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SUMMARY

In this paper, we address the accuracy of the results for the overdetermined full rank linear least-squares
problem. We recall theoretical results obtained in (SIAM J. Matrix Anal. Appl. 2007; 29(2):413–433) on
conditioning of the least-squares solution and the components of the solution when the matrix perturbations
are measured in Frobenius or spectral norms. Then we define computable estimates for these condition
numbers and we interpret them in terms of statistical quantities when the regression matrix and the
right-hand side are perturbed. In particular, we show that in the classical linear statistical model, the ratio
of the variance of one component of the solution by the variance of the right-hand side is exactly the
condition number of this solution component when only perturbations on the right-hand side are considered.
We explain how to compute the variance–covariance matrix and the least-squares conditioning using
the libraries LAPACK (LAPACK Users’ Guide (3rd edn). SIAM: Philadelphia, 1999) and ScaLAPACK
(ScaLAPACK Users’ Guide. SIAM: Philadelphia, 1997) and we give the corresponding computational cost.
Finally we present a small historical numerical example that was used by Laplace (Théorie Analytique
des Probabilités. Mme Ve Courcier, 1820; 497–530) for computing the mass of Jupiter and a physical
application if the area of space geodesy. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the linear least-squares problem (LLSP) minx∈Rn ‖Ax−b‖2, where b∈Rm and A∈
Rm×n is a matrix of full column rank n.

Our concern comes from the following observation: in many parameter estimation problems,
there may be random errors in the observation vector b due to instrumental measurements as well
as roundoff errors in the algorithms. The matrix A may be subject to errors in its computation
(approximation and/or roundoff errors). In such cases, while the condition number of the matrix
A provides some information about the sensitivity of the LLSP to perturbations, a single global
conditioning quantity is often not relevant enough since we may have significant disparity between
the errors in the solution components. We refer to the last section of the manuscript for illustrative
examples. There are several results for analyzing the accuracy of the LLSP by components.
For linear systems Ax=b and for LLSP, Chandrasekaran and Ipsen [1] defines the so-called
componentwise condition numbers that correspond to amplification factors of the relative errors in
solution components due to perturbations in data A or b and explains how to estimate them. For
LLSP, Kenney et al. [2] proposes to estimate componentwise condition numbers by a statistical
method. More recently, Arioli et al. [3] developed theoretical results on conditioning of linear
functionals of LLSP solutions.

The objective of our paper is to provide computable quantities for the theoretical values given
in [3] in order to assess the accuracy of an LLSP solution or some of its components. To achieve
this goal, traditional tools for the numerical linear algebra practitioner are condition numbers or
backward errors whereas the statistician usually refers to variance or covariance. Our purpose
here is to show that these mathematical quantities coming either from numerical analysis or
statistics are closely related. We propose formulas for the condition number of the LLSP solution
or its components in connection with the linear statistical model when, in addition to the random
perturbations of b (that follows a statistical distribution), we can also have non-random perturbations
in the matrix A, which can be rounding errors or model errors (e.g. errors coming from linearization,
when the initial problem is nonlinear, or simplication in the physics, etc.).

In particular, we will show in Equation (10) that, in the classical linear statistical model, the ratio
of the variance of one component of the solution by the variance of the right-hand side is exactly the
condition number of this component when perturbations on the right-hand side only are considered.
In that sense, we attempt to clarify, similar to [4], the analogy between quantities handled by the
linear algebra and the statistical approaches in linear least-squares. Then we define computable
estimates for these quantities and explain how they can be computed using the standard libraries
LAPACK [5] or ScaLAPACK [6]. As far as we are aware, there is no freeware functionality in
Fortran or C that implements the condition number of an LLSP solution or its components and
there is no routine in LAPACK or ScaLAPACK for covariance computation. This paper provides
us with code fragments, similar to [5, 6]. The resulting LAPACK routine will be in a next release
of LAPACK and, since these codes use kernel routines that are also available in ScaLAPACK,
they enable us to address also very large computations on parallel computers.

