
Reasons for a Pessimistic or Optimistic Message
Logging Protocol in MPI Uncoordinated Failure

Recovery
Aurelien Bouteiller †1, Thomas Ropars �2, George Bosilca †3, Christine Morin ∗4, Jack Dongarra †5

† Innovative Computing Laboratory, University of Tennessee
1122 Volunteer Boulevard, Knoxville TN, 37996, USA
1 bouteill,3 bosilca,5 dongarra@eecs.utk.edu

� Université de Rennes 1, IRISA
INRIA, Centre Rennes - Bretagne Atlantique

Campus universitaire de Beaulieu, 35042 Rennes Cedex, France
2 tropars@irisa.fr

∗ INRIA, Centre Rennes - Bretagne Atlantique
Campus universitaire de Beaulieu, 35042 Rennes Cedex, France

4 christine.morin@inria.fr

Abstract—With the growing scale of high performance comput-
ing platforms, fault tolerance has become a major issue. Among
the various approaches for providing fault tolerance to MPI
applications, message logging has been proved to tolerate higher
failure rate. However, this advantage comes at the expense of
a higher overhead on communications, due to latency intrusive
logging of events to a stable storage. Previous work proposed
and evaluated several protocols relaxing the synchronicity of
event logging to moderate this overhead. Recently, the model
of message logging has been refined to better match the reality
of high performance network cards, where message receptions
are decomposed in multiple interdependent events. According to
this new model, deterministic and non-deterministic events are
clearly discriminated, reducing the overhead induced by message
logging. In this paper we compare, experimentally, a pessimistic
and an optimistic message logging protocol, using this new model
and implemented in the Open MPI library. Although pessimistic
and optimistic message logging are, respectively, the most and
less synchronous message logging paradigms, experiments show
that most of the time their performance is comparable.

I. INTRODUCTION AND MOTIVATION

Recently, High Performance Computing (HPC) platforms
have reached such a critical scale that failures actually impact
the usability of the systems. Consequently many HPC centers
have been shifting their attention toward capacity, providing
a massive amount of computation time to the community,
rather than capability. Because of the difficulty of coping
with failures and scale, only a small number of highly tuned
applications are able to benefit from the entire capability
of the machines. As most HPC applications are using the
Message Passing Interface (MPI) [1] to manage data trans-
fers, introducing failure recovery features inside the MPI
library automatically benefits a large range of applications.
One of the most popular automatic fault tolerant techniques,
coordinating checkpoint, builds a consistent recovery set [2],

[3]. Message logging is an alternative approach designed to
avoid coordination, in order to recover faster from failures
at the expense of a higher overhead on communications.
From previous results [2], message logging is expected to
have a better typical application makespan than coordinated
checkpoint when the Mean Time Between Failure (MTBF) is
shorter than 9 hours. Moreover, while coordinated checkpoint
stalls when the MTBF is shorter than 3 hours, message logging
can still progress.

Over the years, different versions of message logging have
been proposed to address the issue of high latency associated
with synchronous logging of events to a stable storage [4].
However, the model of message logging was recently refined
to match the reality of high performance network interface
cards, where message receptions are decomposed in multi-
ple interdependent events [5]. From a finer decomposition
of events impacting the life-cycle of a MPI message, the
need for intermediate message copies impacting bandwidth
on high performance networks is lifted; deterministic and
non-deterministic events are clearly discriminated, allowing a
reduction of the overall number of messages requiring latency
disturbing management.

In this paper, we present two implementations of mes-
sage logging, pessimistic and optimistic message logging,
respectively being the most and the less synchronous pos-
sible paradigms, based on a generic failure recovery frame-
work implementing the aforementioned improvements in a
leadership MPI implementation (Open MPI [6]). Then we
perform a comprehensive experimental comparison of those
two approaches using micro-benchmarks and exploring their
behavior on a wide range of scientific kernels. Results demon-
strate how improvements targeted at adapting message logging
to high performance networks have dramatically altered the



knowledge acquired in previous work about the impact of
synchronicity on event logging performance.

The rest of this paper is organized as follows: in the next
section we recall the classical message logging model. Then
in the third section we depict the modifications introduced to
better fit HPC networks and some details about the implemen-
tation in a shared framework in the fourth section. The fifth
section presents a comparison of experimental results, and is
followed by the related works and conclusion.

II. DESCRIPTION OF MESSAGE LOGGING

Message logging is defined in the more general model
of message passing distributed systems. Communications be-
tween processes are considered explicit: processes explicitly
request sending and receiving messages; and a message is
considered as delivered only when the receive operation as-
sociated with the data movement is complete. Additionally,
from the perspective of the application each communication
channel is FIFO, but there is no particular order on messages
traveling along different channels. The execution model is
pseudo-synchronous; there is no global shared clock among
processes but there is some (potentially unknown) maximum
propagation delay of messages in the network. An intuitive
interpretation is to say the system is asynchronous and there is
an eventually reliable failure detector. Failures can affect both
the processes and the network. Usually, network failures are
managed by some CRC mechanism and message reemission
provided by the hardware or low level software stack and
do not need to be considered in the model. Therefore, the
considered failure model is definitive crash failures, where
a failed process completely stops sending any subsequent
message.

