
A Note on Auto-tuning GEMM for GPUs

Yinan Li1, Jack Dongarra1,2,3, and Stanimire Tomov1

1 University of Tennessee (USA)
2 Oak Ridge National Laboratory (USA)

3 University of Manchester (UK)

January 12, 2009

Abstract. The development of high performance dense linear algebra
(DLA) critically depends on highly optimized BLAS, and especially on
the matrix multiplication routine (GEMM). This is especially true for
Graphics Processing Units (GPUs), as evidenced by recently published
results on DLA for GPUs that rely on highly optimized GEMM [13, 11].
However, the current best GEMM performance, e.g. of up to 375 GFlop/s
in single precision and of up to 75 GFlop/s in double precision arithmetic
on NVIDIA’s GTX 280, is difficult to achieve. The development involves
extensive GPU knowledge and even backward engineering to understand
some undocumented insides about the architecture that have been of key
importance in the development [12]. In this paper, we describe some GPU
GEMM auto-tuning optimization techniques that allow us to keep up
with changing hardware by rapidly reusing, rather than reinventing, the
existing ideas. Auto-tuning, as we show in this paper, is a very practical
solution where in addition to getting an easy portability, we can often get
substantial speedups even on current GPUs (e.g. up to 27% in certain
cases for both single and double precision GEMMs on the GTX 280).
Keywords: Auto-tuning, matrix multiply, dense linear algebra, GPUs.

1 Introduction

Recent activities of major chip manufacturers, such as Intel, AMD, IBM and
NVIDIA, make it more evident than ever that future designs of microprocessors
and large HPC systems will be hybrid/heterogeneous in nature, relying on the
integration (in varying proportions) of two major types of components:

1. Multi/many-cores CPU technology, where the number of cores will continue
to escalate while avoiding the power wall, instruction level parallelism wall,
and the memory wall [2]; and

2. Special purpose hardware and accelerators, especially GPUs, which are in
commodity production, have outpaced standard CPUs in performance, and
have become as easy, if not easier to program than multicore CPUs.

The relative balance between these component types in future designs is not
clear, and will likely vary over time, but there seems to be no doubt that future



2

generations of computer systems, ranging from laptops to supercomputers, will
consist of a composition of heterogeneous components.

These hardware trends have inevitably brought up the need for updates on
existing legacy software packages, such as the sequential LAPACK [1], from the
area of DLA. To take advantage of the new computational environment, our
current research shows that successors of LAPACK have to incorporate algo-
rithms of three main characteristics: high parallelism (to efficiently account
for the many-cores available), reduced communication (to account for the
exponentially increasing memory wall), and heterogeneity-awareness (mean-
ing, algorithms to be properly split between the components of the heterogeneous
system so that the strengths of each component are properly matched to the re-
quirement of the algorithm). This is reflected for example in the Matrix Algebra
on GPU and Multicore Architectures (MAGMA) project [3], a recent effort on
developing a successor to LAPACK but for heterogeneous/hybrid architectures,
with current stress on Multicore + GPU systems.

Our overall goals, as related to auto-tuning and the MAGMA project, are to
investigate opportunities for automating the transition to MAGMA and more-
over, automating the tuning process of the newly discovered algorithms, both
for the sake of productivity and for correctness in the new, complex, and rapidly
changing computational environment. However, the techniques developed and in-
corporated in MAGMA so far show that a transition from LAPACK to MAGMA
can not be done automatically or with minor modifications, as in many cases
new algorithms that significantly differ from algorithms for conventional archi-
tectures will be needed [3]. Indeed, experiments show that the easy approach,
that has been successful in the past, to use current LAPACK and simply call
BLAS on the GPU leads to significant loss of performance (that can be of order
3× and higher). Nevertheless, this approach can lead to high performance, but
only after some modifications and for routines that map well on the GPU, like
Cholesky (e.g. Dongarra et al. [8] report up to 327 GFlop/s in single precision on
a pre-released at the time NVIDIA T10P). Naturally, previous attempts to wrap
some of the work needed in transitions like this in frameworks, have also failed
to produce convincing results. For example the FLAME project [10], is a frame-
work to facilitate the implementation of a class of DLA algorithms. Originally
designed before the appearance of multicores, had to be continuously updated
to meet the challenges of emerging architectures. Still, in the context of GPUs
in particular, the latest results from FLAME developers show a single precision
Cholesky factorization running at up to 156.2 Gflop/s, and a single precision
LU factorization at up to 142 Gflop/s [4]. Although impressive, compare this
performance with, accordingly, 315 Gflop/s and 309 Gflop/s [12] for the new
algorithms (all these results are for the GTX 280). The main point here is that
emerging architectures have motivated the development of new algorithms that
have a much larger design space than previously needed. Early autotuners for
example only targeted the BLAS, under the assumption that a few parame-
ters (e.g. block sizes) were enough to capture enough of the algorithmic design
space of higher level algorithms (LU, etc.) to attain a large fraction of peak per-