This paper is organized as follows. In Section 2, we recall and exploit some results of practical
interest coming from [3]. We also define the condition numbers of an LLSP solution or one compo-
nent of it. In Section 3, we recall some definitions and results related to the linear statistical model
for LLSP, and we interpret the condition numbers in terms of statistical quantities. In Section 4
we provide ways for computing the variance–covariance matrix and LLSP condition numbers
using LAPACK (the corresponding ScaLAPACK routines can be used for larger computations).
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In Section 5, we propose two numerical examples that show the relevance of the proposed quan-
tities and their practical computation. The first test case is a historical example from Laplace and
the second example is related to gravity field computations. Finally, some concluding remarks are
given in Section 6.

Throughout this paper we will use the following notations. We use the Frobenius norm ‖.‖F
and the spectral norm ‖.‖2 on matrices and the usual Euclidean norm ‖.‖2 on vectors. A† denotes
the Moore–Penrose pseudoinverse of A, r denotes the residual vector b−Ax , the matrix I is the
identity matrix and ei is the i th canonical vector of Rn .

2. THEORETICAL BACKGROUND FOR LINEAR LEAST-SQUARES CONDITIONING

Following the notations in [3], we consider the function

g :Rm×n×Rm −→ Rk

A,b �−→ g(A,b)= LTx(A,b)= LT(ATA)−1ATb
(1)

where L is an n×k matrix, with k�n. Since A has full rank n, g is continuously F-differentiable
in a neighbourhood of (A,b).

Let � and � be two positive real numbers. In the present paper, we consider the Euclidean norm
for the solution space Rk . For the data space Rm×n×Rm , we use the product norms defined by

‖(�A,�b)‖[F,2] =
√

�2‖�A‖2[F,2]+�2 ‖�b‖22, �,�>0

Following [7], the absolute condition number of g at the point (A,b) using the product norm
defined above is given by

�g,[F,2](A,b)= max
(�A,�b)

‖g′(A,b) ·(�A,�b)‖2
‖(�A,�b)‖[F,2]

where g′ denotes the Fréchet derivative of g, i.e. g′(A,b) is the linear operator mapping Rm×n×Rm

to Rk such that

lim
(�A,�b)→0

‖g(A+�A,b+�b)−g(A,b)−g′(A,b).(�A,�b)‖2
‖(�A,�b)‖[F,2]

=0

The corresponding relative condition number of g at (A,b) is expressed by

�(rel)
g,[F,2](A,b)= �g,F(A,b) ‖(A,b)‖[F,2]

‖g(A,b)‖2
To address the special cases where only A (resp. b) is perturbed, we also define the quantities

�g,[F,2](A)=max
�A

∥∥∥∥ �g
�A

(A,b) ·�A

∥∥∥∥
2

‖�A‖[F,2]
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respectively

�g,2(b)=max
�b

∥∥∥∥�g
�b

(A,b) ·�b
∥∥∥∥
2

‖�b‖2
A classical choice for � and � corresponds to the case where perturbations on the data �A and

�b are measured relatively to the original data A and b, i.e. �=1/‖A‖[F,2] and �=1/‖b‖2.
Remark 1
The product norm for the data space is very flexible; the coefficients � and � allow us to monitor
the perturbations on A and b. For instance, large values of � (resp. �) enable us to obtain condition
number problems where mainly b (resp. A) are perturbed. In particular, we will address the special
cases where only b (resp. A) is perturbed by choosing the � and � parameters as �=+∞ and �=1
(resp. �=1 and �=+∞) since we have

lim
�→+∞�g,[F,2](A,b)= 1

�
�g,[F,2](b) and lim

�→+∞
�g,[F,2](A,b)= 1

�
�g,[F,2](A)

This can be justified as follows:

�g,[F,2](A,b) = max
(�A,�b)

∥∥∥∥ �g
�A

(A,b) ·�A+ �g
�b

(A,b) ·�b
∥∥∥∥
2√

�2‖�A‖2[F,2]+�2 ‖�b‖22

= max
(�A,�b)

∥∥∥∥ �g
�A

(A,b) · �A

�
+ �g

�b
(A,b) · �b

�

∥∥∥∥
2√

‖�A‖2[F,2]+‖�b‖22

The above expression represents the operator norm of a linear functional depending continuously
on �, and then we get

lim
�→+∞�g,[F,2](A,b)= max

(�A,�b)

∥∥∥∥�g
�b

(A,b) · �b
�

∥∥∥∥
2√

‖�A‖2[F,2]+‖�b‖22
=max

�b

∥∥∥∥�g
�b

(A,b) · �b
�

∥∥∥∥
2

‖�b‖2 = 1

�
�g,[F,2](b)

The proof is the same for the case where �=+∞.

