
Analysis of various scalar, vector, and parallel implementations of
RandomAccess∗

Piotr Luszczek Jack Dongarra

June 17, 2010

1 Introduction
RandomAccess test (previously called GUPS and guppie)
measures a sustained rate (measured in GUPS) of updates to
random locations in main memory. The random numbers may
be generated by a variety of methods. In this paper two ran-
dom generators are considered: one based on shift registers
and one based on linear congruence relation. The quality of
the main memory address distribution is considered together
with the performance of the generation process. Bothe aspect
are measured in various ways to create an objective setting
for comparison of the generators. The tests and comparisons
include both sequential as well as parallel execution each pos-
sibly using code vectorization.

RandomAccess relies on a pseudo Random Number Gener-
ator (RNG) to create a sequence of random memory locations
that are updated using a simple bit-wise operation. The com-
putational load of the update is very low. Instead, the fetch
and store of the data required for the update are time con-
suming due to the randomness of the sequence of memory
locations that span at least half ot the main memory of the
tested computer. The RNG used in RandomAccess needs to
preserve this balance: generating the random numbers needs
to be computationally cheap and take less time than a cache
miss (and possibly a Translation Look-aside Buffer – TLB –
miss) that can only be resolved by the main memory and not
by any of the cache levels.

2 Current RandomAccess RNG
The current RandomAccess RNG is based on the 64-bit Ga-
lois Linear Feedback Shift Register (LFSR) generator [7, 3]
and uses the following primitive GF(2) polynomial1:

p(x) = x2 + x+1. (1)

Due to the choice of the polynomial this generator is
not maximal – there exist polynomials that result in gen-
erators with longer periods. The period of the genera-
tor is 1317624576693539401 (= 73× 337× 889× 92737×
649657). The period value has a repreated bit pat-
tern that is visible in its hexadecimal representation:
∗ICL Technical Report ICL-UT-10-03
1GF(2) stands for Galois Field of order 2. GF(2) polynomial has coeff-

cients that are either 0 or 1.

0x1249249249249249. Such bit patterns are typical in the
sequences coming from LFSR generators (and such patterns
are statistically expected) but might be a cause of biased ad-
dress streams when used in a RandomAccess implementation.
Given the polynomial from Equation (1) represented by num-
ber 7, the random numbers Xn in the sequence are generated
by the following recurrence relation:

Xn+1 = 2 Xn (mod 264) ⊕ (MSB(Xn)×7) (2)

where⊕ is bit-wise exclusive-or operator and MSB stands for
the Most Significant Bit. Figure 1 shows a scalar implemen-
tation of RandomAccess in C language using Galois LFSR
and standard C operators as well as 64-bit integral types (un-
signed: uint64 t and signed one: int64 t). Since it is possi-
ble to arbitrarily look ahead in the random stream of Galois
LFSR, the generator may be vectorized as shown in Figure 2.

3 Implementation of RandomAccess
with LCG

Linear Congruential Generator (LCG) may be a valid alter-
native to the LFSR RNG. The LCG random sequence is gen-
erated with integer arithmetic by properly choosing three in-
tegral values a, c, and m. The random numbers Xn in the
sequence are generated by the following recurrence relation:

Xn+1 = (aXn + c) (mod m), n≥ 0. (3)

By choosing a = 6364136223846793005 (=3×5×415949×
1020018675983), c = 1, and m = 264 we may obtain a se-
quence with a period 264 [4]. The same RNG is used in
the current implementation of the High Performance LIN-
PACK (HPL) benchmark [1]. A scalar implementation in C
based on this choice of LCG constants is shown in Figure 3.
There are other choices of parameters a and c that lead to good
quality RNGs [5, 6].

A vector implementation may be obtained by using the fol-
lowing look-ahead property of the LCG:

Xn+k =
(

akXn +
ak−1
a−1

c
)

(mod m), k ≥ 0,n≥ 0. (4)

A vectorized implementation is shown in Figure 4.

1



ran = 1;

for (i=0; i <4 * M; ++i) {
ran = (ran << 1) ˆ (((int64 t) ran <0) ? 7 : 0);

table[ran & (M-1)] ˆ= ran;

}

Figure 1: Scalar implementation of RandomAccess using Galois LFSR.

for (j=0; j<128; j++)

ran[j] = LFSR starts ((4*M/128) * j);

for (i=0; i<4*M/128; i++) {
for (j=0; j<128; j++) {

ran[j] = (ran[j] << 1) ˆ (((int64 t) ran[j] <0) ? 7 : 0);

table[ran[j] & (M-1)] ˆ= ran[j];

}
}

Figure 2: Vector implementation of RandomAccess using Galois LFSR.