A. Events

Each computational or communication step of a process is
an event. An execution is an alternate sequence of events and
process states, with the effect of an event on the preceding
state leading the process to the new state. As the system is
basically asynchronous, there is no direct time relationship
between events occurring on different processes. However,
Lamport defines a causal partial ordering between events with
the happened before relationship [7]. It is noted e ≺ f when
event f is causally influenced by e.

These events can be classified into two categories: determin-
istic and non-deterministic. An event is deterministic when
from the current state there is only one possible outcome
state for this event. On the contrary, if an event can result in
several different states, then it is non-deterministic. Examples
of deterministic events are internal computations and message
emissions, which follow the code-flow. Examples of non-
deterministic events are message receptions, which depend on
time constraints on message deliveries.

B. Checkpoints and Inconsistent States

Checkpoints (i.e., complete images of the process memory
space) are used to recover from failures. The recovery line is

e6

2
C

0

0
C

1

1
C

1

0
C

P0

P2

m2

P1

m1

m4

m3

e1

e2 e3

e4

m5

e5

1

Fig. 1. Example execution of a distributed system with checkpoints and
inconsistent recovery line.

the configuration of the application after some processes have
been reloaded from checkpoints. Unfortunately, checkpointing
a distributed application is not as simple as storing each single
process image without any coordination, as illustrated by the
example execution of figure 1. When process P1 fails, it rolls
back to checkpoint C1

1 . Messages from the past crossing the
recovery line (m3,m4) are in transit messages; the restarted
process will request their reception while the source process
never sends them again, thus it is needed to save these
messages. Messages from the future crossing the recovery line
(m5) are orphan; following the Lamport relationship current
state of P0 depends on reception of m5 and by transitivity
on any event that occurred on P1 since C1

1 (e3, e4, e5). Since
the channels between P0 and P1 and between P2 and P1

are asynchronous, the reception of m3 and m4 could occur
in a different order during re-execution, leading during the
recovery to a state of P1 that diverges from the initial
execution. As the current state of P0 depends on states P1 can
no longer reach, the overall state of the parallel application
after the recovery is inconsistent. Checkpoints leading to an
inconsistent state are useless and must be discarded. In the
worst case all checkpoints are useless and the computation
may have to be restarted from the beginning.

C. Event Logging

In event logging, processes are considered as Piecewise
deterministic: only sparse non-deterministic events occur sep-
arating large parts of deterministic computation. Considering
that non-deterministic event outcomes, called determinants,
are committed during the initial execution into some safe
repository, a recovering process is able to replay exactly the
same order for all non-deterministic events, and therefore,
it is able to reach exactly the same state as prior to the
failure. Furthermore, message logging considers the network
as the only source of non-determinism and only logs the
relative ordering of messages from different senders (e3, e4

in figure 1). The sufficient condition to define a consistent
global state, from where a recovery can be successful, is that
a process must never depend on an unlogged non-deterministic
event from another process.



D. Synchronicity of Event Logging

Pessimistic message logging is the most synchronous event
logging technique. It ensures the always no-orphan condition:
all the previous non-deterministic events of a process must
be logged before a process is allowed to impact the rest of
the system. Therefore any process has to ensure that every
event is safely logged before any MPI send can proceed. Since
no orphan process can be created, only the failed processes
have to restart after a failure. In order to improve latency,
the no-orphan condition can be relaxed. Causal message
logging piggybacks unlogged events on outgoing messages.
Then any process always depends on events either logged or
known locally. Optimistic message logging pushes one step
further; non-deterministic events are buffered in the process
memory and logged asynchronously. While message sending
is never delayed, the consequence is that a message sent by a
process may depend on an unlogged event and may become
orphaned. Thus a recovery protocol is needed to detect orphan
messages and to recover the application in a consistent global
state after a failure. To be able to detect orphan messages,
dependencies between non-deterministic events need to be
tracked during the entire execution; dependency information
must be piggybacked on application messages.

E. Sender-Based Logging

Event logging only saves events in the remote repository,
without storing the message payload. However, when a process
is recovering, it needs to replay any reception that happened
between the last checkpoint and the failure. Therefore, all
the in transit message payload needs to be saved (m3,m4

in figure1). During normal execution, every outgoing message
is saved in the sender’s volatile memory: a mechanism called
sender-based message logging. This allows the surviving pro-
cesses to serve past messages to recovering processes on
demand, without rolling back. Unlike events, sender-based
data do not require stable or synchronous storage. Should a
process holding useful sender-based data crash, the recovery
procedure of this process replays every outgoing send and thus
rebuilds the missing messages.

III. RECENT AMENDMENTS TO MESSAGE LOGGING

Though the classic model of message logging has been
extensively evaluated in the past, it has been strongly revamped
recently to adapt to the context of MPI on high speed
interconnects. The modifications root deeply into the model
itself and drastically change the essence and the repartition
of the overhead endured by message logging. In this section
we describe the nature of the changes at the source of our
motivation for a new evaluation of the impact of synchronicity
on event logging performance.