The condition numbers related to LTx(A,b) are referred to in [3] as partial partial condition
numbers (PCN) of the LLSP with respect to the linear operator L .

In this paper, we are interested in computing the PCN for two special cases. The first case is
when L is the identity matrix (conditioning of the solution) and the second case is when L is a
canonical vector ei (conditioning of a solution component). We can extract from [3] two theorems
that lead to computable quantities in these two special cases.
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Theorem 1
In the general case where (L∈Rn×k), the absolute condition numbers of g(A,b)= LTx(A,b) in
the Frobenius and spectral norms can be, respectively, bounded as follows:

1√
3
f (A,b) � �g,F(A,b)� f (A,b)

1√
3
f (A,b) � �g,2(A,b)�

√
2 f (A,b)

where

f (A,b)=
(

‖LT(ATA)−1‖22
‖r‖22
�2

+‖LTA†‖22
(

‖x‖22
�2

+ 1

�2

))1/2

(2)

Theorem 2
In the two particular cases:

1. L is a vector (L∈Rn), or
2. L is the n-by-n identity matrix (L= I )

the absolute condition number of g(A,b)= LTx(A,b) in the Frobenius norm is given by the
formula:

�g,F(A,b)=
(

‖LT(ATA)−1‖22
‖r‖22
�2

+‖LTA†‖22
(

‖x‖22
�2

+ 1

�2

))1/2

Theorem 2 provides the exact value for the condition number in the Frobenius norm for our
two cases of interest (L=ei and L= I ). From Theorem 1, we observe that

1√
3
�g,F(A,b)��g,2(A,b)�

√
6�g,F(A,b) (3)

which states that the partial condition number in spectral norm is of the same order of magnitude
as the one in Frobenius norm. In the remainder of the paper, the focus is given to the partial
condition number in Frobenius norm only.

For the case L= I , the result of Theorem 2 is similar to [8] and [7, p. 92]. The upper bound
for �2,F(A,b) that can be derived from Equation (3) is also the one obtained by Geurts [7] when
we consider perturbations in A.

Let us denote by �i (A,b) the condition number related to the component xi in Frobenius
norm (i.e. �i (A,b)=�g,F(A,b) where g(A,b)=eTi x(A,b)= xi (A,b)). Then replacing L by ei in
Theorem 2 provides us with an exact expression for computing �i (A,b), this gives

�i (A,b)=
(

‖eTi (ATA)−1‖22
‖r‖22
�2

+‖eTi A†‖22
(

‖x‖22
�2

+ 1

�2

))1/2

(4)

�i (A,b) will be referred to as the condition number of the solution component xi .

Copyright q 2008 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2009; 16:517–533
DOI: 10.1002/nla



522 M. BABOULIN ET AL.

Let us denote by �LS(A,b) the condition number related to the solution x in Frobenius norm
(i.e. �LS(A,b)=�g,F(A,b) where g(A,b)= x(A,b)). Then Theorem 2 provides us with an exact
expression for computing �LS(A,b), that is

�LS(A,b)=‖(ATA)−1‖1/22

(
‖(ATA)−1‖2‖r‖22+‖x‖22

�2
+ 1

�2

)1/2

(5)

where we have used the fact that ‖(ATA)−1‖2=‖A†‖22.
�LS(A,b) will be referred to as the condition number of the least squares solution.
Note that Demmel et al. [9] define condition numbers for both x and r in order to derive error

bounds for x and r but uses infinity norm to measure perturbations.
In this paper, we will also be interested in the special case where only b is perturbed (�=+∞

and �=1). In this case, we will call �i (b) the condition number of the solution component xi , and
�LS(b) the condition number of the least- squares solution. When we restrict the perturbations to
be on b, Equation (4) simplifies to

�i (b)=‖eTi A†‖2 (6)

and Equation (5) simplifies to

�LS(b)=‖A†‖2 (7)

This latter formula is standard and is in accordance with [10, p. 29].