4 Performance Comparison of Scalar
RandomAccess Codes

From the performance stand point the most important issue is
the ability to vectorize the loop in the RandomAccess code.
Vectorization allows the code to run on the fastest hardware
unit of the machine: be it an SSE unit of the Intel x86 ar-
chitecture or the vector unit of Crax X1E. If the code is not
vectorized the random address issue rate might be too slow to
reveal the true capability of the memory subsytem and lower
the achieved GUPS rate. A common obsticle to loop vec-
torization is the presence of conditional statements and/or ex-
pressions. Speculative execution may be used to deal with this
problem at the compiler level but this feature is not widely
available (Intel Itanium and ARM processors offer the fea-
ture). There is a conditional expression in the code in Figure 1
– it has a form of C’s choice operator (?:). The conditional
expression may be removed by the use of C’s bit operators
as shown in Figure 5. Figure 6 shows performance compar-
ison of the GLFSR codes with and without the conditional
expression against the LCG scalar code from Figure 3. The
codes were run on Intel Core architecutre (Family 6, Model
13, Stepping 6) equipped with 6 MiB L2 cache and with North
Bridge as an external memory controller. The data TLB has
256 entries for 4 KiB pages and thus can span 1 MiB of ad-
dress space at once. The results from Figure 3 indicate that
there is a difference in performance for small table sizes –
the biggest disparity occurring for table with 1048576 (= 220)
entries. A table of that size barely spills the L2 cache which
exacerbates the performance difference between various im-

plementations. When the table vastly exceeds the capacity of
the L2 cache all three codes deliver almost indistinguishable
performance which is most heavily influenced by cache and
TLB misses. When these misses do not dominate it is the
pipeline stalls that can adversely affect the performance. But
on the tested processor, a pipeline stall incurs tens of cycles
in latency whereas highest level cache or TLB misses stall the
processor for hundreds of cycles.

5 Statistical Properties of the RNGs

Simple RNGs may exihibit bad properties in some uses [10],
especially in Monte Carlo simulations [8]. The LCG RNG
as presented above was found satisfactory in a number of
tests [4]. For testing the LFSR RNG, we limit ourselves to just
few simple tests due to poor quality of the RNG. The LFSR
RNG fails uniformity tests assessed by Chi-Square statistic.
And this applies to both: categorization by low bits as well as
categorization by floating-point intervals. We thus proceed to
analyze the RNGs for the purpose of hardware benchmarking.

6 Quality of Random Sequences in the
Context of Sequential RandomAc-
cess

There are many measures of quality for RNG’s [4]. However,
in the context of a sequential implementation of RandomAc-
cess it is important to have a relatively balanced distribution

2



ran = 1;

for (i=0; i <4 * M; ++i) {
ran = 6364136223846793005ULL * ran + 1;

table[ran & (M-1)] ˆ= ran;

}

Figure 3: Scalar implementation of RandomAccess using LCG.

for (j=0; j<128; j++)

ran[j] = LCG starts ((4*M/128) * j);

for (i=0; i<4*M/128; i++) {
for (j=0; j<128; j++) {

ran[j] = 6364136223846793005ULL * ran[j] + 1;

table[ran[j] & (M-1)] ˆ= ran[j];

}
}

Figure 4: Vector implementation of RandomAccess using LCG.

of random numbers to make sure that each generated address
has to be resolved by a reference to main memory rather than
cache. One issue that was often raised against the RNG in
the current RandomAccess implementation was it’s bias to-
ward generating number zero much more often than any other
value. Indeed, as shown in Table 1 value zero occurs 7611
times. Also, there are other values shown in the table that
are generated more often than they should – on average each
value should be generated exactly four times. This may be
improved by not starting with value 1 but with, say, the mil-
lionth value in the sequence (the look-ahead property of the
RNG may be used move to an arbitrary location in the se-
quence). Figure 7 shows how the number of occurances of
value zero in the random sequence changes when the squence
starts with the first number, the 1000000th number, 2000000th

number and so on (for the power of 10 data set) and the first
one, the second one, the fourth one and so on (for the power
of 2 data set). The random sequence had 230 elements. The
best result (the smallest number of occurances of value zero)
happens when the sequence is used starting with its 230-th el-
ement – the number of occurances of zero drops to 3441. It
is still a large value considering the fact that ideally it should
be 4. This problem cannot be fixed by choosing the most sig-
nificant bits of the random sequence (as opposed to choosing
the least significant ones which is done in the implementation
in Figure 1). It does not help either to use the last 230 numbers
of the sequence. The results always look very similar as those
included in Figure 7 – the Galois LFSR generator is biased
towards zero at any part of the generated sequence. The LCG
does not have the problem with excessive occurences of value
zero: zero occurs either four times in the sequences when the

least significant bits of the random numbers are used for in-
dexing (as shown in Figure 3) or five times if the most signif-
icant bits are used. In fact, when the least significant bits are
used, each element of the table is accessed exactly four times
– an ideal situation. If the most significant bits are used, some
elements of the table are not accessed at all while others are
accessed at most 21 times – this is a large improvement over
Galois LFSR.