A. Adapted Message Logging Model for MPI Communications

Though the previous model has been used in many imple-
mentations of message logging in the past, it is unable to
capture the complexity of MPI communications. This was left
unaddressed as long as the performance gap between network

P11
e

any
r1

P any
r2

P

M
r1

m1 M
r2

m2

1
1

f

1
2

f 2
2

f

first
2

e last
2

e

4
1

f3
1

f2
1

f

W
1

any(r1,r2)

1

r2
D

W
2

any(r1,r2)

last
1

e 2

r1
D

P0

P2

Reception of m2

Reception of m1

first

Fig. 2. Consequence of message fragmentation on event ordering of non
blocking MPI receives

and memory bandwidth was hiding the ensuing overhead.
But as the performance of network interface cards progressed
it became clear that extra memory copies on the critical
path of messages were the source of significant performance
penalties. Discrepancies between the model and the reality
of MPI communication basically lie in the existence of non-
blocking communications. Those are intended to maximize
opportunities for communication overlap by computation by
allowing for the application to post its intention to com-
municate, compute while the communication actually takes
place, and to wait for completion of the communications later.
The rest of this section details the improved model used to
better describe non-deterministic events with concurrent non-
blocking messages.

1) Fragments: Every message is divided into a number of
network fragments when it is transfered over the network, the
number depending on its length. Though MPI enforces a FIFO
semantic for messages from a particular sender, at the lowest
network level there is no particular order between fragments.
Consequently, as depicted in the example of figure 2, when
receiving two different messages m1 and m2, the first fragment
of m1 coming first does not imply that the last fragment of
m1 arrives before the last fragment of m2. Therefore, unlike
in the classic model, with MPI communications the reception
order of a message cannot be fully described by a single event
denoting message reception, but rather depends on the relative
ordering of the multiple fragments composing the messages.
Although there is a very large number of such network non-
deterministic events, only the order of events denoting the first
and last fragments of messages are actually meaningful to the
application, as described in the next paragraphs.

2) Matching: In order to receive a message, an MPI
application needs to post a reception request, using the
MPI_Irecv or MPI_Recv functions. Each request contains
a buffer, a source, a tag and its relative ordering to other
requests, depending on the date it has been posted. When
the first fragment of a message is delivered by the network,
requests are considered in order by the matching logic; the
first request with a matching source and tag is associated with
the incoming message fragments. All upcoming fragments of
this message are delivered directly into the request’s reception
buffer. If no request matches, the message is unexpected; it



is copied into an internal buffer until it matches an upcoming
posted request.

A matching determinant is the event denoting the associa-
tion between the first fragment of a message and a particular
request. In the example of figure 2, Mm1

r1
is the matching

determinant between the request created by the any-source
non-blocking receive P any

r1
and the first fragment reception

event efirst
1 . Though the relative order of the fragments from

the network is always non-deterministic, the FIFO by channel
MPI semantic allows for most of the matching determinants to
be deterministic. The only non-deterministic ones are promis-
cuous receptions, i.e., when a request can match a message
coming from any-source. Those promiscuous matching deter-
minants are the only events that need to be logged in order to
replay a correct matching during recovery.

3) Waiting for completion of requests: When using non-
blocking communications, several requests can concurrently
progress while the application is computing. When computa-
tion cannot process further without accessing buffers involved
in an ongoing communication, the application waits for the
completion of the corresponding requests. All the functions
allowing the application to check the status of a request (like
MPI_Wait) are represented by a completion test event. A
delivery determinant is the event denoting the association
between a particular completion test event and a message last
fragment event. As an example, in figure 2, Dr2

1 is the delivery
determinant associated to the last fragment reception event
elast
2 and the completion test W

any(r1,r2)
1 . A special bottom

event denotes that no last fragment event occurred since the
last test for completion event.

Again, the most common delivery determinants are al-
ways deterministic, namely the MPI_Recv, MPI_Send,
MPI_Wait and MPI_Waitall functions. However, for
MPI_Waitany, the outcome of the MPI call depends on the
ordering between last fragment events of messages matched
with the waited requests. MPI_Waitsome, MPI_Test,
MPI_Testany, MPI_Testsome and MPI_Iprobe add to
the previous source of non-determinism a dependency between
the arrival date of the last fragments and the date of the
completion test. Logging all the delivery determinant events
appearing in a function where only a subset of the requests
is allowed to complete is sufficient to ensure a deterministic
replay of all non-deterministic deliveries.

4) Benefits from the improved model: One of the most
important optimizations for a high throughput communication
library is zero copy: the ability to send and receive directly
into the application’s user-space buffer without intermediary
memory copies. To enable it, the matching must be resolved
upon arrival of the very first fragment. When it is delayed until
the completion of the message, as it is necessary when using
the legacy model of atomic message reception event, the actual
result is that the message cannot be delivered directly into
the application buffer. The MPI library has not yet associated
a request with the message; every message pays the same
penalty as if it were unexpected.

