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Abstract

We present a Hessenberg reduction (HR) algorithm for hybrid systems of
homogeneous multicore with GPU accelerators that can exceed 25× the per-
formance of the corresponding LAPACK algorithm running on current ho-
mogeneous multicores. This enormous acceleration is due to proper matching
of algorithmic requirements to architectural strengths of the system’s hybrid
components. The results described in this paper are significant because the
HR has not been properly accelerated before on homogeneous multicore ar-
chitectures, and it plays a significant role in solving nonsymmetric eigenvalue
problems. Moreover, the ideas from the hybrid HR are used to develop a
hybrid tridiagonal reduction algorithm (for symmetric eigenvalue problems)
and a bidiagonal reduction algorithm (for singular value decomposition prob-
lems). Our approach demonstrates a methodology that streamlines the de-
velopment of a large and important class of algorithms on modern computer
architectures of multicore and GPUs. The new algorithms can be directly
used in the software stack that relies on LAPACK.
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1. Introduction

Hardware trends. When processor clock speeds flat-lined in 2004, af-
ter more than fifteen years of exponential increases, CPU designs moved
to homogeneous multicores. There is now widespread recognition that per-
formance improvement on CPU-based systems in the near future will come
from the use of multicore platforms. Along with multicores, the HPC com-
munity also started to use alternative hardware solutions that can overcome
the shortcomings of standard homogeneous multicores on a number of appli-
cations. One important example is the use of Graphics Processing Units (or
GPUs) for general purpose HPC. Graphics hardware, already a true many-
core architecture, has substantially evolved over the years, exponentially out-
pacing CPUs in performance. Current GPUs have reached a theoretical peak
performance of 1 TFlop/s in single precision, support the IEEE double pre-
cision arithmetic standard [18] (see Appendix A.2 [19] for exceptions; peak
double precision performance though is currently an order of magnitude lower
than the single precision performance), and have a programming model (e.g.,
see CUDA [19]) that may revive the quest for a free lunch [14]. These de-
velopments have pushed the use of GPUs to become pervasive [20, 28, 29].
Currently, major chip manufacturers, such as Intel, AMD, IBM and NVIDIA,
make it more evident that future designs of microprocessors and large HPC
systems will be hybrid/heterogeneous in nature, relying on the integration
(in varying proportions) of two major types of components:

1. Multi/many-cores, where the number of cores will continue to escalate;

2. Special purpose hardware and accelerators, especially GPUs.

These trends motivate our work because in order to efficiently use the emerg-
ing hybrid hardware, optimal software solutions will themselves have to hy-
bridize, or in other words, to match algorithmic requirements to architectural
strengths of the hybrid components. Indeed, in this paper we show that al-
though there are algorithmic bottlenecks that prevent the reductions to upper
Hessenberg, tridiagonal, and bidiagonal forms from efficiently using a mul-
ticore architecture, hybrid solutions that rely on proper task splitting and
task scheduling over the multicore and GPU components can overcome these
bottlenecks and as a result to yield enormous performance accelerations.
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Two-sided factorizations. The reductions to upper Hessenberg, tridiag-
onal, and bidiagonal forms [13], also known as two-sided matrix factoriza-
tions, are important linear algebra problems, especially with their relevance
to eigen/singular-value solvers. In particular, the Hessenberg reduction is the
first step in computing the Schur decomposition of a non-symmetric square
matrix, which in turn gives the solution for the non-symmetric eigenvalue
problem. The operation count for the reduction of an n × n matrix is ap-
proximately 10

3
n3 which, in addition to not running efficiently on current

architectures, makes the reduction a very desirable target for acceleration.
Furthermore, powering a Hessenberg matrix and solving a Hessenberg sys-
tem of equations is cheap compared to corresponding algorithms for general
matrices, which makes the factorization applicable in other areas as well [17].

