
POTRF

POTRF

POTRF

POTRF

POTRF

GEMMGEMMGEMMGEMMGEMM

GEMM GEMM

GEMM

GEMM

GEMM

TRSM

TRSM

TRSM TRSM TRSM

TRSM

TRSM

TRSM

TRSMSYRK

SYRK SYRKSYRK

SYRK SYRK SYRK

SYRK

SYRK

SYRK

TRSM

k=2

Scheduling Cholesky Factorization
on Multicore Architectures
with GPU Accelerators

Tile Cholesky Factorization

StarPU Runtime System

Performance Results On-going Work

Although the hardware has dramatically changed in the last few years, nodes of
multicore chips augmented by Graphics Processing Units (GPUs) seem to be a
trend of major importance. Previous approaches for scheduling dense linear
operations on such a complex node led to high performance but at the double
cost of not using the potential of all the cores and producing a static and
non-generic code. We schedule dense linear algebra operations on multicore

architectures with GPU accelerators thanks to a runtime system capable of
using the full potential of the node and that handles the data coherency.
High-level algorithms – such as the Tile Cholesky Factorization – are
represented as collections of tasks/kernels with a data-driven execution order.
The kernels are taken from the PLASMA and MAGMA libraries and their
execution scheduled through the StarPU runtime.

• Fine granularity
• Tile layout
• Asynchronism
• DAG to schedule

tiles=5
A(2:4,2:4)
k=2

A Unified Runtime System
for Heterogeneous Architectures

• Exploit all resouces
• Hide low-level complexity
• Performance portability

Transparent data management

 Modified Shared Invalid (MSI) protocol

A Unified
Task Abstraction

A Unified
Execution Model

Download at http://runtime.bordeaux.inria.fr/StarPU/

CPU Intel Nehalem X5550 @ 2.67 GHz, 8 cores - sgemm peak 20 GFlop/s per core
3 NVIDA FX5800 GPUs @ 1.30 GHz - sgemm peak 333 GFlop/s per CPU

QR/LU Factorization
• Use of PLASMA CPU kernels
• Needs for new GPU kernels
• Coherency of Hybrid CPU/GPU kernels
Communication-Avoiding QR
• New high-level algorithm
• Needs for new GPU and CPU kernels
Distributed Memory
• Step1: One StarPU instance per node
• Step2: Distributed shared memory

Principle
• New BLAS (for QR and LU)

• Triangular on top of square

Cholesky Factorization
• Standard BLAS

• Wrapper on top of vendor

Principle
• CUDA BLAS

• Possibly hybrid CPU/GPU

• Auto-tuned

Cholesky Factorization
• Optimized SYRK and GEMM

• Special handling for TRSM

• Hybrid Kernels (magma_spotrf)

For k=0..tiles-1
 A[k][k]<- (A[k][k])
 For m=k+1..tiles-1
 A[m][k] TRSM (A[k][k],A[m,k])
 For n=k+1..tiles-1
 A[n][n]<- SYRK (A[n,k],A[n,n])
 For m=n+1..tiles=1
 A[m][n]<- GEMM (A[m,k],A[n][k],A[m][n])

POTRF

GEMM

TRSM

SYRK

Asynchronously submit tasks
Schedule tasks onto processing units
Ensure data availability & coherency
Offload computation
Notify task termination

centre de recherche BORDEAUX – SUD-OUEST

SPONSORED BY

Emmanuel Agullo

Cédric Augonnet

Jack Dongarra

Hatem Ltaief

Raymond Namyst

Rajib Nath

Jean Roman

Samuel Thibault

Stanimire Tomov

 CPU BLAS Download at http://icl.cs.utk.edu/plasma/ GPU BLAS Download at http://icl.cs.utk.edu/magma/

5120 10240 15360 20480 25600 30720 35840 40960 46080

1000

800

600

400

200

70

60

50

40

30

20

10

MATRIX ORDER

Data Unaware Data AwareData-aware scheduling

PE
RF

OR
M

AN
CE

 (G
flo

p/
s)

TO
TA

L
D

AT
A

TR
AN

SF
ER

S
(G

Bs
)

100

200

300

400

500

600

700

800

900

1000

5120 15360 25600 35840 46080
MATRIX ORDER

Scalability

3 GPUs + 5 CPUs

3 GPUs

2 GPUs

1 GPU

PE
RF

OR
M

AN
CE

 (G
flo

p/
s)

4
GB

