compute unit (CU)

scalar core processing element (PE)
host thread host program

thread work-item
thread block work-group

grid NDRange
shared memory local memory

constant memory space constant memory
texture memory space constant memory

TABLE I
COMPARISON OF TERMS USED BY CUDA AND OPENCL TO DESCRIBE

VERY SIMILAR CONCEPTS.

• Obtaining the ID for the thread/work-item and
block/work-group.

• The definition of shared memory in CUDA is replaced in
OpenCL by local memory: shared is replaced with

local
• OpenCL makes explicit differentiation between global

memory addresses (device memory address space) and
local memory addresses (register variable or pointer to
shared memory) whereas CUDA treats all pointers as
simply double *.

• Syntax for synchronization primitives.

III. DESIGN FOR A MATH LIBRARY BASED ON OPENCL

To make an assessment about developing linear algebra
library using OpenCL, this work is based on an algorithm
for triangular solvers on GPU. The basic idea is to invert
the diagonal blocks in parallel and use matrix multiplication
(GEMM) to update the solution.

Figure 2 shows the breakdown of run time of the ini-
tialization procedure. oclDtrsm (triangular solver written in

GPU Device GTX 280 C2050 (Fermi) Radeon 5870

Compute Units 30 32 20
Processing elements 8 16 16

TABLE II
COMPARISON OF COMPUTATIONAL RESOURCES AVAILABLE ON NVIDIA’S

GTX 280



Fig. 1. Comparison of Device Kernel Code Between OpenCL and CUDA.
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Fig. 2. Breakdown of initialization time.

OpenCL using double precision) is run with M=10240 and
NRHS=128. Each of the three major parts of the initialization
run slower than the GPU kernel of oclDtrsm. Compiling
OpenCL source code into a binary form (PTX assembly on
CUDA) takes the longest time among all parts. Similar effect
is also observed on an ATI HD 5870 GPU with the same
OpenCL code using ATI STREAM SDK [2]. into 7000+ lines
of PTX assembly code takes just over 6 seconds, One solution
to reduce this overhead is to separate compiling and execution
– source code compilation could just be done once during the
library installation process. As of this writing, there is no off-
line kernel compiler in the implementation of OpenCL from
NVIDIA. It is suggested [4] for this to be implemented by
the end users. On NVIDIA GPU, we used clGetProgramInfo
to obtain the PTX assembly and write it to disk. During the
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Fig. 3. Flow chart of loading procedure for the library kernels.

initialization phase, the assembly is read from the disk and
processed by a call to clBuildProgram. This method reduced
the time to prepare the PTX assembly from 6 seconds to under
one second (0.8 s). Still, the time to create a kernel from
a pre-built program takes more time than the computation.
For example, the GEMM kernel is invoked by oclDtrsm
more than 600 times. We used static pointer variables in our
implementation to reuse the compiled kernels.

For software libraries that target one specific device, we
propose a mechanism shown in Figure 3 that does way with
portability. In this design, device kernels are compiled and
stored on disk during the installation and transformed into
kernel executables as needed.
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Fig. 4. Analysis of time spent in the complete kernel.
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Fig. 5. Analysis of time spent in DTRTI2 kernel.

IV. PERFORMANCE RESULTS

Figure 4 shows the run time breakdown of the kernel in
algorithm 1 in double precision (hence a ’D’ in front of
GEMM). M=4096 and M=10240 represent small and large
problem sizes respectively, and the number of right hand side
(NRHS) is 128 which creates sufficient amount of calls to
DGEMM. The time to allocate and release an internal buffer
is also recorded. This internal buffer in the algorithm is used
to keep the inverted diagonal blocks. The size of this buffer
is M by 32. Since the run time of DTRTI2 in all cases is too
small compared to the other parts, its run time is shown in
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Fig. 6. Performance comparison between CUDA and OpenCL on NVIDIA’s
Fermi.

Algorithm 1: oclDtrsm Algorithm
Create internal buffer to store the inverted diagonal blocks;
Invert the diagonal blocks (TRTI2);
while there are still blocks of X to solve do

Update solution in X (GEMM);
Update the right hand side (GEMM);

end
Release the internal buffer;

Figure 5. The time is small because all diagonal blocks are
inverted in parallel. This task is on the critical path of the
triangular solvers and it could be the bottleneck if done one
by one interleaved with GEMM. It is worth observing that the
allocation of internal buffer takes negligible time, but releasing
the memory of internal buffer takes much longer time than in
CUDA. The opposite is true for the ATI OpenCL SDK: it
appears that this is an implementation issue. Also, CUDA and
OpenCL profilers show conflicting timing of DTRTI2: device
kernel in DTRTI2 runs faster with CUDA than OpenCL. We
attribute this to different overhead for both profilers. For more
accurate conclusions, we based our analysis mainly on the
TAU profiling [9].

The chart in Figure 6 shows the results on the NVIDIA
card with the most current CUDA 3.0 driver and the cor-
responding SDK. On the same hardware, OpenCL code is
able to reach 60%-70% performance of CUDA code. The
combination of our diagonal block inversion algorithm with
reduction of overhead (due to the use of precompiled kernels)
for OpenCL allows the algorithm on both CUDA and OpenCL
achieve at least 2-fold improvement over the cublasDtrsm
from CUBLAS [5].
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