The only software layer where the MPI matching can be

delayed is the very low level interface with the network.
Implementing message logging at this level has two severe
limitations. First the message logging mechanism cannot easily
take advantage of the optimized network drivers and second,
at this level it is impossible to make a distinction between
deterministic and non-deterministic delivery determinants. By
interposing the event logging mechanism higher in the MPI
library architecture, it is only necessary to log the commu-
nication events at the library level, and one can completely
ignore the expensive events generated by the lower network
layer, overall reducing by a large amount the number of events
to log.

B. Active Optimistic Message Logging

A new optimistic message logging solution, called active
optimistic message logging [8], has been recently proposed
to limit the drawbacks of existing optimistic message logging
protocols.

Optimistic message logging has two main drawbacks. First,
it is less efficient than pessimistic message logging on recovery
because orphan processes may be created. In the event of a
failure, a recovery protocol must be executed to detect orphan
processes and these orphan processes must be rolled-back in
addition to the failed processes. Second, to track dependencies
between processes during failure free execution, dependency
information must be piggybacked on application messages,
adding overhead on communications [9].

In the standard model of optimistic message logging, de-
terminants are buffered is the process memory and logged
asynchronously. O2P is an active optimistic message logging
protocol, i.e., it logs non-deterministic determinants on stable
storage as soon as possible to reduce the probability that a
message depends on an unlogged determinant when it is sent.
Thus it reduces the risk of orphan message creation in case of
failure.

To reduce the amount of data piggybacked on application
messages, it has been proved that to be able to detect orphan
messages only dependencies to unlogged non-deterministic
determinants have to be tracked [10]. Since active optimistic
message logging maximizes the probability that previous non-
deterministic determinants are logged when a message is sent,
it reduces the amount of data that needs to be piggybacked on
application messages.

IV. IMPLEMENTATION DETAILS

This section details the implementation of the two protocols
in Open MPI. First, we present the Vprotocol framework,
shared by the two implementations, that provides the basic
blocks of message logging. Then we focus on some details of
the O2P implementation, particularly the modifications to the
event logger to manage the optimist protocol.

A. The Shared Framework

The Vprotocol framework enables the implementation
of message logging protocols in the Open MPI library. It is
based on the refined model presented in the previous section.



The two protocols compared in this paper are implemented in
this framework, allowing for a fair and equitable comparison.
In this section, we present the common parts of the two
implementations, through the description of the Vprotocol
framework main functionalities, i.e., sender-based message
logging, remote event storage, any-source reception event
logging, and non-deterministic delivery event logging.

1) Sender-Based Logging: When a message is sent by a
process, its payload is saved locally. Thus in the event of
failure, the message can be replayed by the process according
to data available in its memory. If the process fails, these
data are lost but will be regenerated during recovery. Sender-
based message logging avoids the costly copy of the message
payload on a stable storage.

The sender-based logging is integrated into the data-type
engine of Open MPI. The data-type engine is in charge of
packing (possibly non-contiguous) data into a flat format
suitable for the receiver’s architecture. Each time a fragment
of the message is packed, the resulting data is copied in a
mmaped memory segment. Because the sender-based copy
progresses at the same speed as the network, it benefits from
cache reuse and releases the send buffer at the same time.
Data is then asynchronously written from memory to disk in
the background to decrease the memory footprint.

2) Event Logger: Non-deterministic events are sent to the
event loggers processes (EL). An EL is a special process added
to the application outside of the MPI COMM WORLD;
several might be used simultaneously to improve scalability.
Events are transmitted using non blocking MPI communica-
tions over an inter-communicator between the application pro-
cess and the event logger. A transactional acknowledgement
protocol is used to make application processes aware of logged
events.

3) Any-Source Receptions: When an any-source receive
request is completed, a new event is logged containing the
request identifier and the matched source. Because channels
are FIFO, enforcing the source during recovery is enough to
replay the original matching order.

4) Non-Deterministic Deliveries: Every non-deterministic
completion test is assigned a unique clock. A delivery event
containing the list of requests delivered by the operation is
created for this clock. During replay, when the completion
test’s clock is equal to the clock of the first event, the
corresponding requests are completed by waiting for each of
them.

Should the outcome of the completion test be that no request
completed, to avoid the creation of a large number of events for
consecutive unsuccessful completion test, we use lazy logging;
only one event is created for all the consecutive operations. If a
completion test succeeds, any pending lazy event is discarded.
During recovery, any completion test whose clock is lower
than the first event in the log has to return that no request
completed.

B. O2P Implementation Details

1) Dependency Tracking: To track dependencies between
application processes, O2P uses a dependency vector. A de-
pendency vector is an n entry vector, n being the number of
processes in the application. Entry j of process pi dependency
vector is the last unlogged non-deterministic event of process
pj that the current state of pi depends on. If entry j is
empty, it means that pi doesn’t depend on any unlogged
non-deterministic event from the process pj . When a process
sends a message, it piggybacks its dependency vector on the
message. The process receiving that message updates its own
dependency vector with the piggybacked vector.