The bottleneck. The problem in accelerating the two-sided factorizations
stems from the fact that they are rich in Level 2 BLAS operations, which
are bandwidth limited and therefore do not scale on multicore architectures
and run only at a fraction of the machine’s peak performance. There are
dense linear algebra (DLA) techniques that can replace Level 2 BLAS oper-
ations with Level 3 BLAS. For example, in factorizations like LU, QR, and
Cholesky, the application of consecutive Level 2 BLAS operations that occur
in the algorithms can be delayed and accumulated so that at a later moment
the accumulated transformation be applied at once as a Level 3 BLAS (see
LAPACK [1]). This approach totally removes Level 2 BLAS from Cholesky,
and reduces its amount to O(n2) in LU, and QR, thus making it asymp-
totically insignificant compared to the total O(n3) amount of operations for
these factorizations. The same technique can be applied to HR [15], but in
contrast to the one-sided factorizations, it still leaves about 20% of the total
number of operations as Level 2 BLAS. We note that in practice 20% of
Level 2 BLAS can take 70% of the total execution time on a single core, thus
leaving the grim perspective that multicore use – no matter how many cores
would be available – can ideally reduce only the 30% of the execution time
that are spent on Level 3 BLAS. The amount of Level 2 BLAS operations
in the other two-sided factorizations considered is even higher – 50% of the
flops in both the bidiagonal and tridiagonal reductions are in Level 2 BLAS.

Current work directions. A subject of current research in the field of
DLA are efforts to design algorithms that will reach certain communication-
optimal bounds [31, 34, 3]. In practice, e.g., in the context of one-sided
matrix factorizations for homogeneous multicore architectures, this revolves
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around developing algorithms that use blocked data structures and localized
matrix transformations (e.g., not within the entire panel as in LAPACK,
but within a data block or within two blocks when used for coupling the
transformations) [8, 23, 2]. These ideas can be properly modified and applied
in the context of GPUs as well. Direct application of the existing algorithms
has not been successful so far, mostly because they lead to parallelism of small
granularity which is good for homogeneous multicores, but not for current
GPUs where large-granularity, data-parallel tasks are preferred [26, 35]. To
account for this, current work, e.g., within the MAGMA project [36], is on
MAGNUM-tile algorithms for multiGPUs where single GPUs are used for
the computations within very large (magnum) data blocks (tiles) [21].

Ideas involving block data layouts and localized matrix transformations
can also be used in the two-sided matrix factorizations. For example, simi-
larity transformations based on the Householder transformation [13] can be
used to annihilate matrix elements away from the diagonal of the matrix,
leading to two-sided factorizations to band matrix forms [32, 33]. The band
reduction can be done fast because it avoids certain data dependencies that
lead to large Level 2 BLAS operations in the two-sided factorizations. In
effect, it only delays the difficult to handle dependencies until a second stage
reduction – to the full upper Hessenberg/bidiagonal/tridiagonal forms – that
can totally eliminate the performance gains from the first stage. Indeed,
there are no currently available results showing the computational feasibility
of this two-stages approach for the reduction to Hessenberg and bidiagonal
forms. For the case of tridiagonalization on multicore architectures though
P. Bientinesi et al. [30] showed about two times performance improvement.
We note that although the first stage was cast as Level 3 BLAS in their algo-
rithm, its execution did not scale by increasing the number of cores used and
the authors obtained better performance by using a GPU for that stage. A
further drawback for the approach going through band form is that when the
purpose of the factorization is the computation of eigenvectors, the orthog-
onal transformations used in the factorizations have to be accumulated into
an orthogonal matrix, and that may be challenging to achieve in high perfor-
mance because of the irregular nature and small granularity of the operations
introduced during the second stage.

In contrast, the approach in this paper speeds up the two-sided factoriza-
tions and the results are in LAPACK data-compliant format, thus making the
new algorithms directly usable in the software stack that relies on LAPACK.
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The rest of the paper is organized as follows. In Section 2, we give back-
ground information on multicore and GPU-based computing in the area of
DLA. Section 3 describes the standard HR algorithm, the proposed hybridiza-
tion, and its extension to the tridiagonal and bidiagonal reductions. Next
are performance results (Section 4) and finally conclusions (Section 5).

2. Hybrid GPU-based computing

The development of high performance DLA for new architectures, and in
particular multicores, has been successful in some cases, like the one-sided
factorizations, and difficult for others, like some two-sided factorizations. The
situation is similar for GPUs - some algorithms map well, others do not. By
combining these two architectures in a hybrid multicore + GPU system we
seek to exploit the opportunity of developing high performance algorithms,
as bottlenecks for one of the components (of this hybrid system) may not be
for the other. Thus, proper work splitting and scheduling may lead to very
efficient algorithms.

