
A Class of Parallel Tiled Linear Algebra
Algorithms for Multicore Architectures

LAPACK Working Note # 191

Alfredo Buttari1, Julien Langou3, Jakub Kurzak1, Jack Dongarra12

1 Department of Electrical Engineering and Computer Science, University Tennessee,
Knoxville, Tennessee

2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, Tennessee

3 Department of Mathematical Sciences, University of Colorado at Denver and
Health Sciences Center, Colorado

Abstract. As multicore systems continue to gain ground in the High
Performance Computing world, linear algebra algorithms have to be re-
formulated or new algorithms have to be developed in order to take ad-
vantage of the architectural features on these new processors. Fine grain
parallelism becomes a major requirement and introduces the necessity
of loose synchronization in the parallel execution of an operation. This
paper presents an algorithm for the Cholesky, LU and QR factorization
where the operations can be represented as a sequence of small tasks
that operate on square blocks of data. These tasks can be dynamically
scheduled for execution based on the dependencies among them and on
the availability of computational resources. This may result in an out
of order execution of the tasks which will completely hide the presence
of intrinsically sequential tasks in the factorization. Performance com-
parisons are presented with the LAPACK algorithms where parallelism
can only be exploited at the level of the BLAS operations and vendor
implementations.

1 Introduction

In the last twenty years, microprocessor manufacturers have been driven to-
wards higher performance rates only by the exploitation of higher degrees of
Instruction Level Parallelism (ILP). Based on this approach, several generations
of processors have been built where clock frequencies were higher and higher
and pipelines were deeper and deeper. As a result, applications could benefit
from these innovations and achieve higher performance simply by relying on
compilers that could efficiently exploit ILP. Due to a number of physical limi-
tations (mostly power consumption and heat dissipation) this approach cannot
be pushed any further. For this reason, chip designers have moved their focus
from ILP to Thread Level Parallelism (TLP) where higher performance can be
achieved by replicating execution units (or cores) on the die while keeping the
clock rates in a range where power consumption and heat dissipation do not
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represent a problem. Multicore processors clearly represent the future of com-
puting. It is easy to imagine that multicore technologies will have a deep impact
on the High Performance Computing (HPC) world where high processor counts
are involved and, thus, limiting power consumption and heat dissipation is a
major requirement. The Top500 [1] list released in June 2007 shows that the
number of systems based on the dual-core Intel Woodcrest processors grew in
six months (i.e. from the previous list) from 31 to 205 and that 90 more systems
are based on dual-core AMD Opteron processors.

Even if many attempts have been made in the past to develop parallelizing
compilers, they proved themselves efficient only on a restricted class of problems.
As a result, at this stage of the multicore era, programmers cannot rely on com-
pilers to take advantage of the multiple execution units present on a processor.
All the applications that were not explicitly coded to be run on parallel archi-
tectures must be rewritten with parallelism in mind. Also, those applications
that could exploit parallelism may need considerable rework in order to take
advantage of the fine-grain parallelism features provided by multicores.

The current set of multicore chips from Intel and AMD are for the most part
multiple processors glued together on the same chip. There are many scalability
issues to this approach and it is unlikely that type of architecture will scale up
beyond 8 or 16 cores. Even though it is not yet clear how chip designers are going
to address these issues, it is possible to identify some properties that algorithms
must have in order to match high degrees of TLP:

fine granularity: cores are (and probably will be) associated with relatively
small local memories (either caches or explicitly managed memories like in
the case of the STI Cell [22] architecture or the Intel Polaris[3] prototype).
This requires splitting an operation into tasks that operate on small portions
of data in order to reduce bus traffic and improve data locality.

asynchronicity: as the degree of TLP grows and granularity of the operations
becomes smaller, the presence of synchronization points in a parallel execu-
tion seriously affects the efficiency of an algorithm. Moreover, asynchronous
execution models allow the hiding of latency of access to memory.