When a non deterministic event occurs at process pi, it sends
the event to the EL and saves it in entry i of its dependency
vector. This entry is emptied by the process when it receives
the acknowledgement from the EL. To limit the piggybacked
data size, dependency vectors are implemented as described
in [11]. Only non-empty entries that have changed since the
last message sent to the same process are piggybacked on the
message.

2) Event Logger: In order to make a process aware of the
events saved by other processes, the EL maintains a n entry
vector that we call the stable vector. Entry k of the stable
vector is the last event of process pk the EL has received. The
stable vector is included in the acknowledgements sent by the
EL. When a process delivers an acknowledgement from the
EL, it updates its dependency vector according to the stable
vector received. This mechanism contributes to reduce the size
of the piggybacked data.

3) Piggyback mechanisms: Piggyback mechanisms have a
significant impact on O2P failure free performance. Due to
active optimistic message logging, most of the time there is
no data to piggyback on application messages. That’s why
we have implemented a solution that optimizes this case.
Piggybacked data are sent in a separate message. An additional
flag is included in the application message header to make
the destination process aware of the presence of piggybacked
data. Thus an additional message is sent only if there is data
to piggyback.

V. EXPERIMENTAL COMPARISON

In this section, we compare the performance obtained by
the optimistic and pessimistic protocols taking into account
the impact of the new message logging model. NetPIPE [12]
is used to benchmark the ping-pong bandwidth and latency. To
investigate application performance we use the NAS Parallel
Benchmark suite [13], a set of kernels and applications pro-
vided by the NASA NAS research center that covers a large
panel of communication schemes and application patterns. For
our experiments we used 6 of the NAS benchmarks: BT, CG,
FT, LU, MG and SP. The results presented are mean values
over 5 executions of each test.

The experiments were run on a 138 node cluster belonging
to the Grid’5000 testbed [14], composed of 27 Dell PowerEdge
1950 servers equipped with an Intel Xeon 5148 LV processor
running at 2.33 Ghz, 8 GB of memory and a 300 GB SATA



-70

-60

-50

-40

-30

-20

-10

 0

 10

1 8 64 1K 64K 1M 8M

Pe
rc

en
ta

ge
 o

f l
os

t b
an

dw
id

th

Message Size in Bytes

Optimist (TCP)
Pessimist (TCP)

Optimist (MX 10G)
Pessimist (MX 10G)

(a) Common case without non-deterministic events.

-70

-60

-50

-40

-30

-20

-10

 0

 10

1 8 64 1K 64K 1M 8M

Pe
rc

en
ta

ge
 o

f l
os

t b
an

dw
id

th

Message Size in Bytes

Optimist (TCP)
Pessimist (TCP)

Optimist (MX 10G)
Pessimist (MX 10G)

(b) With forced non-deterministic events.

Fig. 3. Ping-pong performance comparison of pessimistic and optimistic protocols.

-70

-60

-50

-40

-30

-20

-10

 0

 10

1 8 64 1K 64K 1M 8M

Pe
rc

en
ta

ge
 o

f l
os

t b
an

dw
id

th

Message Size in Bytes

Optimist (MX 10G)
Pessimist (MX 10G)

Fig. 4. Myrinet 10G ping-pong performance of pessimistic and optimistic
protocols without sender-based payload logging.

hard drive; 63 Dell PowerEdge 1950 servers equipped with
an Intel Xeon 5148 LV processor running at 2.33 Ghz, 4
GB of memory and a 160 GB SATA hard drive; and 38 HP
ProLiant DL145G2 servers equipped with an AMD Opteron
246 processor running at 2.0 Ghz, 2 GB of memory and
a 80 GB SATA hard drive. All the nodes had a Gigabit
Ethernet interface and were connected by a single Cisco 6509
switch. Ninety of the Dell PowerEdge nodes were additionally
connected to a single Myrinet 10G switch. Linux 2.6.18 was
the operating system with the mx-1.2.0j Myrinet driver.

A. Ping-pong Performance

For this set of experiments, NetPIPE is deployed on two
Dell PowerEdge 1950 servers while a third one hosts the
Event Logger. The results of figure 3(a) show a regular
Gigabit-Ethernet ping-pong for the two protocols. With the
default options, there is no non-deterministic event in this
benchmark. Therefore, thanks to the optimizations introduced

by the refined model, there is no event to log and the latency
overhead is unnoticeable. As a consequence, both protocols
exhibit very similar behavior.

a) Impact of non-deterministic events: To investigate the
impact of event logging, we force any source receptions in the
NetPIPE benchmark. According to the pattern of communica-
tion in this benchmark, a non-deterministic event is created by
each reception and is immediately followed by a send, forcing
the pessimistic protocol to log an event synchronously before
allowing the send to proceed. Figure 3(b) illustrate that the
consequence is a threefold increase in latency. The overhead
induced by the optimistic protocol is much smaller: while
the event is still sent to the Event Logger immediately, the
next send does not need to be delayed until the reception
of the acknowledgement. The impact of piggybacked data
management is very small, as the application has only two
processes, the maximum number of events to piggyback is at
most one.

b) High performance networks: Focusing on the Myrinet
10G network results from figure 3(a), the very low latency
of both protocols illustrates that without non-deterministic
events, the cost of event logging is well contained on high
performance networks. As seen in figure 3(b), the relative over-
head of managing non-deterministic events is not modified;
the pessimistic protocol still endures a threefold increase in
latency while the optimistic one sees a milder degradation.
However, the performance penalty associated with sender-
based payload logging, a shared characteristic of all message
logging protocols, increases as the network becomes faster.
The Myrinet network is fast enough that even being asyn-
chronous, the extra memory copy generated by the sender-
based payload logging drains more memory bandwidth than
available. Experiments where the sender-based mechanism is
disabled, depicted in figure 4, further support that explanation,
with no bandwidth degradation compared to non fault tolerant
MPI.