Previous work. This opportunity for acceleration has been noticed before
in the context of one-sided factorizations. In particular, while developing
algorithms for GPUs, several groups [27, 4, 2] observed that panel factoriza-
tions are often faster on the CPU than on the GPU, which led to the develop-
ment of highly efficient one-sided hybrid factorizations for single CPU core +
GPU [9, 26], multiple GPUs [26, 22, 21], and multicore+GPU systems [25].
M. Fatica [11] developed hybrid DGEMM and DTRSM for GPU-enhanced clusters,
and used them to accelerate the Linpack benchmark. This approach, mostly
based on BLAS level parallelism, results only in minor or no modifications
to the original source code.

Further developments. The concept of representing algorithms and their
execution flows as Directed Acyclic Graphs (DAGs) can be used to generalize
and further develop the hybrid GPU-based computing approach. To accom-
plish this we split the computation into tasks and dependencies among them,
and represent this information as a DAG, where DAG nodes are the tasks and
DAG edges the dependencies [7]. Figure 1 shows an illustration. The nodes
in red in this case represent the sequential parts of an algorithm (e.g., panel
factorization) and the ones in green the tasks that can be done in parallel
(e.g., the update of the trailing matrix). Proper scheduling can ensure very
efficient execution. This is the case for the one-sided factorizations, where we
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schedule the execution of the tasks from the critical path on the CPU (that
are in general small, do not have enough parallelism, and therefore could
not have been efficiently executed on the GPU) and the rest on the GPU
(grouped in large task for single kernel invocation as shown; highly parallel).

Figure 1: Algorithms as DAGs for hybrid GPU-based computing

The hybrid approaches mentioned so far have used GPUs for Level 3
BLAS parts of their computation. We note that the introduction of GPU
memory hierarchies, e.g., in NVIDIA’s CUDA-enabled GPUs [29], provided
the opportunity for an incredible boost of Level 3 BLAS [26, 16], because
memory could be reused rather than having performance relying exclusively
on high bandwidth as in earlier GPUs. Indeed, one can see that early at-
tempts to port DLA on GPUs have failed to demonstrate speedup compared
to CPUs [10, 12]. Nevertheless, high bandwidth has always been characteris-
tic for GPUs, and can be instrumental in overcoming bandwidth bottlenecks
in a number of very important DLA algorithms, as shown in this paper. We
design a hybrid HR algorithm that exploits the strength of multicore and
GPU architectures, where related to GPUs, we use their high performance
on both Level 3 and Level 2 BLAS.

3. Hessenberg reduction

The HR algorithm reduces a general n×n matrix A to upper Hessenberg
form H by an orthogonal similarity transformation QTAQ = H. The matrix
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Q is represented as a product of n− 1 elementary reflectors

Q = H1 H2 . . . Hn−1, Hi = I − τi viv
T
i ,

where τi is scalar, and vi is a vector. In the block HR algorithm a set of nb
reflectors, where nb is referred to as block size, can be grouped together

H1 H2 . . . Hnb ≡ I − V T V T ,

where V = (v1| . . . |vnb), and T is nb × nb upper triangular matrix. This
transformation, known as compact WY transform [5, 24], is the basis for the
delayed update idea mentioned above, where instead of applying nb Level
2 BLAS transformations (that are inefficient on current architectures), one
can apply the accumulated transformation as a Level 3 BLAS. The resulting
algorithm is known as block HR.

3.1. Block Hessenberg reduction

Algorithm 1 gives (in pseudo-code) the block HR, as currently imple-
mented in LAPACK (function DGEHRD). Function DGEHD2 on line 6 uses

Algorithm 1 DGEHRD(n,A)

1: for i = 1 to n− nb step nb do
2: DLAHR2(i, A(1 : n, i : n), V, T, Y )
3: A(1 : n, i+ nb : n) − = Y V (nb+ 1 : n− i+ 1, : )T

4: A(1 : i, i : i+ nb) − = Y (1 : i, : )V (1 : nb, : )T

5: A(i+ 1 : n, i+ nb : n) = (I − V T V T ) A(i+ 1 : n, i+ nb : n)
6: end for
7: DGEHD2( ... )

unblocked code to reduce the rest of the matrix. Algorithm 2 gives the
pseudo-code for DLAHR2. DLAHR2 performs the two-sided reduction for the
current panel and accumulates matrices V and T for the compact WY trans-
form (I − V T V T ), and matrix Y ≡ A(1 : n, i : n) V T . We denote by
Yj ≡ (y1| . . . |yj) the first j columns of Y , by Tj the submatrix T (1 : j, 1 : j),
and by Vj ≡ (v1| . . . |vj) the first j columns of V . Householder(j, x) returns
a vector v and a scalar τ = vTv/2 where

v(1 : j) = 0, v(j + 1) = 1, v(j + 2 : ) = x(2 : )/(x(1) + sign(x(1))||x||2).
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Algorithm 2 DLAHR2(i, A, V, T, Y )