The LAPACK [5] and ScaLAPACK [9] software libraries represent a de facto
standard for high performance dense Linear Algebra computations and have
been developed, respectively, for shared-memory and distributed-memory archi-
tectures. In both cases exploitation of parallelism comes from the availability of
parallel BLAS. In the LAPACK case, a number of BLAS libraries can be used
to take advantage of multiple processing units on shared memory systems; for
example, the freely distributed ATLAS [26] and GotoBLAS [15] or other ven-
dor BLAS like Intel MKL [2] are popular choices. These parallel BLAS libraries
use common techniques for shared memory parallelization like pThreads [21] or
OpenMP [11]. This is represented in Figure 1 (left).

In the ScaLAPACK case, parallelism is exploited by PBLAS [10] which is
a parallel BLAS implementation that uses the Message Passing Interface [13]
(MPI) for communications on a distributed memory system. Substantially, both
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Fig. 1. Transition from sequential algorithms that rely on parallel BLAS to
parallel algorithms.

LAPACK and ScaLAPACK implement sequential algorithms that rely on par-
allel building blocks (i.e., the BLAS operations). As multicore systems require
finer granularity and higher asynchronicity, considerable advantages may be ob-
tained by reformulating old algorithms or developing new algorithms in a way
that their implementation can be easily mapped on these new architectures. This
transition is shown in Figure 1. An approach along these lines has already been
proposed in [7, 8, 20] where operations in the standard LAPACK algorithms for
some common factorizations were broken into sequences of smaller tasks in order
to achieve finer granularity and higher flexibility in the scheduling of tasks to
cores. The importance of fine granularity algorithms is also shown in [19].

The rest of this document shows how this can be achieved for the Cholesky,
LU and QR factorizations. Section 2 describes the block algorithms used in
the LAPACK library and presents their limitations on parallel, shared memory
system; Section 3 describes fine granularity, tiled algorithms for the Cholesky,
LU and QR factorizations and presents a framework for their asynchronous and
dynamic execution; performance results for this algorithm are shown in Section 5.

2 Block Algorithms

2.1 Description of the Block Algorithms in LAPACK and their
Scalability Limits

The LAPACK library provides a broad set of Linear Algebra operations aimed
at achieving high performance on systems equipped with memory hierarchies.
The algorithms implemented in LAPACK leverage the idea of blocking to limit
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the amount of bus traffic in favor of a high reuse of the data that is present in
the higher level memories which are also the fastest ones. The idea of blocking
revolves around an important property of Level-3 BLAS operations, the so called
surface-to-volume property, that states that O(n3) floating point operations are
performed on O(n2) data. Because of this property, Level-3 BLAS operations
can be implemented in such a way that data movement is limited and reuse of
data in the cache is maximized. Blocking algorithms consists in recasting Linear
Algebra algorithms (like those implemented in LINPACK) in a way that only a
negligible part of computations is done in Level-2 BLAS operations (where no
data reuse possible) while the most part is done in Level-3 BLAS.

Most of the LAPACK algorithms can be described as the repetition of two
fundamental steps:

panel factorization : depending of the Linear Algebra operation that has to be
performed, a number of transformations are computed for a small portion
of the matrix (the so called panel). These transformations, computed by
means of Level-2 BLAS operations, can be accumulated (the way they are
accumulated changes depending on the particular operation performed).

trailing submatrix update : in this step, all the transformations that have
been accumulated during the panel factorization, can be applied at once to
the rest of the matrix (i.e. the trailing submatrix) by means of Level-3 BLAS
operations.

Because the panel size is very small compared to the trailing submatrix size,
block algorithms are very rich in Level-3 BLAS operations which provides high
performance on memory hierarchy systems.