 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard
pessimist

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard
pessimist

optimist

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

Fig. 5. Scalability comparison of pessimistic and optimistic message logging protocols on the NAS Benchmarks on Gigabit Ethernet

B. Scalability

In order to evaluate the comparative scalability of the
two protocols we plot the normalized execution time of the
NAS kernels according to a growing number of processors
(figure 5). While in previous experiments (figures 3) we specif-
ically outlined the differences caused by non-deterministic
events, in this phase of the comparison we focus on widely
used application kernels. Among the NAS kernels, only two
generates non deterministic events: MG and LU. As a conse-
quence, the executions of the two protocols are very similar
and exhibit the same scalability. Overall, the overhead induced
by the sender-based payload copy mechanism stays under 10%
on these benchmarks.

The only benchmark showing a different scalability pattern
is LU. The number of non-deterministic events grows with
the size of the application, making the optimistic protocol 6%
more efficient than the pessimistic one for 256 processes.

C. Isolating Event Logging Overhead

Figure 6 presents the performance of all the NAS kernels
for 64 processes on the Myrinet network. Every kernel is
evaluated with or without the sender-based mechanism being
active. While it is a required component for a successful
recovery, deactivating the sender-based overhead reveals the
performance differences imputable to the event logging proto-
cols. As expected, the performance of event logging exhibits
almost no differences between the protocols on the bench-
marks where there is no non-deterministic events. Even on
those with non-deterministic events, the performance varies

bt.c.64 ft.c.64 lu.c.64 mg.c.64 sp.c.64 cg.c.64

NAS Kernel

1

1.02

1.04

1.06

1.08

N
o
rm
a
liz
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

Pessimist
Optimist
Pessimist (Event Logging only)
Optimist (Event Logging only)

Fig. 6. Normalized performance of the NAS kernels on the Myrinet 10G
network (Open MPI=1).

only by less than 2%, which is close to the error margin
of measurements. On this faster network, the sender-based
overhead clearly dominates the performance and flattens any
performance difference coming from the synchronicity of the
event logging.

D. Event Logging Overhead Breakdown

To evaluate the cost of event logging in the protocols, we
used a small ping-pong test with 2 processes. The any source
flag was used in order to generate a non-deterministic event
for every message reception. Results are presented in Table I.
First, when a non deterministic event is created, it has to



Cost of
Event Sending

Cost of
EL Acknowledgment

Management
Pessimist 6.3 µs 97.1 µs
Optimist 6.7 µs 1.1 µs

TABLE I
COST OF A SINGLE MESSAGE GENERATING AN UNIQUE

NON-DETERMINISTIC EVENT.

Cost of
Event Sending

Cost of
EL Acknowledgment

Management
Pessimist 17 ms 150 ms
Optimist 12 ms 42 ms

TABLE II
CUMULATIVE COST OF NON-DETERMINISTIC EVENTS MANAGEMENT IN

LU.C.64.

be sent to the event logger. The cost of event sending is as
expected the same with optimistic and pessimistic message
logging.

The pessimistic message logging protocol then has to
wait for the acknowledgement from the event logger before
sending the next message whereas the optimistic protocol
doesn’t stop the execution of the application process to wait
for the acknowledgement. The only overhead induced by
the acknowledgments management in the optimistic message
logging protocol is related to the update of the dependency
vector on acknowledgement delivery.

Table II details the cost of event logging on class C LU
NAS Parallel Benchmark for 64 processes. The cost of events
sending is again almost equal between the two protocols.
However, the overhead difference on acknowledgement man-
agement between the two protocols is reduced; as the size
of the dependency vector depends on the total number of
processes, a larger setup is prone to reduce this gap.

VI. RELATED WORK

Though fault tolerance can be fully managed by the applica-
tion [15], [16], the software engineering cost prevents a large
number of applications from benefiting of the entire capacity
of modern clusters. FT-MPI [17], [18] aims at helping an
application to express its failure recovery policy by taking care
of rebuilding internal MPI data structures (communicators,
rank, etc.) and triggering user provided callbacks to restore
a coherent application state when failures occur. Though this
approach is very efficient to minimize the cost of failure re-
covery techniques, it still adds a significant level of complexity
to the design and implementation of the parallel applications.