3. CONDITION NUMBERS AND STATISTICAL QUANTITIES

3.1. Background for the linear statistical model

We consider here the classical linear statistical model

b= Ax+�, A∈Rm×n, b∈Rm, rank(A)=n

where � is a vector of random errors having expected value E(�)=0 and variance–covariance
V (�)=�2b I . In statistical language, the matrix A is referred to as the regression matrix and the
unknown vector x is called the vector of regression coefficients.

Following the Gauss–Markov theorem [11], the least-squares estimates x̂ is the linear unbiased
estimator of x satisfying

‖Ax̂−b‖2= min
x∈Rn

‖Ax−b‖2
with minimum variance–covariance equal to

C=�2b(A
TA)−1 (8)

Moreover, 1/(m−n)‖b−Ax̂‖22 is an unbiased estimate of �2b. This quantity is sometimes called
the mean squared error (MSE).

The diagonal elements cii of C give the variance of each component x̂i of the solution. The
off-diagonal elements ci j , i 
= j give the covariance between x̂i and x̂ j .
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We define �x̂i as the standard deviation of the solution component x̂i and we have

�x̂i =
√
cii (9)

In the next section, we will prove that the condition numbers �i (A,b) and �LS(A,b) can be related
to the statistical quantities �x̂i and �b.

Remark 2
In the linear statistical model, random errors affect exclusively the observation vector b while A
is considered as known exactly (however, it is relevant to consider perturbations of A and b in
order to model for instance the effect of roundoff errors in the computation). Measurement errors
may also affect A. This case is treated by the statistical model referred to as Errors-In-Variables
model (see e.g. [10, p. 176]) [12, p. 230], where we have the relation

(A+E)x=b+�

We assume in this model that the rows of [E,�] are independently and identically distributed with
common zero mean vector and common covariance matrix.

The corresponding linear algebra problem, discussed originally in [13], is called the total least
squares (TLS) problem and can be expressed as:

find any x solving Âx= b̂,where ( Â, b̂) minimizes ‖[ Â, b̂]−[A,b]‖F
As mentioned in [12, p. 238], the TLS method enables us to obtain a more accurate solution when
entries of A are perturbed under certain conditions. However, comparing the sensitivity of the TLS
and the LLS is complicated due to the fact that they correspond to practical situations that are
different due to the nature of perturbations. However, Van Huffel and Vandewalle [12] provide
upper bounds on errors and show that the sensitivity is related to the size of the residual compared
with the problem parameters.

The TLS method involves an SVD computation and the computational cost is higher than that
of a classical LLS (about 2mn2+12n3 as mentioned in [14, p. 598], to be compared with the
approximately 2mn2 flops required for LLS solved via Householder QR factorization).

3.2. Perturbation on b only

Using Formula (8), the variance cii of the solution component x̂i can be expressed as

cii =eTi Cei =�2be
T
i (ATA)−1ei

We note that (ATA)−1= A†A†T so that

cii =�2be
T
i (A†A†T)ei =�2b‖eTi A†‖22

Using Equation (9), we get

�x̂i =
√
cii =�b‖eTi A†‖2

Finally from Equation (6), we get

�x̂i =�b�i (b) (10)
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Equation (10) shows that the condition number �i (b) relates linearly to the standard deviation of
�b with the standard deviation of �x̂i .

Now if we consider the constant vector � of size n, we have (see [11])
variance(�T x̂)=�TC�

Since C is symmetric, we can write

max
‖�‖2=1

variance(�T x̂)=‖C‖2

Using the fact that ‖C‖2=�2b‖(ATA)−1‖2=�2b‖A†‖22, and Equation (7), we get

max
‖�‖2=1

variance(�T x̂)=�2b�LS(b)
2

or, if we call �(�T x̂) the standard deviation of �T x̂ ,

max
‖�‖2=1

�(�T x̂)=�b�LS(b)

Note that �b=max‖�‖2=1�(�T�) since V (�)=�2b I .

Remark 3
Matlab has a routine LSCOV that computes the quantities

√
cii in a vector STDX and the squared

error MSE using the syntax [X,STDX,MSE]=LSCOV(A,B).
Then the condition numbers �i (b) can be computed by the matlab expression STDX/sqrt(MSE).

