
 1/24

UT College of Engineering Tutorial

Accelerating Linear Algebra on
Heterogeneous Architectures of Multicore and GPUs using

MAGMA and DPLASMA and StarPU Schedulers

Stan Tomov1, George Bosilca1, and Cédric Augonnet2

SAAHPC'10, Knoxville, TN
July 15, 2010

Innovative Computing Laboratory 1

The University of Tennessee, Knoxville
INRIA 2
Bordeaux Sud Ouest, France

 2/24

Outline

Linear Algebra for Multicore and GPUs

The MAGMA project

The Hybridization Methodology of MAGMA –

enabling task-based parallelism

DPLASMA

StarPU

 3/24

Challenges

Increase in parallelism
Tesla C2050 (Fermi): 448 CUDA cores @1.15 GHz
SP peak is 1075 GFlop/s, DP peak is 515 Gflop/s

Increase in communication
cost [vs computation]
Processor speed improves ~59% / year
memory bandwidth by only 23%

Heterogeneity

 4/24

Matrix Algebra on GPU and Multicore Architectures
(MAGMA)

MAGMA: a new generation linear algebra (LA) libraries to achieve the fastest possible time to an
accurate solution on hybrid/heterogeneous architectures, starting with current multicore+MultiGPU systems
Homepage: http://icl.cs.utk.edu/magma/

MAGMA & LAPACK

– MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore systems);

– MAGMA - designed to be similar to LAPACK in functionality, data storage and interface, in order to allow
scientists to effortlessly port any of their LAPACK-relying software components to take advantage of the
new architectures

– MAGMA - to leverage years of experience in developing open source LA software packages and systems
like LAPACK, ScaLAPACK, BLAS, ATLAS as well as the newest LA developments (e.g. communication
avoiding algorithms) and experiences on homogeneous multicores (e.g. PLASMA)

Support
 - NSF, Microsoft, NVIDIA [now CUDA Center of Excellence at UTK on the development of
 Linear Algebra Libraries for CUDA-based Hybrid Architectures]

MAGMA developers

– University of Tennessee, Knoxville; University of California, Berkeley; University of Colorado, Denver

http://icl.cs.utk.edu/magma/

 5/24

“delayed update” to organize
successive Level 2 BLAS as
a single Level 3 BLAS

“delayed update” to organize
successive Level 2 BLAS as
a single Level 3 BLAS

Localized (over tiles) elementary
transformations

Localized (over tiles) elementary
transformations

A New Generation of Algorithms

 MAGMA
 Hybrid Algorithms
 (heterogeneity friendly)

Rely on
 - hybrid scheduler (of DAGs)
 - hybrid kernels
 (for nested parallelism)
 - existing software infrastructure

 6/24

Hybridization methodology

MAGMA uses HYBRIDIZATION methodology based on
Representing linear algebra algorithms as collections
of TASKS and DATA DEPENDANCIES among them

Properly SCHEDULING the tasks' execution over the
multicore and the GPU hardware components

Successfully applied to fundamental
linear algebra algorithms

One and two-sided factorizations and slvers

Iterative linear and eigen-solvers

Faster, cheaper, better ?
High-level

Leveraging prior developments

Exceeding in performance (and sometimes accuracy) homogeneous solutions

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
 tasks for GPUs)

Hybrid CPU+GPU algorithms
(small tasks for multicores and large
 tasks for GPUs)

 7/24

MAGMA Status

 LU, QR, Cholesky (S, C, D, Z)

 Linear solvers

In working precision, based on LU, QR, and
Cholesky

Mixed-precision iterative refinement

 CPU and GPU interfaces

 Two-sided factorizations

Reduction to upper Hessenberg form for the
general eigenvalue problem

 MAGMA BLAS

Routines critical for MAGMA (GEMM, SYRK,
TRSM, GEMV, SYMV, etc.)

Bidiagonal two-sided reduction for
SVD

Tridiagonal two-sided for the
symmetric eigenvalue problem

Divide & Conquer for the symmetric
eigenvalue problem

GEMM for FERMI

Cholesky and QR for multiGPUs on
MAGNUM tiles

Hybrid kernels (building blocks) for tile
algorithms (e.g., dynamically scheduled)

GMRES and PCG

MAGMA 0.2 Unreleased

 8/24

MAGMA Software Stack

 9/24

Statically Scheduled One-Sided Factorizations
(LU, QR, and Cholesky)

Hybridization
Panels (Level 2 BLAS) are factored on CPU using LAPACK

Trailing matrix updates (Level 3 BLAS) are done on the GPU using “look-ahead”

Note

Panels are memory bound but are only O(N2) flops and can be overlapped
with the O(N3) flops of the updates

In effect, the GPU is used only for the high-performance Level 3 BLAS updates,
i.e., no low performance Level 2 BLAS is scheduled on the GPU