The LAPACK library can use any flavor of parallel BLAS to exploit par-
allelism on a multicore, shared-memory architecture. This approach, however,
has a number of limitations due to the nature of the transformation in the panel
factorization. The panel factorization, in fact, is rich in Level-2 BLAS operations
that cannot be efficiently parallelized on currently available shared memory ma-
chines. To understand this, it is important to note that Level-2 BLAS operations
can be, generally speaking, defined as all those operations where O(n2) floating-
point operations are performed on O(n2) floating-point data; thus, the speed of
Level-2 BLAS computations is limited by the speed at which the memory bus
can feed the cores. On current multicores architectures, there is a vast dispro-
portion between the bus bandwidth and the speed of the cores. For example
the Intel Clovertown processor is equipped with four cores each capable of a
double precision peak performance of 10.64 GFlop/s (that is to say a peak of
42.56 GFlop/s for four cores) while the bus bandwidth peak is 10.64 GB/s which
provides 1.33 GWords/s (a word being a 64 bit double precision number). As a
result, since one core is largely enough to saturate the bus, using two or more
cores does not provide any significant benefit. The LAPACK algorithms are,
thus, characterized by the presence of a sequential operation (i.e., the panel
factorizations) which represents a small fraction of the total number of FLOPS
performed (O(n2) FLOPS for a total of O(n3) FLOPS) but limits the scalability
of block factorizations on a multicore system when parallelism is only exploited
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at the level of the BLAS routines. This approach will be referred to as the fork-
join approach since the execution flow of a block factorization would show a
sequence of sequential operations (i.e. the panel factorizations) interleaved to
parallel ones (i.e., the trailing submatrix updates).

Cholesky LU QR

# cores panel total panel total panel total

Gflop/s Gflop/s Gflop/s Gflop/s Gflop/s Gflop/s

1 2.6 7.5 2.1 7.8 1.7 7.7
2 2.5 12.7 2.1 13.6 1.9 14.0
4 2.0 21.2 2.2 21.3 1.8 21.5
8 2.1 15.1 2.0 26.4 1.9 18.8

Table 1. Scalability of the fork-join parallelization on a 2-way Quad Clovertown
system (eight cores total).

Table 1 shows the scalability limits of the panel factorization and how this
affects the scalability of the whole operation for the Cholesky, LU and QR fac-
torizations respectively on an 2-way quad-core Clovertown system (eight cores
total) using the MKL-9.1 parallel BLAS library.

In [7, 20], a solution to this scalability problem is presented. The approach
described in [7, 20] consists of breaking the trailing submatrix update into smaller
tasks that operate on a block-column (i.e., a set of b contiguous columns where
b is the block size). The algorithm can then be represented as a Directed Acyclic
Graph (DAG) where nodes represent tasks, either panel factorization or update
of a block-column, and edges represent dependencies among them. The execution
of the algorithm is performed by asynchronously scheduling the tasks in a way
that dependencies are not violated. This asynchronous scheduling results in an
out-of-order execution where slow, sequential tasks are hidden behind parallel
ones. This approach can be described as a dynamic lookahead technique. Even
if this approach provides significant speedup, as shown in [7, 20], it is exposed
to scalability problems. Due to the relatively high granularity of the tasks, the
scheduling of tasks may have a limited flexibility and the parallel execution of
the algorithm may be affected by an unbalanced load.

The following sections describe the application of this idea of dynamic schedul-
ing and out of order execution to a class of algorithms for Cholesky, LU and QR
factorizations where finer granularity of the operations and higher flexibility for
the scheduling can be achieved.

3 Fine Granularity Algorithms for the Cholesky, LU and
QR Factorizations

As described in Section 1, fine granularity is one on the main requirements that
is demanded to an algorithm in order to achieve high efficiency on a parallel
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multicore system. This section shows how it is possible to achieve this fine gran-
ularity for the Cholesky, LU and QR factorizations by using “tiled” algorithms.
Besides providing fine granularity, the use of tiled algorithms also makes it pos-
sible to use more efficient storage format for the data such as Block Data Layout
(BDL). The benefits of BDL have been extensively studied in the past, for ex-
ample in [18], and recent studies [4, 8] demonstrate how fine-granularity parallel
algorithms can benefit from BDL.

Section 4 shows how the idea of dynamic scheduling and out of order execu-
tion presented in [7, 20] can be applied to these algorithms in order to achieve
the other important property described in Section 1, i.e. asynchronicity.

3.1 A Tiled Algorithm for the Cholesky Factorization

Developing a tiled algorithm for the Cholesky factorization is a relatively easy
task since each of the elementary operations in the standard LAPACK block
algorithm can be broken into a sequence of tasks that operate on small portions
of data. The benefits of such approach on parallel multicore systems have been
already discussed in the past [8, 19].