3.3. Perturbation on A and b

We now provide the expression of the condition number given in Equation (4) and in Equation (5)
in terms of statistical quantities.

Observing the following relations:

Ci =�2be
T
i (ATA)−1 and cii =�2b‖eTi A†‖22

where Ci is the i th column of the variance–covariance matrix, the condition number of xi given
in Equation (4) can expressed as

�i (A,b)= 1

�b

(
‖Ci‖22

�2b

‖r‖22
�2

+cii

(
‖x‖22
�2

+ 1

�2

))1/2

The quantity �2b will often be estimated by 1/(m−n)‖r‖22 in which case the expression can be
simplified

�i (A,b)= 1

�b

(
m−n

�2
‖Ci‖22+cii

(
‖x‖22
�2

+ 1

�2

))1/2

(11)

In the standard case where perturbations on the data are measured relatively to the original data
A and b, i.e. when �=1/‖A‖F and �=1/‖b‖2, we get

�i (A,b)= 1

�b
((m−n)‖Ci‖22 ‖A‖2F+cii (‖A‖2F ‖x‖22+‖b‖22))1/2
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Table I. Condition number expressions for the full rank LLSP.

Source Data Formula Status

�LS(A,b)

√
‖�A‖2F
‖A‖2F

+ ‖�b‖22
‖b‖22

‖C‖1/22
�b

(‖A‖2F((m−n)‖C‖2+‖x‖22)+‖b‖22)1/2 Exact

(Equation (13), [3, 8])
Geurts [7] ‖�A‖F‖A‖F

‖A‖F‖C‖1/22
�b

((m−n)‖C‖2+‖x‖22)1/2 Exact

Björck [10] ‖�A‖2‖A‖2
‖A‖2‖C‖1/22

�b
(
√
m−n ‖C‖1/22 +‖x‖2) Estimate

Grcar [15] max
{ ‖�A‖[F,2]

‖A‖[F,2] ,
‖�b‖2‖b‖2

} ‖C‖1/22
�b

(‖A‖[F,2](
√
m−n ‖C‖1/22 +‖x‖2)+‖b‖2) Estimate

From Equation (5), we obtain

�LS(A,b)= ‖C‖1/22

�b

(
‖C‖2‖r‖22

�2�2b
+ ‖x‖22

�2
+ 1

�2

)1/2

The quantity �2b will often be estimated by 1/(m−n)‖r‖22 in which case the expression can be
simplified

�LS(A,b)= ‖C‖1/22

�b

(
m−n

�2
‖C‖2+ ‖x‖22

�2
+ 1

�2

)1/2

(12)

In the case where �=1/‖A‖F and �=1/‖b‖2, we get

�LS(A,b)= ‖C‖1/22

�b
(‖A‖2F((m−n)‖C‖2+‖x‖22)+‖b‖22)1/2 (13)

Note in Equations (11) and (12) the dependence in, respectively, ‖Ci‖2 and ‖C‖2 when the variance
�b is large (i.e. the residual is large).

Note also that the matlab routine LSCOV mentioned in Remark 3 can compute the whole covari-
ance matrix and enable us to obtain the condition numbers expressed in Equations (11) and (12).

It could be also interesting to compare the expression of �LS(A,b) given by Equation (13)
with the existing formulas from the literature. Table I gives the condition number of the LLSP
solution that is proposed by other authors. For sake of consistency, we modified these formulas in
such a way that the condition number is expressed as a function of the statistical quantities ‖C‖2
and �b. We observe in Table I that the exact formulas are obtained when using the Frobenius
norm on matrices and that, in spectral norm, we have estimates. The inequality (3) shows that
Equations (11) and (12) give very sharp estimates of the corresponding condition number when
perturbations of A are measured in spectral norm (within a factor

√
6). Note also in Table I that
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the metric chosen for measuring perturbations on data are different and that in two cases, only
perturbations on A are considered.