1: for j = 1 to nb do
2: A(i+ 1 : n, j) − = Yj−1 A(i+ j − 1, 1 : j − 1)
3: A(i+ 1 : n, j) = (I − Vj−1 T

T
j−1 V

T
j−1) A(i+ 1 : n, j)

4: [vj, τj] = Householder(j, A(i+ j + 1 : n, j) )
5: yj = A(i+ 1 : n, j + 1 : n) vj

6: Tj(1 : j − 1, j) = − τj Tj−1 V
T
j−1 vj; Tj(j, j) = τj

7: end for
8: Y (1 : i, 1 : nb) = A(1 : i, i : n) V T

3.2. On designing the hybrid algorithm

The design consists of identifying the bottlenecks and properly splitting
the computation into tasks and scheduling their execution over the multicore
host and the GPU. Clearly, the bottleneck in the HR algorithm is in the
panel factorization – line 5 of Algorithm 2, also illustrated on Figure 2.

Level 3 BLAS update

Level 2 BLAS update

[ Line 5 of Algorithm 2 ]

[20% flops; ~70% of the run time]

[80% flops; ~30% of the run time]

j
y  = A  v

j jA
v j

j

Figure 2: Current computational bottleneck: the Level 2 BLAS yj = Ajvj

3.2.1. Task splitting

Every iteration of the HR Algorithm 1 is split into three coarse-level, data-
parallel tasks. Each of these tasks is done in parallel (nested parallelism) on
the GPU or the multicore. The tasks and denoted by Pi, Mi, and Gi and
update the three matrices correspondingly denoted by Pi, Mi, and Gi on
Figure 3, Left, and described as follows:

• The panel factorization task Pi

Pi accounts for 20% of the flops and updates the current panel, i.e.,
line 2 of Algorithm 1, accumulating matrices Vi, Ti and Yi.
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• The trailing matrix update task Gi

Task Gi accounts for 60% of the flops and updates submatrix

Gi = (I − Vi Ti V
T
i ) Gi (I − Vi Ti Vi(nb+ 1 : , : )T )

• The “top” matrix update task Mi

Task Mi accounts for 20% of the flops and updating the submatrix

Mi = Mi (I − Vi Ti V
T
i ).

i =     0       1      2

i i

iM

GP

0

00

1

1 1

.    .    .

critical
path

Task scheduling:

 Multicore+GPU (20%)

 GPU                   (60%)

 Multicore           (20%)

80%

P

G

M

M

P

G

Figure 3: Main tasks and their scheduling

We note that splitting line 3 of Algorithm 1 and merging it into tasks Gi

and Mi is motivated by a memory footprint analysis. Indeed, using this
splitting task Mi becomes independent of Gi and falls off the critical path of
the algorithm (see Figure 3, Right). This is an important contribution to the
design of a parallel HR algorithm as it removes dependencies that in turn
enable overlapping task Mi with that of the Pi.

3.2.2. Scheduling

The coarse-level scheduling (over the system’s hybrid components) is
given on Figure 3, Right. The tasks on the critical path must be done as fast
as possible – and are scheduled in a hybrid fashion on both the Multicore
and GPU. The memory footprint of task Pi, with ’P ’ standing for panel, is
both Pi and Gi but Gi is accessed only for the time consuming computation
of yj = Ajvj (see Figure 2). Therefore, the part of Pi that is constrained to
the panel (not rich in parallelism, with flow control statements) is scheduled
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on the multicore, and the time consuming yj = Ajvj (highly parallel but
requiring high bandwidth) is scheduled on the GPU. Gi, with ’G’ standing
for GPU, is scheduled on the GPU. This is Level 3 BLAS update and can
be done very efficiently on the GPU. Moreover, note that Gi−1 contains the
matrix Aj needed for task Pi, so for the computation of Ajvj we have to
only send vj to the GPU and the resulting yj back from the GPU to the
multicore. The scheduling so far heavily uses the GPU, so in order to make
the critical path execution faster and at the same time to make a better use
of the multicore, task Mi, with ’M ’ standing for multicore, is scheduled on
the multicore.