3

formance. This assumption was adequate to keep LAPACK and ScaLAPACK
reasonably efficient for many years, but as described above it is far from ade-
quate going forward. This is even more true for frameworks that are rooted in
the old sequential environments preceding the introduction of multicores.

This brief outline motivates us to use auto-tuning (as a major component
of the new MAGMA efforts) to keep up with the rapidly innovating hardware
and continually growing design space so that we get to rapidly reuse, rather
than reinvent, the new ideas. Indeed, the work that we describe in this paper on
developing GEMM autotuners shows that we can significantly accelerate current
results not only on emerging GPUs (e.g. when GPUs recently added support for
double precision arithmetic) but also on current GPUs for which the algorithms
were originally designed. Moreover, we have discovered that in the new hardware
environment our design spaces critically depend not only on the architecture but
also on problem sizes. The implication is that there may be different optimal
algorithms for the same problem, and discovering these algorithms and their
tuning on a case by case study may be impractical even for an expert. Auto-
tuning is preferable.

The rest of the paper is organized as follows. In Section 2, we give background
information on auto-tuning for DLA. Section 3 describe our GEMM autotuner
for GPUs. Next are performance results (Section 4) and finally conclusions and
future directions (Section 5).

2 Auto-tuning for CPUs

Automatic performance tuning (optimization), or auto-tuning in short, is a tech-
nique that has been used intensively on CPUs to automatically generate near-
optimal numerical libraries. For example, ATLAS [14, 7] and PHiPAC [5] are used
to generate highly optimized BLAS. In addition, FFTW [9] is successfully used
to generate optimized libraries for FFT, which is one of the most important tech-
niques for digital signal processing. There are generally two kinds of approaches
for doing auto-tuning, specifically model-driven optimization and empirical opti-
mization. The idea of model-driven optimization comes from the compiler com-
munity. The compiler community has developed various optimization techniques
that can be effectively used to transform code written in high-level languages
such as C and Fortran to run efficiently on modern CPU architectures. These op-
timization techniques include loop blocking, loop unrolling, loop permutation,
fusion and distribution, prefetching, and software pipelining. The parameters
for these transformations such as the block size and the amount of unrolling
are determined by analytical models, which are commonly used in the com-
piler community. While model-driven optimization is generally effective to make
programs run faster, it may not give optimal performance to special-purpose
libraries for linear algebra and signal processing. The reason is that analytical
models used by compilers are only simplified abstractions of the underlying pro-
cessor architectures, and they must be general enough to be applicable to all
kinds of programs. Thus, the limited accuracy of analytical models makes the



4

model-driven approach not so attractive for the optimization of highly special
kernels for linear algebra and signal processing, if the approach is solely used. In
contrast to model-driven optimization, empirical optimization techniques gen-
erate a large number of parametrized code variants for a given algorithm and
run these variants on a given platform to discover the one that gives the best
performance. The effectiveness of empirical optimization depends on the chosen
parameters to optimize, and the search heuristic used. A disadvantage of empir-
ical optimization is the time cost of searching for the best code variant, which
is usually proportional to the number of variants generated and evaluated. Con-
trarily, model-driven optimization has a O(1) cost, since the parameters can be
derived from the analytical model. Therefore, a natural idea is to combine these
two approaches, and it gives the third approach, a hybrid approach that uses the
model-driven approach in the first stage to limit the search space for the second
stage of empirical search.