4. COMPUTATION WITH LAPACK

Section 2 provides us with formulas to compute the condition numbers �i and �LS. As explained
in Section 3, those quantities are intimately interrelated with the entries of the variance–covariance
matrix. The goal of this section is to present practical methods and codes to compute those
quantities efficiently with LAPACK and ScaLAPACK. The assumption made is that the LLSP
has already been solved with either the normal equations method or a QR factorization approach.
Therefore the solution vector x̂ , the norm of the residual ‖r̂‖2, and the R-factor R of the QR
factorization of A are readily available (we recall that the Cholesky factor of the normal equations
is the R-factor of the QR factorization up to some signs). In the example codes, we have used
the LAPACK routine DGELS that solves the LLSP using QR factorization of A. Note that it is
possible to have a more accurate solution using extra-precise iterative refinement [9]. We will use
the fact that 1/(m−n)

∥∥b−Ax̂
∥∥2
2 is an unbiased estimate of �2b. We wish to compute the following

quantities related to the variance–covariance matrix C

• the i th column Ci =�2b(A
TA)−1ei ,

• the i th diagonal element cii =�2b‖eTi A†‖22,• the whole matrix C .

We note that the quantities Ci , cii , and C are of interest for statisticians. The NAG routine
F04YAF [16] is indeed an example of tool to compute these three quantities.

For the two first quantities of interest, we note that

‖eTi A†‖22=‖R−Tei‖22 and (ATA)−1ei = R−1(R−T ei )

4.1. Computation of the i th column Ci

Ci can be computed with two n-by-n triangular solves

RTy=ei and Rz= y

The i th column of C can be computed by the following code fragment.

Code 1:
CALL DGELS( ’N’, M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO )
RESNORM = DNRM2( (M−N), B(N+1), 1)
SIGMA2 = RESNORM**2/DBLE(M−N)
E(1:N) = 0.D0
E(I) = 1.D0
CALL DTRSV( ’U’, ’T’, ’N’, N−I+1, A(I,I), LDA, E(I), 1)
CALL DTRSV( ’U’, ’N’, ’N’, N, A, LDA, E, 1)
CALL DSCAL( N, SIGMA2, E, 1)

This requires about 2n2 flops (in addition to the cost of solving the LLSP using DGELS).
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cii can be computed by one n-by-n triangular solve and taking the square of the norm of the
solution, which involves about (n−i+1)2 flops. It is important to note that the larger i , the less
expensive to obtain cii . In particular if i=n then only one operation is needed: cnn = R−2

nn . This
suggests that a correct ordering of the variables can save some computation.

4.2. Computation of the i th diagonal element cii

From cii =�2b‖eTi R−1‖22, it comes that each cii corresponds to the norm of the i th row of R−1.
Then the diagonal elements of C can be computed by the following code fragment.

Code 2:
CALL DGELS( ’N’, M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO)
RESNORM = DNRM2((M−N), B(N+1), 1)
SIGMA2 = RESNORM**2/DBLE(M-N)
CALL DTRTRI( ’U’, ’N’, N, A, LDA, INFO)
DO I=1,N

CDIAG(I) = DNRM2( N−I+1, A(I,I), LDA)
CDIAG(I) = SIGMA2 * CDIAG(I)**2

END DO

This requires about n3/3 flops (plus the cost of DGELS).

4.3. Computation of the whole matrix C

In order to compute explicit all the coefficients of the matrix C , one can use the routine DPOTRI,
which computes the inverse of a matrix from its Cholesky factorization. First the routine computes
the inverse of R using DTRTRI and then performs the triangular matrix–matrix multiply R−1R−T

by DLAUUM. This requires about 2n3/3 flops. We can also compute the variance–covariance
matrix without inverting R using for instance the algorithm given in [10, p. 119], but the compu-
tational cost remains 2n3/3 (plus the cost of DGELS).

We can obtain the upper triangular part of C by the following code fragment.

Code 3:
CALL DGELS( ’N’, M, N, 1, A, LDA, B, LDB, WORK, LWORK, INFO)
RESNORM = DNRM2((M−N), B(N+1), 1)
SIGMA2 = RESNORM**2/DBLE(M−N)
CALL DPOTRI( ’U’, N, A, LDA, INFO)
CALL DLASCL( ’U’, 0, 0, N, N, 1.D0, SIGMA2, N, N, A, LDA, INFO)

4.4. Condition numbers computation

We give in Table II the LAPACK routines used for computing the condition numbers of an LLSP
solution or its components and the corresponding number of floating-point operations per second.
Since the LAPACK routines involved in the covariance and/or LLSP condition numbers have
their equivalent in the parallel library ScaLAPACK, then this table is also available when using
ScaLAPACK. This enables us to easily compute these quantities for larger LLSP.
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Table II. Computation of least-squares conditioning with (Sca)LAPACK.

