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Scheduling Cholesky Factorization 
on Multicore Architectures 
with GPU Accelerators

Tile Cholesky Factorization

StarPU Runtime System

Performance Results On-going Work

Although the hardware has dramatically changed in the last few years, nodes of 
multicore chips augmented by Graphics Processing Units (GPUs) seem to be a 
trend of major importance. Previous approaches for scheduling dense linear 
operations on such a complex node led to high performance but at the double 
cost of not using the potential of all the cores and producing a static and 
non-generic code. We schedule dense linear algebra operations on multicore 

architectures with GPU accelerators thanks to a runtime system capable of 
using the full potential of the node and that handles the data coherency. 
High-level algorithms – such as the Tile Cholesky Factorization – are 
represented as collections of tasks/kernels with a data-driven execution order. 
The kernels are taken from the PLASMA and MAGMA libraries and their 
execution scheduled through the StarPU runtime.

• Fine granularity
• Tile layout
• Asynchronism
• DAG to schedule

tiles=5
A(2:4,2:4)
k=2

A Unified Runtime System
for Heterogeneous Architectures

• Exploit all resouces
• Hide low-level complexity
• Performance portability

Transparent data management

 Modified Shared Invalid (MSI) protocol

A Unified 
Task Abstraction

A Unified 
Execution Model

Download at http://runtime.bordeaux.inria.fr/StarPU/

CPU Intel Nehalem X5550 @ 2.67 GHz, 8 cores - sgemm peak 20 GFlop/s per core
3 NVIDA FX5800 GPUs @ 1.30 GHz - sgemm peak 333 GFlop/s per CPU

QR/LU Factorization
• Use of PLASMA CPU kernels
• Needs for new GPU kernels
• Coherency of Hybrid CPU/GPU kernels
Communication-Avoiding QR
• New high-level algorithm
• Needs for new GPU and CPU kernels
Distributed Memory
• Step1: One StarPU instance per node
• Step2: Distributed shared memory

Principle
• New BLAS (for QR and LU)

• Triangular on top of square

Cholesky Factorization
• Standard BLAS

• Wrapper on top of vendor

Principle
• CUDA BLAS

• Possibly hybrid CPU/GPU

• Auto-tuned

Cholesky Factorization
• Optimized SYRK and GEMM

• Special handling for TRSM

• Hybrid Kernels (magma_spotrf)

For k=0..tiles-1
  A[k][k]<-                 (A[k][k])
  For m=k+1..tiles-1
    A[m][k]  TRSM   (A[k][k],A[m,k])
  For n=k+1..tiles-1
    A[n][n]<-  SYRK    (A[n,k],A[n,n])
    For m=n+1..tiles=1
      A[m][n]<-   GEMM  (A[m,k],A[n][k],A[m][n])

POTRF

GEMM

TRSM

SYRK

Asynchronously submit tasks
Schedule tasks onto processing units
Ensure data availability & coherency
Offload computation
Notify task termination
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                        CPU BLAS Download at http://icl.cs.utk.edu/plasma/                      GPU BLAS Download at http://icl.cs.utk.edu/magma/
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Scalability

3 GPUs + 5 CPUs

3 GPUs

2 GPUs 

1 GPU
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