3.3. Hybrid Hessenberg reduction

Algorithm 3 gives in pseudo-code the hybrid HR algorithm. Prefix ’d’,
standing for device, before a matrix denotes that the matrix resides on the
GPU memory. The algorithm name is prefixed by MAGMA, standing for Ma-
trix Algebra for GPU and Multicore Architectures, and denoting a project1 on
the development of a dense linear algebra library similar to LAPACK but for
heterogeneous/hybrid architectures, starting with current Multicore+GPU
systems [36].

Algorithm 3 MAGMA DGEHRD(n,A)

1: Send matrix A from the CPU to matrix dA on the GPU
2: for i = 1 to n− nb step nb do
3: MAGMA DLAHR2(i, V , T , dPi, dV , dT , dY )
4: Send dGi−1(1 : nb, : ) to the multicore (asynchronously)
5: Schedule Gi on the GPU (asynchronously; using dV , dT , and dY )
6: Schedule Mi on the multicore (asynchronously; using V and T )
7: end for
8: MAGMA DGEHD2( ... )

Algorithm 4 gives the pseudo-code for MAGMA DLAHR2.
Figure 4 illustrates the communications between the multicore and GPU

for inner/outer iteration j/i. Copies 1..4 are correspondingly steps/lines 1, 6,
and 9 from Algorithm 4 and line 4 from Algorithm 3. Note that this pattern
of communication allows us to overlap the CPU and GPU work as desired –

1see http://icl.cs.utk.edu/magma/
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Algorithm 4 MAGMA DLAHR2(i, V , T , dPi, dV , dT , dY )

1: Send dPi from the GPU to P on the multicore
2: for j = 1 to nb do
3: P ( : , j) − = Yj−1 Tj−1 P (j − 1, 1 : j − 1)
4: P ( : , j) = (I − Vj−1 T

T
j−1 V

T
j−1) P ( : , j)

5: [vj, τj] = Householder(j, P (j + 1 : , j) )
6: Send vj from the multicore to dvj on the GPU
7: dyj = dA(i+ 1 : n, j + 1 : n) dvj

8: Tj(1 : j − 1, j) = − τj Tj−1vj; Tj(j, j) = τj
9: Send dyj from the GPU back to yj on the CPU

10: end for
11: Send T from the multicore to dT on the GPU
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1. Copy dP to CPU

2. Copy v to GPU
j

Work dWork

Y
dV

0

C  P  U G  P  U

i

3. Copy y to CPU
j

dY

4. Copy     to CPU

Aj

Figure 4: CPU/GPU communications for inner/outer iteration j/i.

in the outer loop (Algorithm 3) step 6 on the multicore is overlapped with
steps 3, 4, and 5 on the GPU, and in the inner loop step 8 on the multicore
is overlapped with step 7 on the GPU. Note that the zeroes in the upper
triangular part of dV can be (and are) reused in all outer steps.

3.4. Differences with LAPACK

Our user interface is exactly as LAPACK’s DGEHRD. The user gives and
receives the factored matrix in the same format. The result is the same up
to round-off errors related to a slightly different order of applying certain
computations. In particular, LAPACK’s matrix-matrix multiplications in-
volving V are split into 2 multiplications: a DTRMM with the lower triangular
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sub-matrix V (1 : nb, 1 : nb) and a DGEMM with the rest of V . As nb is usually
small, multiplications on the GPU with triangular nb× nb matrices is slow.
Therefore, we keep zeroes in the upper triangular part of V (1 : nb, 1 : nb)
and perform multiplications with V using just one kernel call. For the same
reason, multiplications with T are performed as DGEMMs. In LAPACK, matrix
Y = A V T is accumulated during the panel factorization. We accumulate
A V during the panel factorization and T is applied at once as a DGEMM during
the matrix update part of the algorithm. Our work space is twice larger than
LAPACK’s work space on both the multicore and the GPU. This means we
need work space of size 2× n× nb. On the multicore the additional space is
used to enable processing tasks P and M in parallel (as each of them needs
n× nb work space). On the GPU the additional space is used to separately
store V from the matrix so that we can put zeroes only once in its upper
triangular part, and use V as mentioned above. These modifications, in ad-
dition to providing higher performance, make also the code very readable,
and shorter than LAPACK’s.