Condition number Linear algebra operation (Sca)LAPACK routines Flops count

�i (A,b) RTy=ei and Rz= y 2 calls to (P)DTRSV 2n2

all �i (A,b), i=1,n RY = I and compute YYT (P)DPOTRI 2n3/3

all �i (b), i =1,n invert R (P)DTRTRI n3/3

�LS(A,b) estimate ‖R−1‖1 or ∞ (P)DTRCON O(n2)

compute ‖R−1‖F (P)DTRTRI n3/3

Remark 4
The cost for computing all the �i (A,b) or estimating �LS(A,b) is always O(n3). When m�n,
this cost is affordable if we compare it to the cost of the least-squares solution using Householder
QR factorization (2mn2−2n3/3) or the normal equations (mn2+n3/3).

Remark 5
For estimating �LS(A,b), we need to have an estimate of ‖A†‖2 i.e. ‖R−1‖2. The computation of
‖R−1‖2 requires to compute the minimum singular value of the matrix A (or R). One way is to
compute the full SVD of A (or R) which requires O(n3) flops. As an alternative, ‖R−1‖2 can be
approximated using other matrix norms. For instance, ‖R−1‖1 or ‖R−1‖∞ can be estimated using
Higham modification [17, p. 293] of Hager’s [18] method as it is implemented in the LAPACK
routine DTRCON. The cost is O(n2).

It is also interesting to evaluate ‖R−1‖2 by considering ‖R−1‖F since we have ‖R−1‖2F=
‖R−T‖2F= tr(R−1R−T )=1/�2b tr(C), where tr(C) denotes the trace of the matrix C , i.e.

∑n
i=1 cii .

When only b is perturbed (�=+∞ and �=1), then we get �LS(b)�√
tr(C)/�b.

This result relates to [19, p. 167], where tr(C) measures the squared effect on the LLSP solution
x to small changes in b.

5. NUMERICAL EXPERIMENTS

5.1. Laplace’s computation of the mass of Jupiter and assessment of the validity of its results

In [20], Laplace computes the mass of Jupiter, Saturn and Uranus and provides the variances
associated with those variables in order to assess the quality of the results. The data come from
the French astronomer Bouvart in the form of the normal equations given in below.

795938z0−12729398z1+6788.2z2−1959.0z3+696.13z4+2602z5 = 7212.600

−12729398z0+424865729z1−153106.5z2−39749.1z3−5459z4+5722z5 = −738297.800

6788.2z0−153106.5z1+71.8720z2−3.2252z3+1.2484z4+1.3371z5 = 237.782

−1959.0z0−39749.1z1−3.2252z2+57.1911z3+3.6213z4+1.1128z5 = −40.335 (14)
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696.13z0−5459z1+1.2484z2+3.6213z3+21.543z4+46.310z5 = −343.455

2602z0+5722z1+1.3371z2+1.1128z3+46.310z4+129z5 = −1002.900

For computing the mass of Jupiter, we know that Bouvart performed m=129 observations and
there are n=6 variables in the system. The residual of the solution ‖b−Ax̂‖22 is also given by
Bouvart and is 31096. Of the six unknowns, Laplace only seeks one, the second variable z1. The
mass of Jupiter in term of the mass of the Sun is given by z1 and the formula:

mass of Jupiter= 1+z1
1067.09

It turns out that the first variable z0 represents the mass of Uranus through the formula

mass of Uranus= 1+z0
19504

If we solve the system (14), we obtain the solution vector

0.08954 −0.00304 −11.53658 −0.51492 5.19460 −11.18638

From z1, we can compute the mass of Jupiter as a fraction of the mass of the Sun and we obtain
1070. This value is rather accurate since the correct value according to NASA is 1048. From z0,
we can compute the mass of Uranus as a fraction of the mass of the Sun and we obtain 17918.
This value is inaccurate since the correct value according to NASA is 22992.