The tiled algorithm for Cholesky factorization will be based on the following
set of elementary operations:

DPOTF2 . This LAPACK subroutine is used to perform the unblocked Cholesky
factorization of a symmetric positive definite tile Akk of size b× b producing
a unit, lower triangular tile Lkk. Thus, using the notation input −→ output,
the call DPOTF2(Akk, Lkk) will perform

Akk −→ Lkk = Cholesky(Akk)

DTRSM . This BLAS subroutine is used to apply the transformation computed by
DPOTF2 to a Aik tile by means of a triangular system solve. The DTRSM(Lkk,
Aik, Lik) performs

Lkk, Aik −→ Lik = AikL−T
kk

DGSMM . This subroutine is used to update the tiles Aij in the trailing submatrix
by mean of a matrix-matrix multiply. In the case of diagonal tiles, i.e. Aij

tiled where i = j, this subroutine will take advantage of their triangular
structure. The call DGSMM(Lik, Ljk, Aij)

Lik, Ljk, Aij −→ Aij = Aij − LikLT
jk

Assume a symmetric, positive definite matrix A of size n×n where n = p ∗ b
for some value b that defines the size of the tiles

A =


A11 0 · · · 0
A21 A22 · · · 0
...

...
. . .

...
Ap1 Ap2 · · · App


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Algorithm 1 Tiled Cholesky factorization
1: for k=1,2,...,p do
2: DPOTF2(Akk, Lkk)
3: for i = k + 1, ..., p do
4: DTRSM(Lkk, Aik, Lik)
5: end for
6: for i = k + 1, ..., p do
7: for j = k + 1, ..., r do
8: DGSMM(Lik, Ljk, Aij)
9: end for

10: end for
11: end for

where all the Aij are of size b × b; then the tiled Cholesky algorithm can be
described as in Algorithm 1.

Note that no extra memory area is needed to store the Lij tiles since they
can overwrite the corresponding Aij tiles from the original matrix.

3.2 A Tiled Algorithm for the LU and QR Factorizations

In the case of the LU and QR factorizations, it is not possible to adopt the
same approach used for the Cholesky operation. In fact, due to their nature, the
elementary operations used in the LAPACK block algorithm cannot be simply
broken into sequences of tasks that operate on smaller portions of data. Different
algorithms must be used in order to achieve a fine granularity parallelism.

The algorithmic change we propose is actually well-known and takes its roots
in updating factorizations [14, 25]. Using updating techniques to tile the algo-
rithms have first4 been proposed by Yip [27] for LU to improve the efficiency of
out-of-core solvers, and were recently reintroduced in [17, 23] for LU and QR,
once more in the out-of-core context. A similar idea has also been proposed
in [6] for Hessenberg reduction in the parallel distributed context. The efficiency
of these algorithms in a parallel multicore system has been discussed, for the
QR factorization, in [4]; specifically the algorithm used in [4] is a simplified vari-
ant of that discussed in [17] that aims at overcoming the limitations of BLAS
libraries on small size tiles. The cost of this simplification is an increase in the
operation count for the whole QR factorization. In this document the same al-
gorithm as in [17] is used to achieve high efficiency for both the LU and QR
factorizations; performance results show that this choice, while limiting the op-
eration count overhead to a negligible amount, still delivers high execution rates
as. This approach has been presented for the QR factorization in [16].

Tiled Algorithm for the QR Factorization
The description of the tiled algorithm for the QR factorization will be based

on the following sets of elementary operations:
4 to our knowledge
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DGEQRT. This subroutine was developed to perform the blocked factorization of
a diagonal block Akk of size b× b with internal block size s. This operation
produces an upper triangular matrix Rkk, a unit lower triangular matrix Vkk

that contains b Householder reflectors and an upper triangular matrix Tkk

as defined by the WY technique for accumulating Householder transforma-
tions [24].
Thus, using the notation input −→ output, the call DGEQRT(Akk, Vkk, Rkk,
Tkk) performs

Akk −→ (Vkk, Rkk, Tkk) = QR(Akk)

DLARFB. This LAPACK subroutine will be used to apply the transformation
(Vkk, Tkk) computed by subroutine DGEQT2 to a tile Akj producing a Rkj

tile.
Thus, DLARFB(Akj , Vkk, Tkk, Rkj) performs

Akj , Vkk, Tkk −→ Rkj = (I − VkkTkkV T
kk)Akj

DTSQRT. This subroutine was developed to perform the blocked QR factorization
of a matrix that is formed by coupling an upper triangular block Rkk with
a square block Aik with internal block size s. This subroutine will return an
upper triangular matrix Rkk, an upper triangular matrix Tik as defined by
the WY technique for accumulating householder transformations, and a tile
Vik containing b Householder reflectors where b is the tile size.
Then, DTSQRT(Rkk, Aik, Vik, Tik) performs(