The next step toward easing application development is
automatic fault tolerant MPI libraries, where failures are
completely hidden from the application, thus avoiding any
modification of the user’s code. Consistent recovery can be
achieved automatically by building a coordinated checkpoint
set where no orphan message exists (with the Chandy & Lam-
port algorithm [19], [20], [2], CIC [21] or blocking the appli-

cation until channels are empty [3], [22]). In all coordinated
checkpoint techniques, the only consistent recovery set is
when every process, including non failed ones, restart from
a checkpoint.

Another approach that allows for faster recoveries according
to [2] is to use message logging. Manetho [23], Egida [24] and
MPICH-V [25] feature the main flavors of message logging
(optimistic, pessimistic and causal). Because they rely on
the classic message logging model, these protocols cannot
distinguish between deterministic and non-deterministic events
and introduce extra memory copies leading to a performance
penalty on high throughput networks. Optimistic message log-
ging protocols, such as [26], [27], [28], [10], delay the storing
of determinants to the stable storage and keeps them in the
process memory. As a consequence, they are more subject to
creating orphan processes and to piggyback more determinants
with messages. Active optimistic message logging protocol [8]
copes with this drawback by aggressively saving determinants
to the stable storage as soon as possible

In this paper we present state of the art pessimistic and
optimistic message logging protocols. They both benefit from
an improved model allowing to significantly decrease the
number of memory copies on the critical path and to minimize
the number of non-deterministic events to be saved. Moreover,
active optimistic and pessimistic protocols have never been
compared to date. Besides being the state of the art in
their respective categories, these two protocols, due to their
highly optimized implementations, can shed new light on the
merits of event logging synchronicity. As a consequence, our
experimental results suggest a radically different conclusion
than previous evaluations of message logging protocols [29].

VII. CONCLUSION

The recent update of the message logging model, to adapt to
the context of MPI on high speed interconnects, questions the
results provided by previous works on message logging evalu-
ation. In this new model, message receptions are decomposed
into multiple interdependent events, allowing to clearly dis-
criminate between deterministic and non deterministic events.
Since the total number of events that need to be logged on
stable storage is strongly reduced, the impact of event logging
on performance is also reduced, motivating a new comparison
of the impact of asynchrony on message logging.

Pessimistic and optimistic message logging are, respec-
tively, the most and the less synchronous message logging
solutions. Optimistic message logging exchanges the ability
to delay logging of determinants with the need to rollback
some non-failed processes during recovery. The optimistic
message logging protocol, called O2P, is an active optimistic
message logging protocol introducing an aggressive logging
strategy to reduce the impact of optimistic message logging
on both failure free execution and recovery. In this paper we
have evaluated the impact of the new message logging model
through the comparison of state of the art pessimistic and
optimistic message logging protocols based on this new model
and implemented in the open MPI library.



When some non-deterministic events need to be logged,
optimistic message logging doesn’t require any synchroniza-
tion with the EL. As outlined by NetPIPE and the event han-
dling overhead breakdown, this allows optimistic logging to
reach a twofold better latency in that case. When considering
some of the most useful application kernels, the performance
degradation due to synchronous message logging is very
limited. When the application actually uses non-deterministic
communication patterns, a five to six percent difference can
be measured between the two protocols. The trend on LU
suggests that this difference could become significant at larger
scale. However, the new message logging model significantly
reduces the number of events that need to be saved to a reliable
storage. For four of the six representative benchmarks we
tested, there is even no non-deterministic events left to log. As
a result, the overhead induced by message logging on failure
free execution is very low and is mainly the consequence of
sender-based logging. Being pessimist and optimist in that
case is not important anymore since the two message logging
protocols provide equivalent performance.

From a broader perspective, with the combined effect of
improvement of event logging and increase of the network
interface performance, sender-based payload copy is now
the dominant overhead of message logging, further flattening
differences between different event logging protocols. Future
research efforts are needed toward defining solutions to either
reduce the amount of sender-based data copied, or reduce the
cost of the copy. The latest could be achieved by transferring
the burden of making sender-based copies from the processor
to a DMA capable component of the system, such as a GPU
or a chipset.

REFERENCES

[1] The MPI Forum, “MPI: a message passing interface,” in Supercomputing
’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM Press, 1993, pp. 878–883.

[2] P. Lemarinier, A. Bouteiller, T. Herault, G. Krawezik, and F. Cappello,
“Improved message logging versus improved coordinated checkpointing
for fault tolerant MPI,” in IEEE International Conference on Cluster
Computing (Cluster 2004). IEEE CS Press, 2004.

[3] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Har-
grove, and E. Roman, “The LAM/MPI checkpoint/restart framework:
System-initiated checkpointing,” in Proceedings, LACSI Symposium,
Sante Fe, New Mexico, USA, October 2003.

[4] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, 2002.

[5] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the message
logging model for high performance,” in International Supercomputer
Conference (ISC 2008), Dresden, Germany, June 2008.

[6] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004, pp. 97–104.

[7] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[8] T. Ropars and C. Morin, “O2P: An Extremely Optimistic Message
Logging Protocol,” INRIA Research Report 6357, November 2007.