Another aspect of the auto-tuning, besides the compiler and empirical tuning
where an optimal computational kernel is generated as it is installed on one
system, is adaptivity which can be regarded in various aspects [6]. The main
aspect is to treat cases where tuning can not be restricted to optimizations at
design time, installation time, or even compile time. In those cases, mechanisms
of adaptivity can be incorporated in software, where tuning information captured
in prior runs can be used to tune future runs.

With the success of auto-tuning techniques on generating highly optimized
DLA kernels on CPUs, it is interesting to see how the idea can be used to
generate near-optimal DLA kernels on modern high-performance GPUs.

3 GEMM Autotuner for GPUs

In this section we present our preliminary study on the idea of auto-tuning
on modern GPUs. In particular, we design a GEMM “autotuner” for NVIDIA
CUDA-enabled GPUs. Here autotuner refers to an auto-tuning system that au-
tomatically generates and searches a space of algorithms.

There are two core components in a complete auto-tuning system: a code gen-
erator and a heuristical search engine. The code generator generates parametrized
code variants according to a pre-defined code template. The heuristical search
engine then runs these variants and finds out the best one using a feedback
loop, i.e., the performance results of previously evaluated variants are used as a
guidance for the search on currently unevaluated variants.

In [12], Volkov and Demmel present kernels for single-precision matrix mul-
tiplication (SGEMM) that significantly outperformed CUBLAS 1.0 on CUDA-
enabled GPUs, using an approach that challenges those optimization strategies
and programming guidelines that are commonly accepted. In this paper, we fo-
cus on the GEMM kernel that computes C = αA × B + βC. Additionally, we
investigate auto-tuning on both single precision and double precision GEMM
kernels (i.e., SGEMM and DGEMM). The SGEMM kernel proposed in [12]
takes advantage of the vector capability of NVIDIA CUDA-enabled GPUs. The



5

Fig. 1. The algorithmic view of the code template for GEMM.

authors argue that modern GPUs should be viewed as multi-threaded vector
units, and their algorithms for matrix multiplication resemble those earlier ones
developed for vector processors. We take their SGEMM kernel for computing
C = αA × B + βC as our code template, with modifications to make the tem-
plate accept row-major input matrices, instead of column major used in their
original kernel.

Figure 1 depicts the algorithmic view of the code templates respectively for
both SGEMM and DGEMM. Suppose A, B, and C are M×K, K×N, and M×N
matrices, and that M, N, and K are correspondingly divisible by BM, BN, and
BK (otherwise “padding” by zero has to be applied or using the host for part
of the computation). Then the matrices A, B, and C are partitioned into blocks
of sizes BM×BK, BK×BN, and BM×BN, respectively (as illustrated on the
figure). The elements of each BM×BN block of the matrix C (denoted by BC
on the figure, standing for ’block of C’) are computed by a tx × ty thread block.
Depending on the number of threads in each thread block, each thread will
compute either an entire column or part of a column of BC. For example, suppose
BM = 16 and BN = 64, and the thread block has 16 × 4 threads, then each
thread will compute exactly one column of BC. If the thread block has 16 × 8
threads, then each thread will compute half of a column of BC. After each
thread finishes its assigned portion of the computation, it writes the results (i.e.,
an entire column or part of a column of BC back to the global memory where



6

the matrix C resides. In each iteration, a BM×BK block BA of the matrix A is
brought into the on-chip shared memory and kept there until the computation of
BC is finished. Similarly to the matrix C, matrix B always resides in the global
memory, and the elements of each block BB are brought from the global memory
to the on-chip registers as necessary in each iteration. Because modern GPUs
have a large register file within each multiprocessor, a significant amount of the
computation can be done in registers. This is critical to achieving near-optimal
performance. As in [12], the computation of each block BC = BC + BA×BB
is fully unrolled. It is also worth pointing out that in our SGEMM, 4 saxpy
calls and 4 memory accesses to BB are grouped together, as in [12], while in our
DGEMM, each group contains 2 saxpy and 2 memory accesses to BB. This is
critical to achieving maximum utilization of memory bandwidth in both cases,
considering that the different widths between float and double.