3.5. Extension to other two-sided factorizations

The methodology from the hybrid HR algorithm can be used to develop
other two-sided factorizations, e.g., tridiagonalization for symmetric matrices
and bidiagonalization for general matrices:

Tridiagonalization. This is the reduction of a symmetric matrix to sym-
metric tridiagonal form by orthogonal similarity transformations. Using di-
rectly the HR algorithm on a symmetric matrix yields a tridiagonal matrix
reduction in 10

3
n3 + O(n2) flops, but exploiting the symmetry reduced the

flops count to 4
3
n3 +O(n2) (function SYTRD from LAPACK). Thus, compared

to the HR algorithm there are no Gi tasks and therefore the multicore can
not be used in a similar way. The rest of the methodology developed for the
HR algorithm can be applied directly. The only difference is that the trailing
matrix updates Gi are SYR2Ks vs GEMMs in HR and the bottleneck matrix-
vector products in the panels Pi are SYMV vs GEMV. The tridiagonalization
has 50% of its flops into the panel factorization, making the performance
of the symmetric matrix-vector product even more important for the overall
performance of the algorithm.

Bidiagonalization. This is the reduction of a general matrix to bidiagonal
form by orthogonal transformations, e.g., QTAP is bidiagonal where Q and
P are orthogonal and A a general m-by-n matrix. The bidiagonalization
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is function GEBRD in LAPACK and the implementation is asymptotically in
4mn2 − 4n3/3, m ≥ n flops. Compared to the HR algorithm there are two
panels being factored at each step – a block of columns as in the HR algorithm
and a corresponding block of rows. The methodology developed for the HR
algorithm again can be applied directly. The difference is that similar to
the bidiagonalization there are no Gi tasks (as these are the block of rows
panels). Both panels are factored on the CPU and the two large matrix-
vector products (needed in the panels) are offloaded to the GPU. Similarly
to the bidiagonalization, the tridiagonalization has 50% of its flops into the
panel factorizations, making the performance of the general matrix-vector
product even more important for the overall performance of the algorithm.

4. Performance Results

The performance results in this section use NVIDIA’s GeForce GTX 280
GPU and its multicore host, a dual socket quad-core Intel(R) Xeon(R) E5410
operating at 2.33 GHz (i.e., peak is 149 GFlop/s in single and 74.5 GFlop/s
in double precision arithmetic). The GTX 280 has 30 multiprocessors, each
multiprocessor having 8 SIMD functional units operating at 1.30 GHz, each
unit capable of executing up to three (single floating point) operations per
cycle. The GTX 280 is connected to the host via PCI Express 16x adapter
card (5.7 GB/s of CPU-to-GPU and 5.5 GB/s GPU-to-CPU bandwidth for
pinned memory; latency is approximately 11 µs in both directions). The
theoretical bandwidth peak is 141 GB/s. The CPU FSB is 1333 MHz and
the theoretical bandwidth peak is 10.41 GB/s. On the multicore we use
LAPACK and BLAS from MKL 10.0 and on the GPU CUBLAS 2.3, unless
otherwise noted.

Performance. Figure 5 shows the performance of 2 hybrid HR algorithms,
and the block HR on single core and multicore in double precision arithmetic.
The basic hybrid HR is for 1 core + GPU, and uses CUBLAS 2.3. The
Multicore+GPU hybrid algorithm is the one described in the paper plus
various kernels’ optimizations, described as follows. The result shows that
we achieve an enormous 16× speedup compared to the current block HR
running on multicore. We see that the basic implementation brings most of
the acceleration.

Note that we get asymptotically within 90% of the “upper bound” per-
formance, as shown on Figure 5. Here upper bound denotes the performance
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Figure 5: Performance (in double precision) for the hybrid HR.

of the critical path (only tasks Pi and Gi) of our algorithm when we do not
count synchronization and data transfer times.

Figure 6 shows the performance of the HR, bidiabonalization, and tridi-
agonalization algorithms using one GPU (left) and multicore (right) in single
precision arithmetic. Compared asymptotically to the multicore algorithms,
the speedup for the hybrid HR is 25×, for the tridiagonalization 8×, and for
the bidiagonalization 20×.
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Figure 6: Performance of the two-sided factorizations using one CPU core and one GPU
(left) and multicore (right) in single precision arithmetic.