Rkk

Aik

)
−→ (Vik, Tik, Rkk) = QR

(
Rkk

Aik

)
DSSRFB. This subroutine was developed to update the matrix formed by coupling

two square blocks Rkj and Aij applying the transformation computed by
DTSQRT.
Thus, DSSRFB(Rkj , Aij , Vik, Tik) performs(

Rkj

Aij

)
, Vik, Tik −→

(
Rkj

Aij

)
= (I − VikTikV T

ik )
(

Rkj

Aij

)
Note that no extra storage is required for the Vij and Rij since those tiles

can overwrite the Aij tiles of the oriniginal matrix A; a temporary memory area
has to be allocated to store the Tij tiles. Assuming a matrix A of size pb× qb

A11 A12 . . . A1q

A21 A22 . . . A2q

...
. . .

...
Ap1 Ap2 . . . Apq


where b is the block size and each Aij is of size b× b, the QR factorization can
be performed as in Algorithm 2.



Title Suppressed Due to Excessive Length 9

Algorithm 2 The tiled algorithm for QR factorization.
1: for k = 1, 2..., min(p, q) do
2: DGEQRT(Akk, Vkk, Rkk, Tkk)
3: for j = k + 1, k + 2, ..., q do
4: DLARFB(Akj , Vkk, Tkk, Rkj)
5: end for
6: for i = k + 1, k + 1, ..., p do
7: DTSQRT(Rkk, Aik, Vik, Tik)
8: for j = k + 1, k + 2, ..., q do
9: DSSRFB(Rkj , Aij , Vik, Tik)

10: end for
11: end for
12: end for

If an unblocked algorithm is used to perform the DTSQRT and DSSRFB sub-
routines (as suggested in [4]), this tiled algorithm has a total cost that is 25%
higher than the cost of the LAPACK block algorithm (see [4] for details), i.e.
5
2n2(m − n

3 ) (where m = p · b and n = q · b) versus 2n2(m − n
3 ). As suggested

in [16, 17], a block approach can be used for the operations implemented in the
DTSQRT and DSSRFB subroutines with a block size s � b. To understand how
this cuts the operation count of the tiled algorithm, it is important to note that
the DGEQRT, DLARFB and DTSQRT only account for lower order terms in the total
operation count for the tiled algorithm. It is, thus, possible to ignore these terms
and derive the operation count for the tiled algorithm for QR factorization as
the sum of the cost of all the DSSRFB calls. The cost of a single DSSRFB call,
ignoring the lower order terms, is 4b3 + sb2 and, assuming q < p, the total cost
of the tiled algorithm with internal blocking is

q∑
k=1

(4b3 + sb2)(p− k)(q − k) ' 2n2(m− n

3
)(1 +

s

4b
). (1)

The operation count for the tiled QR algorithm with internal blocking is big-
ger than that of the LAPACK algorithm only by the factor (1 + s

4b ) which is
negligible, provided that s � b. Note that, in the case where s = b, the tiled
algorithm performs 25% more floating point operations than the LAPACK block
algorithm, as stated before.

Tiled Algorithm for the LU Factorization
The description of the tiled algorithm for the LU factorization will be based on

the following sets of elementary operations.