As outlined above, 5 parameters (BM, BK, BN, tx, and ty) determine the
actual implementation of the code template. There is one additional parameter
that is of interest to the actual implementation. This additional parameter de-
termines the layout of each block BA of the matrix A in the shared memory,
i.e., whether the copy of each block BA in the shared memory is transposed or
not. Since the share memory is divided into banks and two or more simultane-
ous accesses to the same bank cause the so-called bank conflicts, transposing the
layout of each block BA in the shared memory may help reduce the possibility of
bank conflicts, thus potentially improving the performance. Therefore, the actual
implementation of the above code template is determined or parametrized by 6
parameters, namely BM, BK, BN, tx, ty, and a flag trans indicating whether to
transpose the copy of each block BA in the shared memory.

We implemented code generators for both SGEMM and DGEMM on NVIDIA
CUDA-enabled GPUs. The code generator takes the 6 parameters as inputs, and
generates the kernel, the timing utilities, the header file, and the Makefile to build
the kernel. The code generator first checks the validity of the input parameters
before actually generating the files. By validity we mean 1) the input parame-
ters confirm to hardware constraints, e.g., the maximum number of threads per
thread block tx × ty ≤ 512, and 2) the input parameters are mutually compat-
ible, e.g., (tx × ty)%BK = 0, BM%ty = 0, and BN%tx = 0. By varying the
input parameters, we can generate different variants of the kernel, and evaluate
their performance, in order to identify the best variant. One way to implement
auto-tuning is to generate a small number of variants for some matrices with
typical sizes during installation time, and choose the best variant during run
time, depending on the input matrix size.

4 Performance Results

The performance results in this section are for NVIDIA’s GeForce GTX 280.
First, we evaluate the performance of the GEMM autotuner in both single

and double precision. Figure 2, Left compares the performance of the GEMM
autotuner in single precision with the CUBLAS 2.0 SGEMM for multiplying



7

Fig. 2. Performance comparison of CUBLAS 2.0 vs auto-tuned SGEMM (left) and
DGEMM (right) on square matrices.

square matrices. We note that both CUBLAS 2.0 SGEMM and our auto-tuned
SGEMM are based on V.Volkov’s SGEMM [12]. The GEMM autotuner selects
the best performing one among several variants. It can be seen that the per-
formance of the autotuner is apparently slightly better than the CUBLAS 2.0
SGEMM. Figure 2, Rigth shows that the autotuner also performs better than
CUBLAS in double precision. These preliminary results demonstrate that auto-
tuning is promising in automatically producing near-optimal GEMM kernels on
GPUs. The most attractive feature of auto-tuning is that it allows us to keep up
with changing hardware by automatically and rapidly generating near-optimal
BLAS kernels, given any newly developed GPUs.

The fact that the two performances are so close is not surprising because our
auto-tuned code and CUBLAS 2.0’s code are based on the same kernel, and this
kernel was designed and tuned for current GPUs (and in particular the GTX
280), targeting high performance for large matrices. In practice though, and
in particular in developing DLA algorithms, it is very important to have high
performance GEMMs on rectangular matrices, where one size is large, and the
other is fixed within a certain block size (BS), e.g. BS = 64, 128, up to about 256
on current architectures. For example, in an LU factorization (with look-ahead)
we need two types of GEMM, namely one for multiplying matrices of size N×BS
and BS×N−BS, and another for multiplying N×BS and BS×BS matrices. This
situation is illustrated on Figure 3, where we compare the performances of the
CUBLAS 2.0 vs auto-tuned DGEMMs occurring in the block LU factorization
of a matrix of size 6144 × 6144. The graphs show that our auto-tuned code
significantly outperforms (up to 27%) the DGEMM from CUBLAS 2.0.



8

Fig. 3. Performance comparison of the auto-tuned (solid line) vs CUBLAS 2.0 (dotted
line) DGEMMs occurring in the block LU factorization (for block sizes BS = 64 on
the left and 128 on the right) of a matrix of size 6144 × 6144. The two kernels shown
are for multiplying N×BS and BS×N−BS matrices (denoted by N×N−BS×BS), and
N×BS and BS×BS matrices (denoted by N×BS×BS).