[9] M. Schulz, G. Bronevetsky, and B. R. Supinski, “On the Performance
of Transparent MPI Piggyback Messages,” in Proceedings of the 15th
European PVM/MPI Users’ Group Meeting on Recent Advances in

Parallel Virtual Machine and Message Passing Interface. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 194–201.

[10] O. P. Damani, Y.-M. Wang, and V. K. Garg, “Distributed Recovery with
K-optimistic Logging,” Journal of Parallel and Distributed Computing,
vol. 63, pp. 1193–1218, 2003.

[11] M. Singhal and A. Kshemkalyani, “An Efficient Implementation of
Vector Clocks,” Information Processing Letters, vol. 43, no. 1, pp. 47–
52, 1992.

[12] Q. O. Snell, A. R. Mikler, and J. L. Gustafson, “NetPIPE: A Network
Protocol Independent Performance Evaluator,” in IASTED International
Conference on Intelligent Information Management and Systems, June
1996.

[13] D. Bailey, T. Harris, W. Saphir, R. van der Wilngaart, A. Woo, and
M. Yarrow, “The NAS Parallel Benchmarks 2.0,” NASA Ames Research
Center, Tech. Rep. Report NAS-95-020, 1995.

[14] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst,
P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and I. Touche, “Grid’5000:
A large scale and highly reconfigurable experimental grid testbed,”
International Journal of High Performance Computing Applications,
vol. 20, no. 4, pp. 481–494, 2006.

[15] A. Roy-Chowdhury and P. Banerjee, “Algorithm-based fault location
and recovery for matrix computations on multiprocessor systems,” IEEE
Trans. Comput., vol. 45, no. 11, pp. 1239–1247, 1996.

[16] Z. Chen, G. E. Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and
J. Dongarra, “Fault tolerant high performance computing by a coding
approach,” in PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel programming. New
York, NY, USA: ACM Press, 2005, pp. 213–223.

[17] G. Fagg and J. Dongarra, “FT-MPI : Fault tolerant MPI, supporting
dynamic applications in a dynamic world,” in 7th Euro PVM/MPI User’s
Group Meeting2000, vol. 1908 / 2000. Balatonfred, Hungary: Springer-
Verlag Heidelberg, september 2000.

[18] G. E. Fagg, A. Bukovsky, and J. J. Dongarra, “HARNESS and fault
tolerant MPI,” Parallel Computing, vol. 27, no. 11, pp. 1479–1495,
October 2001.

[19] K. M. Chandy and L. Lamport, “Distributed snapshots : Determining
global states of distributed systems,” in Transactions on Computer
Systems, vol. 3(1). ACM, February 1985, pp. 63–75.

[20] G. Stellner, “CoCheck: Checkpointing and process migration for MPI,”
in Proceedings of the 10th International Parallel Processing Symposium
(IPPS ’96). Honolulu, Hawaii: IEEE CS Press, April 1996.

[21] J.-M. Hlary, A. Mostefaoui, and M. Raynal, “Communication-induced
determination of consistent snapshots,” IEEE Transactions on Parallel
and Distributed Systems, vol. 10, no. 9, pp. 865–877, 1999.

[22] J. F. Ruscio, M. A. Heffner, and S. Varadarajan, “Dejavu: transparent
user-level checkpointing, migration and recovery for distributed sys-
tems,” in SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. New York, NY, USA: ACM Press, 2006, p. 158.

[23] Elnozahy, Elmootazbellah, and Zwaenepoel, “Manetho: Transparent
rollback-recovery with low overhead, limited rollback and fast output,”
IEEE Transactions on Computing, vol. 41, no. 5, May 1992.

[24] S. Rao, L. Alvisi, and H. M. Vin, “Egida: An extensible toolkit for
low-overhead fault-tolerance,” in 29th Symposium on Fault-Tolerant
Computing (FTCS’99). IEEE CS Press, 1999, pp. 48–55.

[25] A. Bouteiler, T. Herault, G. Krawezik, P. Lemarinier, and F. Cappello,
“MPICH-V project: a multiprotocol automatic fault tolerant MPI,”
vol. 20. SAGE Publications, Summer 2006, pp. 319–333.

[26] R. Strom and S. Yemini, “Optimistic Recovery in Distributed Systems,”
ACM Transactions on Computing Systems, vol. 3, no. 3, pp. 204–226,
1985.

[27] A. P. Sistla and J. L. Welch, “Efficient Distributed Recovery Using
Message Logging,” in PODC ’89: Proceedings of the eighth annual
ACM Symposium on Principles of distributed computing. New York,
NY, USA: ACM Press, 1989, pp. 223–238.

[28] S. W. Smith, D. B. Johnson, and J. D. Tygar, “Completely Asynchronous
Optimistic Recovery with Minimal Rollbacks,” in FTCS-25: 25th In-
ternational Symposium on Fault Tolerant Computing Digest of Papers,
Pasadena, California, 1995, pp. 361–371.

[29] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson, “A survey of
rollback-recovery protocols in message-passing systems,” ACM Comput-
ing Surveys (CSUR), vol. 34, no. 3, pp. 375 – 408, september 2002.