DGETRF. This subroutine performes a block LU factorization of a tile Akk of size
b× b with internal block size s. As a result, two matrices Lkk and Ukk, unit-
lower and upper triangular respectively, and a permutation matrix Pkk are
produced. Thus, using the notation input −→ output, the call DGETRF(Akk,
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Lkk, Ukk, Pkk) will perform

Akk −→ Lkk, Ukk, Pkk = LU(Akk)

DGESSM. This routine was developed to apply the tranformation (Lkk, Pkk) com-
puted by the DGETRF subroutine to a tile Akj . thus the call DGESSM(Akj , Lkk,
Pkk, Ukj) will perform

Akj , Lkk, Pkk −→ Ukj = L−1
kk PkkAkj

DTSTRF. This subroutine was developed to perform the block LU factorization
of a matrix that is formed by coupling an upper triangular block Ukk with
a square block Aik with internal block size s. This subroutine will return
an upper triangular matrix Ukk, a unit, lower triangular matrix Lik and a
permutation matrix Pik. Thus, the call DTSTRF(Ukk, Aik, Pik) will perform(

Ukk

Aik

)
−→ Ukk, Lik, Pik = LU

(
Ukk

Aik

)
DSSSSM. This subroutine was developed to update the matrix formed by coupling

two square blocks Ukj and Aij applying the transformation computed by
DTSTRF. Thus the call DSSSSM(Ukj , Aij , Lik, Pik) performs(

Ukj

Aij

)
, Lik, Pik −→

(
Ukj

Aij

)
= L−1

ik Pik

(
Ukj

Aij

)
Note that no extra storage is required for the Uij since they can overwrite

the correspondent Aij tiles of the original matrix A. A memory area must be
allocated to store the Pij and part of the Lij ; the Lij tiles, in fact, are 2b ×
b matrices, i.e. two tiles arranged vertically and, thus, one tile can overwrite
the corresponding Aij tile and the other is stored in the extra storage area5.
Assuming a matrix A of size pb× qb

A11 A12 . . . A1q

A21 A22 . . . A2q

...
. . .

...
Ap1 Ap2 . . . Apq


where b is the block size and each Aij is of size b × b, the LU factorization can
be performed as in Algorithm 3.

If an unblocked algorithm is used to perform the DTSTRF and DSSSM subrou-
tines, this tiled algorithm has a total cost that is 50% higher than the cost of the
LAPACK block algorithm, i.e. 3

2n2(m− n
3 ) (where m = p · b and n = q · b) versus

n2(m− n
3 ). In this tiled algorithm for LU factorization, as in the case of the tiled

algorithm for QR factorization, a block approach can be used for the operations
5 the upper part of Lij is, actually, a group of b/s unit, lower triangular matrices each

of size s× s and, thus, only a small memory area is required to store it.
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Algorithm 3 The tiled algorithm for LU factorization.
1: for k = 1, 2..., min(p, q) do
2: DGETRF(Akk, Lkk, Ukk, Pkk)
3: for j = k + 1, k + 2, ..., q do
4: DGESSM(Akj , Lkk, Pkk, Ukj)
5: end for
6: for i = k + 1, k + 1, ..., p do
7: DTSTRF(Ukk, Aik, Pik)
8: for j = k + 1, k + 2, ..., q do
9: DSSSSM(Ukj , Aij , Lik, Pik)

10: end for
11: end for
12: end for

implemented in the DTSTRF and DSSSSM subroutines with a block size s � b. To
understand how this cuts the operation count of the tiled algorithm, it is impor-
tant to note that the DGETRF, DGESSM and DTSTRF only account for lower order
terms in the total operation count for the tiled algorithm. It is, thus, possible to
ignore these terms and derive the operation count for the tiled algorithm for LU
factorization as the sum of the cost of all the DSSSSM calls. The cost of a single
DSSSSM call, ignoring the lower order temrs, is 2b3 + sb2 and, assuming q < p,
the total cost of the tiled algorithm with internal blocking is

q∑
k=1

(2b3 + sb2)(p− k)(q − k) ' n2(m− n

3
)(1 +

s

2b
). (2)

The operation count for the tiled LU algorithm with internal blocking is big-
ger than that of the LAPACK algorithm only by the factor (1 + s

2b ) which is
negligible, provided that s � b. Note that, in the case where s = b, the tiled
algorithm performs 50% more floating point operations than the LAPACK block
algorithm, as stated before.

Since the only difference between Algorithms 2 and 3 is the elementary op-
erations, and noting, as explained before, that the Rij , Vij , Uij and Lij tiles are
stored in the corresponfing memory locations that contain the tiles Aij of the
original matrix A (the Lij only partially), a graphical representation of Algo-
rithms 2 and 3 is as in Figure 2.