5 Conclusions and Future Directions

We highlighted the difficulty in developing highly optimized codes for new ar-
chitectures, and in particular GEMM for GPUs. On the other side, we have
shown an auto-tuning approach that is very practical and can lead to optimal
performance. In particular, our auto-tuning approach allowed us

– To easily port existing ideas on quickly evolving architectures (e.g. demon-
strated here by transferring single precision to double precision GEMM de-
signs for GPUs), and

– To substantially speed up even highly tuned kernels (e.g. up to 27% in this
particular study).

These results also underline the need to incorporate auto-tuning ideas in our soft-
ware. This is especially needed now for the new, complex, and rapidly changing
computational environment. Therefore our future directions are, as we develop
new algorithms (e.g. within the MAGMA project), to systematically define their
design/search space, so that we can easily automate the tuning process as demon-
strated in this paper.

Acknowledgments. Part of this work was supported by the U.S. National
Science Foundation, and the U.S. Department of Energy. We thank NVIDIA and
NVIDIA’s Professor Partnership Program for their hardware donations.



9

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK user’s
guide, SIAM, 1999, Third edition.

2. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick, The landscape of parallel
computing research: A view from berkeley, Tech. Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, Dec 2006.

3. M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, and V. Volkov, En-
hancing the performance of dense linear algebra solvers on GPUs [in
the MAGMA project], Poster at Supercomputing 08, November 18, 2008,
http://www.cs.utk.edu/˜tomov/SC08-poster.pdf.

4. S. Barrachina, M. Castillo, F. Igual, R. Mayo, E. Quintana-Orti, and G. Quintana-
Orti, Exploiting the capabilities of modern GPUs for dense matrix computations,
Technical Report ICC 01-11-2008, Universidad Jaime I (Spain), 2008.

5. Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and James Demmel, Optimizing
Matrix Multiply Using PHiPAC: A Portable, High-Performance, ANSI C Coding
Methodology, International Conference on Supercomputing, 1997, pp. 340–347.

6. George Bosilca, Zizhong Chen, Jack Dongarra, Victor Eijkhout, Graham Fagg,
Erika Fuentes, Julien Langou, Piotr Luszczek, Jelena Pjesivac-Grbovic, Keith Sey-
mour, Haihang You, , and Satish S. Vadiyar, Self adapting numerical software
(SANS) effort, IBM Journal of Reseach and Development 50 (2006), no. 2/3, 223–
238.

7. Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Rich
Vuduc, Clint Whaley, and Katherine Yelick, Self adapting linear algebra algorithms
and software, Proceedings of the IEEE 93 (2005), no. 2, special issue on ”Program
Generation, Optimization, and Adaptation”.

8. Jack Dongarra, Shirley Moore, Gregory Peterson, Stanimire Tomov, Jeff Allred,
Vincent Natoli, and David Richie, Exploring new architectures in accelerating CFD
for Air Force applications, Proceedings of HPCMP Users Group Conference 2008
(July 14-17, 2008), http://www.cs.utk.edu/˜tomov/ugc2008 final.pdf.

9. Matteo Frigo and Steven G. Johnson, FFTW: An Adaptive Software Architecture
for the FFT, Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,
vol. 3, IEEE, 1998, pp. 1381–1384.

10. John A. Gunnels, Robert A. Van De Geijn, and Greg M. Henry, Flame: Formal
linear algebra methods environment, ACM Transactions on Mathematical Software
27 (2001), 422–455.

11. Stanimire Tomov, Jack Dongarra, and Marc Baboulin, Towards dense linear alge-
bra for hybrid GPU accelerated manycore systems, Technical Report UT-CS-08-632,
University of Tennessee, 2008, LAPACK Working Note 210.

12. V. Volkov and J. Demmel, Benchmarking GPUs to tune dense linear algebra, Su-
percomputing 08, IEEE, 2008, to appear.

13. Vasily Volkov and James Demmel, LU, QR and Cholesky factorizations using vec-
tor capabilities of GPUs, Tech. Report UCB/EECS-2008-49, EECS Department,
University of California, Berkeley, May 2008.

14. R. Clinton Whaley, Antoine Petitet, and Jack Dongarra, Automated Empirical
Optimizations of Software and the ATLAS Project., Parallel Computing 27 (2001),
no. 1-2, 3–35.