Optimizations. We optimized the GPU matrix-vector product as it is
critical for the performance. Figure 7 shows the GEMV performances from
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MAGMA, CUBLAS, and MKL. The theoretically optimal implementation
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Figure 7: Performance of CPU vs GPU matrix-vector product.

in single precision would have a performance of 70 GFlop/s (the theoretical
maximum bandwidth of 141 GB/s over 2). This would assume 100% bus
utilization and 100% overlap of the computation with the communication
needed. MAGMA achieves 66 GFlop/s which is 94% of the theoretical SGEMV
peak on the GPU. MKL gets up to 1.4 GFlop/s which is 28% of the theoretical
SGEMV peak on the multicore.

All algorithms use block size nb = 32. Testing with larger nb gives slower
performance results. For nb = 32 we used MAGMA DGEMM kernels that outper-
form CUBLAS 2.3 by 10 GFlop/s on average. These kernels are based on
the auto-tuning approach described in [16].

We also optimized the multicore implementation of tasks Mi in the HR
algorithm. Our original implementation used MKL’s parallel BLAS to get
an average performance of about 17 GFlop/s for matrix of size 8, 000 (the
averages for Pi and Gi are correspondingly 23 GFlop/s and 64 GFlop/s), and
about 10 GFlop/s towards the end of the computation. We changed this to
a 1-D block row partitioning of Mi and assigned the update for single block
of rows to a single core. This is a trivial splitting and was easy to code using
OpenMP. The performance improved to an average of 30 GFlop/s and up
to 45 GFlop/s towards the end of the computation. High performance to-
wards the end of the computation is important (especially for large matrices)
because this is when Mi becomes larger and larger compared to Pi and Gi.
Using the optimized code on a matrix of size 8, 000, the execution of tasks
Mi is totally overlapped with the execution of Pi and Gi for the first 97% of
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the computation, and becomes dominant in the last 3% of the computation.
In our case this was not a bottleneck because of the high performance that
we achieve at the end. Another solution is if the GPU is scheduled to do
part of Mi near the end of the computation.

The tridiagonalization and the bidiagonalization are implemented only
in single precision as a proof of concept. We optimized a SYMV GPU kernel
to achieve up to 45 GFlop/s (included in MAGMA 0.2 [36]). Although this
is 10 to 15× faster than CUBLAS’s SYMV, it is still far away from the 66
GFlop/s achieved for the GEMV kernel. This motivated another optimization,
namely, a GPU implementation of SYR2K that explicitly generates the entire
symmetric matrix resulting from the operation, so that we can use GEMV in
the panels instead of the slower SYMV. This approach does not need extra
memory. The kernel does not perform extra operations, just the extra copy
needed, and reaches up to 256 GFlop/s vs 149 GFlop/s in CUBLAS’s SYR2K
and 291 GFlop/s in MAGMA BLAS’s SYR2K (to be included in MAGMA
0.3). Note that using a 45 GFlop/s SYMV kernel (for 50% of the flops) and
a 291 GFlop/s SYR2K kernel (for the rest 50%), the optimal performance for
the tridiagonalization will be

45 ∗ 291

0.5 ∗ 291 + 0.5 ∗ 45
≈ 78 GFlop/s.

Using the 66 GFlop/s GEMV kernel (for 50% of the flops) and the 256 GFlop/s
modified SYR2K kernel (for the rest 50%), the optimal performance for the
tridiagonalization will be

66 ∗ 256

0.5 ∗ 256 + 0.5 ∗ 66
≈ 105 GFlop/s.

We achieve 76% of his peak for a matrix of size 10, 000.
The current tridiagonalization and the bidiagonalization implementations

are not fully optimized as further improvements are possible in the CUDA
BLAS kernels needed.

5. Conclusions

We presented a hybrid HR algorithm that can exceed 25× the perfor-
mance of the current LAPACK algorithm running just on current homoge-
neous multicore architectures. Moreover, we showed how to extend the ideas
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from the HR algorithm to the bidiagonalization and tridiagonalization algo-
rithms (to achieve acceleration of correspondingly 20× and 8×). The results
are significant because the reductions presented have not been properly ac-
celerated before on homogeneous multicore architectures, and they play a
significant role in solving eigenvalue and singular value decomposition prob-
lems. Moreover, our approach demonstrates a methodology that streamlines
the development of a large and important class of DLA algorithms on modern
computer architectures of multicores and GPUs.
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