But using the number of occurences of zero in the se-
quence might not be the best indication of problems or advan-
tages of the resulting address stream. A more telling picture
comes from the count of repeated elements in the whole se-
quence. Such counts are presented in Figure 8. The figure
includes three random sequences of length 230: two LFSR
sequences (one starts at first element and the other starts at
element 230) and an LCG sequence that uses highest bits as
the address. The X axis has ranges of counts while the Y axis
shows the percentage of address that occured the number of
times that fits the corresponding range count on X axis. For
example, the tallest bar occur for the range 4 . . .7 – each bar
barely crosses the 50% mark on Y axis. This means that about
50% (51.5% to be exact) of address were repeated 4, 5, 6, or
7, in the sequence. The number of address that have not been
generated by neither of the sequences is represented by the
leftmost three bars. These three bars are don’t cross the 2%
mark on the Y axis: it means that less than 2% address (1.85%
to be exact) were not generated from neither of the sequence.
The graph goes all the way to the range 4096 . . .8191 be-
cause the LFSR sequence that starts at the first element gen-
erated address zero exactly 7611 times. One conclusion may
be drawn from the figure: aside from the outliers, each of

3



bit63 = 1 << 63;

ran = 1;

for (i=0; i <4 * M; ++i) {
ran = (ran << 1) ˆ((uint64 t)-(int64 t)((ran & bit63) << 63) & 7);

table[ran & (M-1)] ˆ= ran;

}

Figure 5: Scalar implementation of RandomAccess using Galois LFSR.

Value Occurences
0 7611
7 1223

536870912 1223
1073741821 1088

93001262 1037
583371543 1033
828556680 1033
744010082 1031
186002523 1029
372005041 1027
414278340 1023

1002159032 967
787410670 965
572662305 962
143165578 953
930576247 946
501079516 945

Value Occurences
286331155 940

71582789 928
3 882
1 877
2 868

14 772
268435456 706
805306368 705

9 639
28 466
27 459

505855053 428
939524096 426
671088640 424

81234350 421
649874809 414
394899217 412

Value Occurences
402653184 411
452015587 409
789798437 408
825614952 406
134217728 405
162468700 404

1011710106 404
324937407 403
577488087 403
904031174 399
226007794 398
734320523 397
949678388 397

21 379
18 362

194457182 345

Table 1: The top 50 values in the random sequence of lenght 230 generated by Galois LFSR and the number of times they
occur.

the three methods generate the same number of repeating ad-
dresses. Still, the LCG sequence that uses the least significant
bits is the best: each address is generated exactly 4 times as it
should.

7 Parallel RandomAccess Considera-
tions

RandomAccess test may be parallelized by splitting the main
table between P processes as shown in Figure 9. The random
stream of addresses in the main table is generated in a dis-
tributed fashion: each process generates a portion of the se-
quence as shown in Figure 10. The current parallel implemen-
tation of RandomAccess uses the variables defined in Table 2.
The global RandomAccess table size is always a power of 2
but the number of processes may not be – a proper airthmetic
ensures even distribution of data and random stream indices.

The key requirement for scalability of parallel implemen-
tation of RandomAccess is ability to cheaply look ahead in
the random stream. Stepping from the begining of the stream
into an arbitrarly position in the stream should preferrably
be of order O(1). The current parallel implementation of
RandomAccess includes a function (called LFSR starts in

Figure 2) that can compute any number in the sequence in
O(log2 m) time (m being the period of the LFSR RNG). A
corresponding function (called LCG starts in Figure 4) may
be implemented for LCG by using the formula from Equa-
tion (4). Such function will also have complexity O(log2 m)
for LCG with period m. Both methods RNG’s are thus suit-
able for parallel implementation since for each of them it
holds that m≤ 264⇒ log2 m≤ 64.

By distributing the random sequence generated by each
of the considered RNG’s between the process it is possible
to perform a simple test of suitability of the above RNG’s
for parallel RandomAccess implementation. After distribut-
ing the previously mentioned sequences of length 230 evenly
across the processes a measure of even distribution (and thus
an even parallel load) may be a percentage difference between
the minimum and maximum number of updates that each pro-
cess receives. That difference is at most 0.3% when using up
to 16 processes. This seems an acceptable value and does not
favor decisively one RNG over another one.

4



Figure 6: Performance comparison of various scalar implementations of RandomAccess.