 10/24

Performance of the one-sided
statically scheduled hybrid factorizations

1 2 3 4 5 6 7 8 9 10
0

40

80

120

160

200

240

280

320

MAGMA
MKL 8 cores
MKL 1 core

 GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.2, sgemm peak: 375 GFlop/s
 CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPU BLAS : MKL 10.0 , sgemm peak: 128 GFlop/s

1 2 3 4 5 6 7 8 9 10
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Overhead
CPU
CPU+GPU
GPU

T
im

e

G
F

lo
p

/s

 QR factorization in single precision arithmetic, CPU interface
 Performance of MAGMA vs MKL MAGMA QR time breakdown

[for more performance data, see http://icl.cs.utk.edu/magma]

Matrix size x 1000 Matrix size x 1000

http://icl.cs.utk.edu/magma

 11/24

A look into MAGMA

MAGMA homepage
http://icl.cs.utk.edu/magma/

An example using the Cholesky factorization
CPU interface: http://www.cs.utk.edu/~tomov/magma/spotrf.cpp
GPU interface: http://www.cs.utk.edu/~tomov/magma/spotrf_gpu.cpp

http://icl.cs.utk.edu/magma/
http://www.cs.utk.edu/~tomov/magma/spotrf.cpp
http://www.cs.utk.edu/~tomov/magma/spotrf_gpu.cpp

 12/24

Linear Solvers

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

300

350

Solving Ax = b using LU factorization

Intel(R) Xeon(R)E541@2.34GHz / 8 Cores + GTX 280 @1.30GHz / 240 Cores

SP Factorization
SP Solve
MP Solve
DP Factorization
DP Solve

Matrix Size

G
F

lo
p

/s

 Direct solvers
 - Factor and do triangular solves
 in the same, working precision
 Mixed Precision Iterative Refinement

 - Factor in single (i.e. the bulk of the computation
 in fast arithmetic) and use it as preconditioner
 in simple double precision iteration, e.g.
 x

i+1
 = x

i
 + (LU

SP
)-1 P (b – A x

i
)

 Direct solvers
 - Factor and do triangular solves
 in the same, working precision
 Mixed Precision Iterative Refinement

 - Factor in single (i.e. the bulk of the computation
 in fast arithmetic) and use it as preconditioner
 in simple double precision iteration, e.g.
 x

i+1
 = x

i
 + (LU

SP
)-1 P (b – A x

i
)

 13/24

Two-sided matrix factorizations
Used in singular-value and eigen-value problems

LAPACK-based two-sided factorizations are rich in Level 2 BLAS and
therefore can not be properly accelerated on multicore CPUs

We developed hybrid algorithms exploring GPUs' high bandwidth

1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

GPU vs CPU GEMV

GPU SGEMV
GPU DGEMV
CPU SGEMV
CPU DGEMV

Matrix size

G
F

lo
p/

s

GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s)
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s)

GPU: GTX280 (240 cores @ 1.30GHz, 141 GB/s)
CPU: 2 x 4 cores Intel Xeon @ 2.33GHz, 10.4 GB/s)

High-performance CUDA kernels were developed
for various matrix-vector products
[e.g., ssymv reaching up to 102 Gflop/s for the
 symmetric eigenvalue problem]

High-performance CUDA kernels were developed
for various matrix-vector products
[e.g., ssymv reaching up to 102 Gflop/s for the
 symmetric eigenvalue problem]

 14/24

Two-sided factorizations
(performance in single precision arithmetic)

1024 2048 3072 4032 5184 6016 7040 8064 9088 10112
0

5

10

15

20

25

30

35

40

45

50

Multicore Performance

Hessenberg
Tridiagonalization
Bidiagonalization

Matrix size

G
F

lo
p/

s

 GPU : NVIDIA GeForce GTX 280 (240 cores @ 1.30GHz) GPU BLAS : CUBLAS 2.3, dgemm peak: 75 GFlop/s
 CPU : Intel Xeon dual socket quad-core (8 cores @2.33 GHz) CPU BLAS : MKL 10.0 , dgemm peak: 65 GFlop/s

1024 4032 7040 10112 13024
0

20
40
60
80

100
120
140
160

GPU Performance

HR
Tridiag.
Bidiag.

Matrix size

G
F

lo
p

/s

 26 x

12 x

22 x

 15/24

FERMI

What has changed regarding MAGMA algorithms?

– MAGMA is coded on high-level, extracting its performance from the
performance of low-level kernels, i.e.,
everything works for FERMI and nothing has changed on high-level

– We have relied on being able to develop the low-level kernels needed of very
high-performance
as GPUs become more complex, this has become more difficult

– Auto-tuning has become more important

 16/24

512 1536 2560 3584 4608
0

100

200

300

400

500

600

MAGMA
CUBLAS 3.1

Matrix size

G
F

lo
p/

s

 GEMM for FERMI
(Tesla C2050: 448 CUDA cores @ 1.15GHz, theoretical SP peak is 1.03 Tflop/s, DP peak 515 GFlop/s)

512 1536 2560 3584 4608
0

100

200

300

400

500

600

MAGMA
CUBLAS 3.1

Matrix Size

G
F

lo
p

/s

SGEMM DGEMM

Kernels have to be redesigned and auto-tuned for Fermi, e.g.,
inner-most blocking sizes have to be increased; add register blocking, etc.