4 Graph driven asynchronous execution

Following the approach presented in [4, 7, 20], Algorithms 1, 2 and 3 can be rep-
resented as a Directed Acyclic Graph (DAG) where nodes are elementary tasks
that operate on b× b blocks and where edges represent the dependencies among
them. Figure 3 show the DAG for the tiled QR factorization when Algorithm 2
is executed on a matrix with p = q = 3. Note that these DAGs have a recursive
structure and, thus, if p1 ≥ p2 and q1 ≥ q2 then the DAG for a matrix of size
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k=1 k=1, j=2 k=1, j=3

k=1, i=2 k=1, i=2, j=2 k=1, i=2, j=3

k=1, i=3 k=1, i=3, j=2 k=1, i=3, j=3

DGEQRF/DGETRF DLARFB/DGESSM DLARFB/DGESSM

DTSQRF/DTSTRF DSSRFB/DSSSSM DSSRFB/DSSSSM

DTSQRF/DTSTRF DSSRFB/DSSSSM DSSRFB/DSSSSM

Fig. 2. Graphical representation of one repetition of the outer loop in Algo-
rithms 2 and 3 on a matrix with p = q = 3. As expected the picture is very
similar to the out-of-core algorithm presented in [17].

p2× q2 is a subgraph of the DAG for a matrix of size p1× q1. This property also
holds for most of the algorithms in LAPACK.

Once the DAG is known, the tasks can be scheduled asynchronously and
independently as long as the dependencies are not violated. A critical path can
be identified in the DAG as the path that connects all the nodes that have the
higher number of outgoing edges. Based on this observation, a scheduling policy
can be used, where higher priority is assigned to those nodes that lie on the
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Fig. 3. The dependency graph of Algorithm 2 on a matrix with p = q = 3.

critical path. Clearly, in the case of our block algorithm for QR factorization,
the nodes associated to the DGEQRT subroutine have the highest priority and
then three other priority levels can be defined for DTSQRT, DLARFB and DSSRFB
in descending order.

This dynamic scheduling results in an out of order execution where idle time
is almost completely eliminated since only very loose synchronization is required
between the threads. Figure 4 shows part of the execution flow of Algorithm 2 on
a 8-cores machine (2-way Quad Clovertown) when tasks are dynamically sched-
uled based on dependencies in the DAG. Each line in the execution flow shows
which tasks are performed by one of the threads involved in the factorization.

Figure 4 shows that all the idle times, which represent the major scalability
limit of the fork-join approach, can be removed thanks to the very low synchro-
nization requirements of the graph driven execution. The graph driven execution
also provides some degree of adaptivity since tasks are scheduled to threads de-
pending on the availability of execution units.

5 Performance Results

The performance of the tiled algorithms for Cholesky, QR ad LU factorizations
with dynamic scheduling of tasks has been measured on the system described in
Table 2 and compared to the performance of the MKL-9.1 implementations and
to the fork-join approach, i.e., the standard algorithm for block factorizations of
LAPACK associated with multithreaded BLAS (MKL-9.1).

Figures 5, 6, 7 report the performance of the Cholesky, QR and LU factor-
izations for the tiled algorithms with dynamic scheduling, the MKL-9.1 imple-
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Fig. 4. The execution flow for dynamic scheduling, out of order execution of
Algorithm 2.

2-way quad Clovertown

Architecture Intel R©Xeon R©CPU
X5355

Clock speed 2.66 GHz
# cores 2× 4 = 8
Peak performance 85.12 Gflop/s
Memory 16 GB
Compiler suite Intel 9.1
BLAS library MKL-9.1.023

Table 2. Details of the system used for the following performance results.

mentation and the LAPACK block algorithms with multithreaded BLAS. For
the tiled algorithms, the tile size and (for QR and LU) the internal blocking
size have been chosen in order to achieve the best performance possible. As a
reference, the tile size is in the range of 200 and the internal blocking size in the
range of 20-40. In the case of the LAPACK block algorithms, the block size 6

has been tuned in order to achieve the best performance.
The graphs on the right part of each figure show the performance measured