8 Verification of Benchmarked Ran-
domAccess Run

The source code of an optimized implementation of Ran-
domAccess usually cannot be examined and thus a reliable
method is needed to verify the correctness of the computa-
tion. This is done by peforming two RandomAccess runs:
an optimized one and a reference one. Each one performs
Exclusive-OR (XOR) operation on the main table entries and
thus after two runs the table should return to its initial state.
It is relatively easy to set the initial state of that table such
that it is fast to verify a RandomAccess test. The current im-
plementation sets the value of the ith element of the table to
be i. Either RNG is suitable for this verification method both
in terms of accuracy of verification as well as its performance.

9 Conclusions and Future Work

The conclusion based on the tests so far is that the current
RNG used in the RandomAccess implementation might have

some disadvantages when compared with the LCG. On aver-
age however, it seems to be equally good. Additional tests
that might shed more light on the issue are specific tests for
cache line hits (for common values of cache line lengths such
as 64 bytes or 128 bytes) and data TLB hits. The influence
of intruction TLB seems irrelevant due to a compact nature
of code but the influence of using huge pages might be wor-
thy of note. Also, measure cache misses with toolkits such as
PAPI could give a better understanding of hardware behavior
for various RNG’s.

To better test the parallel behavior the presented RNG’s,
larger sequences need to be used and larger process counts
need to be simulated. Analysis of the process communication
matrix for the parallel runs might also reveal potential prob-
lems and make one of the RNG’s to be a preferred choice.
The communication patterns should be examined for both the
reference parallel implementation as well as the recent paral-
lel implemention based on the organization of the processes
into a virtual hypercube [9] as well as souftware routing ap-
proaches [2].

5



Figure 7: The number of occurences of zero in the random sequence of length 230 that begin ith position where i is of the form
either 10 j or 2k.

References
[1] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet.

The LINPACK benchmark: Past, present, and future.
Concurrency and Computation: Practice and Experi-
ence, 15:1–18, 2003.

[2] Rahul Garg and Yogish Sabharwal. Software routing and
aggregation of messages to optimize the p erformance of
the HPCC Randomaccess benchmark. In Proceedings of
SC06, Tampla, FL, November 11-17 2006.

[3] James E. Gentle. Random Number Generation and
Monte Carlo Methods. Springer-Verlag New York, Inc.,
2nd edition, 2003. ISBN 0-387-00178-6.

[4] Donald E. Knuth. The Art of Computer Programming,
volume 2. Addisona-Wesley Professional, 2nd edition,
October 1998.

[5] Pierre L’Ecuyer. Uniform random number generators: A
review. In S. Andradóttir, K. J. Healy, D. H. Withers, and
B. L. Nelson, editors, Proceedings of the 1997 Winter
Simulation Conference, 1997.

[6] Pierre L’Ecuyer. Tables of linear congruential generators
of different sizes and good lattice structure. Mathemat-
ics of Computation, 68(225):249–260, January 1999.

[7] T. G. Lewis and W. H. Payne. Generalized feedback shift
register pseudorandom number algorithm. Journal of the
Association for Computing Machinery, 20(3):456–468,
July 1973.

[8] Giovanni Ossola and Alan D. Sokal. Systematic errors
due to linear congruential random-number generators
with the swendsen-wang algorithm: A warning. Phys.
Rev. E, 70(2):027701, Aug 2004.

[9] Steve J. Plimpton, R. Brightwell, Courtney Vaughan,
K . Underwood, and M. Davis. A simple synchronous
distributed-memory algorithm for the HPCC Rando-
mAccess benchmark. In Proceedings of Cluster 2006 –
IEEE International Conference on C luster Computing,
September 2006.

[10] J. P. R. Toothill, W. D. Robinson, and A. G. Adams. The
runs up-and-down performance of tausworthe pseudo-
random number generators. Journal of the Association
for Computing Machinery, 18(3):381–399, July 1971.

6



Figure 8: Counts of repeated elements for three different random sequences.

Proc1 Proc2 . . . ProcM mod P Proci . . . ProcP

dM/Pe dM/Pe . . . dM/Pe bM/Pc . . . bM/Pc

︸ ︷︷ ︸
Top elements

Figure 9: Parallel distribution of the main table data.

Process First index Last index

1 7→ 1 4dM/Pe
2 7→ 4dM/Pe+1 8dM/Pe

...

M mod P 7→ 4((M mod P)−1)dM/Pe 4(M mod P)dM/Pe
(M mod P)+1 7→ 4(M mod P)dM/Pe+1 4((M mod P)dM/Pe+ bM/Pc)+1

...

P 7→ 4(M−bM/Pc) 4M

Figure 10: Distribution of generated table indices among the processes.

7



Description Math formula Name used in code

Global size of the table M TableSize

Total number of processes P NumProcs

Size of the small local tables bM/Pc MinLocalTableSize

Size of the large local tables dM/Pe MinLocalTableSize+1

No. of processes with large local tables M mod P Remainder

Number of elements in large local tables (M mod P)×dM/Pe Top

Table 2: Important source code variables and their definitions.

8