May even need to be written in assembly

 17/24

Auto-tuning GEMM on Fermi GPUs

'

A thread block computes a block of matrix C

Each thread computes a row of the block
submatrix of C

Part of matrix B is loaded into shared memory
and computations are done in terms of axpy

Previous generation GPUs Fermi
[parametrize kernel by V. Volkov, UC Berkeley] [search space extended by R. Nath, UTK]

blk_M

blk_N

B

A

blk_K

M

NK

lda

ldc

ldb

C

blk_K

Increase blocking size and add register blocking

Each thread computes a sub-block of submatrix of C

Parts of both A and B are first loaded into shared memory
and each thread loads corresponding values into
registers to do register-blocked computation

 18/24

A look into MAGMA BLAS

MAGMA BLAS DGEMM for Fermi
http://www.cs.utk.edu/~tomov/magma/fermi_dgemm.cu

Note: This is just one version, produced by
 a code generator, exploring the search
 space described on the previous slide

http://www.cs.utk.edu/~tomov/magma/fermi_dgemm.cu

 19/24

1024 3072 5184 7040 9088
0

20
40
60
80

100
120
140
160
180
200
220
240 FERMI MAGMA

ISTANBUL PLASMA
GTX280 MAGMA

Matrix Size

G
F

lo
p/

s

LU factorization in double precision

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
 SP/DP peak is 1075 / 538 GFlop/s

 20/24

LU, Cholesky, and QR on Fermi in DP

1024 3072 5184 7040
0

40

80

120

160

200

240 QR
Cholesky
LU

Matrix Size

G
F

lo
p/

s FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

 21/24

MultiGPU and Multicore

MAGNUM tiles
Tasks are hybrid, GPU BLAS-based, or
multicore kernels

Using PLASMA with customized extensions to
reduce communication and w/ hybrid MAGMA
kernels

● Demonstrated scalability for one-sided
factorizations

● Highly optimized, used as benchmark to
compare with dynamic schedulers
[e.g., performance on 4 C1060 GPUs for
Cholesky is up to 1200 Gflop/s, for QR is up
to 830 Gflop/s in SP]

Using StarPU to schedule hybrid, GPU and
multicore kernels (from PLASMA and MAGMA)
http://runtime.bordeaux.inria.fr/StarPU/

Using the DPLASMA scheduler

Rectangular tiles
Tiles of variable sizes to be used to account for
the heterogeneity of the system

To experiment with “communication-avoiding”
algorithms

PLASMA tile algorithms

A single GPU kernel processing multiple tile
tasks in parallel
[vs only one, but magnum tile, at a time]

Scheduling:

http://runtime.bordeaux.inria.fr/StarPU/

 22/24

Scheduling with PLASMA
 Cholesky factorization in SP

HOST: 4x AMD Opteron core @1.8GHz
GPUs: 4x C1060 (240 cores each @1.44GHz)

 23/24

Sparse Linear Algebra

The hybridization approach naturally works
[e.g., Richardson iteration in mixed-precision
 iterative refinement solvers, Krylov space
 iterative solvers and eigen-solvers]

Observed better accuracy (compared to CPU)

Fast sparse matrix-vector product on Fermi
does not have to use texture memory

Explore ideas to reduce communication
[e.g., mixed precision, reduced storage for
 integers for the indexing, etc.]

Need high bandwidth

http://www.cs.utk.edu/~tomov/magma/sgmres.cpp

http://www.cs.utk.edu/~tomov/magma/sgmres.cpp

 24/24

MAGMA Future Plans

Experimentation with various schedulers (StarPU, PLASMA,
DPLASMA) and improvements for multicore with multiGPUs

“Communication avoiding” algorithms for systems of multicore
CPUs and GPUs

Kernels for FERMI (GEMM, SYRK, TRSM, SpMV)

Auto-tuning framework

Port [or facilitate the port] to Windows, Python and Matlab

Krylov space iterative linear solvers and block eigensolvers

Collaborators / Support

MAGMA Matrix Algebra on GPU
and Multicore Architectures
[ICL team: J. Dongarra, S. Tomov, R. Nath, H. Ltaief]

http://icl.cs.utk.edu/magma/

PLASMA Parallel Linear Algebra
for Scalable Multicore Architectures
http://icl.cs.utk.edu/plasma

Collaborating partners

University of Tennessee, Knoxville
University of California, Berkeley
University of Colorado, Denver

University of Coimbra, Portugal
INRIA Bordeaux Sud Ouest, France

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/plasma

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