using the maximum number of cores available on the system (i.e. eight) with
respect to the problem size. The graphs on the left part of each figure show the
weak scalability, i.e. the flop rates versus the number of cores when the local
problem size is kept constant (nloc=5,000) as the number of cores increases.
The axis of ordinates has been scaled to reflect the theoretical peak performance
of the system (i.e. the top value is 85.12 Gflop/s) and, also, as a reference, the
performance of the matrix-matrix multiply (DGEMM) has been reported in the
right-side graphs. In order to reflect the time to completion, for each operation
6 the block size in the LAPACK algorithm sets the width of the panel.
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the operation count of all the algorithms is assumed to be the same as that of the
LAPACK block algorithm. In the case of the tiled LU and QR factorizations,
this assumption is only slightly false since the amount of extra flops can be
considered negligible for a correct choice of the internal blocking size s.
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Fig. 5. Cholesky factorization: comparison between the performance of the tiled
algorithm with dynamic scheduling, the MKL-9.1 implementation and the LA-
PACK block algorithm with MKL-9.1 multithreaded BLAS.

Figures 5 and 6 provide roughly the same information: the tiled algorithm
combined with asynchronous graph driven execution delivers higher execution
rates than the fork-join approach (i.e. LAPACK block algorithm with multi-
threaded BLAS) and also than a vendor implementation of the operation. An
important remark has to me made for the Cholesky factorization: the left-looking
variant (see [12] for more details) of the block algorithm is implemented in
LAPACK. This variant delivers very poor performance when compared to the
right-looking one; a sequential right-looking implementation of the Cholesky fac-
torization that uses multithreaded BLAS would run at higher speed than that
measured on the LAPACK version.

In the case of the LU factorization, even if it still provides a considerable
speedup with respect to the fork-join approach, the tiled algorithm is still slower
than the vendor implementation. This is mostly due to two main reasons:

1. pivoting: in the block LAPACK algorithm, entire rows are swapped at once
and, at most, n swaps have to be performed where n is the size of the
problem. With pairwise pivoting, which is the pivoting scheme adopted in the
tiled algorithm, at most n2/(2b) can happen and all the swaps are performed
in a very inefficient way since rows are swapped in pieces of size b.

2. internal blocking size: as shown by Equation (2), the flop count of the tiled
algorithm grows by a factor of 1 + s/(2b). To keep this extra cost limited
to a negligible amount, a very small internal block size s has to be chosen.
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Fig. 6. QR factorization: comparison between the performance of the tiled algo-
rithm with dynamic scheduling, the MKL-9.1 implementation and the LAPACK
block algorithm with MKL-9.1 multithreaded BLAS.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

LU −− 2−way Quad Clovertown. Scalability

G
flo

p/
s

# of processors

LAPACK
MKL−9.1
Tiled+asynch.

2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

LU −− 2−way Quad Clovertown

problem size

G
flo

p/
s

DGEMM peak

LAPACK
MKL−9.1
Tiled+asynch.

Fig. 7. LU factorization: comparison between the performance of the tiled algo-
rithm with dynamic scheduling, the MKL-9.1 implementation and the LAPACK
block algorithm with MKL-9.1 multithreaded BLAS.
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This results in a performance loss due to the limitations of BLAS libraries
on small size data.

6 Conclusions

Even if a definition of multicore processor is still lacking, with some speculation
it is possible to define a limited set of characteristics that a software should
have in order to efficiently take advantage of multiple execution units on a chip.
Early work [4, 7, 19, 20] on this subject suggested that fine granularity and asyn-
chronous execution models are desirable properties in order to achieve high per-
formance on multicore architectures due to high degrees of parallelism, increased
importance of local data reuse and the necessity to hide the latency of access
to memory. Performance results presented in Section 5 support this reasoning
by showing how the usage of fine granularity, tiled algorithms together with a
graph driven, asynchronous execution model can provide considerable benefits
over the traditional fork-join approach and also vendor implementations where
usually a significant amount of work is done to address cache behavior. Even
if performance results are presented here for a single architecture, the proposed
approach has a much wider scope and portability. Other work by the authors
shows, for example, how tiled algorithms perfectly match the architectural fea-
tures of the Cell Broadband Engine processor [19]. In addition it is important
to note that blocking techniques can still be applied to tiled algorithms which
makes them rich in Level-3 BLAS operations and, thus, efficient on systems
equipped with memory hierarchies.
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