Laplace has computed the variance of z0 and z1 to assess the fact that z1 was probably correct
and z0 probably inaccurate. To compute those variances, Laplace first performed a Cholesky
factorization from right to left of the system (14) then, since the variables were correctly ordered,
the number of operations involved in the computation of the variances of z0 and z1 was minimized.
The variance–covariance matrix for Laplace’s system is:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.005245 −0.000004 −0.499200 0.137212 0.235241 −0.186069

· 0.000004 0.009873 0.003302 0.002779 −0.001235

· · 71.466023 −5.441882 −16.672689 14.922752

· · · 10.860492 5.418506 −4.896579

· · · · 66.088476 −28.467391

· · · · · 15.874809

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Our computation gives us that the variance for the mass of Jupiter is 4.383233×10−6. For
reference, Laplace in 1820 computed 4.383209×10−6. (We deduce the variance from Laplace’s
value 5.0778624. To get what we now call the variance, one needs to compute the quantity:
1/(2∗10∗5.0778624)∗m/(m−n).)

From the variance–covariance matrix, one can assess that the computation of the mass of Jupiter
(second variable) is extremely reliable while the computation of the mass of Uranus (first variable)
is not. For more details, we recommend to read [21].
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5.2. Gravity field computation

A classical example of parameter estimation problem is the computation of the Earth’s gravity
field coefficients. More specifically, we estimate the parameters of the gravitational potential that
can be expressed in spherical coordinates (r,�,	) by [22]

V (r,�,	)= GM

R

�max∑
�=0

(
R

r

)�+1 �∑
m=0

P�m(cos�)[C�m cosm	+S�m sinm	] (15)

where G is the gravitational constant, M is the Earth’s mass, R is the Earth’s reference radius, the
P�m represent the fully normalized Legendre functions of degree � and order m and C�m, S�m are
the corresponding normalized harmonic coefficients. The objective here is to compute the harmonic
coefficients C�m and S�m most accurately as possible. The number of unknown parameters is
expressed by n=(�max+1)2. These coefficients are computed by solving a LLSP that may involve
millions of observations and tens of thousands of variables. More details about the physical problem
and the solution methods can be found in [23]. The data used in the following experiments were
provided by CNES‡ and they correspond to 10 days of observations using GRACE§ measurements
(about 166000 observations). We compute the spherical harmonic coefficients C�m and S�m up
to a degree �max=50; except the coefficients C11, S11,C00,C10 that are a priori known. Then
we have n=2597 unknowns in the corresponding least-squares problems (note that the GRACE
satellite enables us to compute a gravity field model up to degree 150). The problem is solved
using the normal equations method and we have the Cholesky decomposition ATA=UTU .

We compute the relative condition numbers of each coefficient xi using the formula

�(rel)
i (b)=‖eTi U−1‖2 ‖b‖2 /|xi |

and the following code fragment, derived from Code 2, in which the array D contains the normal
equations ATA and the vector X contains the right-hand side ATb.

CALL DPOSV( ’U’, N, 1, D, LDD, X, LDX, INFO)
CALL DTRTRI( ’U’, ’N’, N, D, LDD, INFO)
DO I=1,N

KAPPA(I) = DNRM2( N−I+1, D(I,I), LDD) * BNORM/ABS(X(I))
END DO

Figure 1 represents the relative condition numbers of all the n coefficients. We observe the
disparity between the condition numbers (between 102 and 108). To be able to give a physical
interpretation, we need first to sort the coefficients by degrees and orders as given in the development
of V (r,�,	) in Expression (15).

In Figure 2, we plot the condition numbers of the coefficients C�m as a function of the degrees
and orders (the curve with the S�m is similar). We notice that for a given order, the condition
number increases with the degree and that, for a given degree, the variation of the sensitivity with
the order is less significant.

‡Centre National d’Etudes Spatiales, Toulouse, France.
§Gravity Recovery and Climate Experiment, NASA, launched March 2002.
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Figure 1. Amplitude of the relative condition numbers for the gravity field coefficients.
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Figure 2. Conditioning of spherical harmonic coefficients C�m (2���50,1�m�50).

We can also study the effect of regularization on the conditioning. The physicists use in general
a Kaula [24] regularization technique that consists of adding to ATA a diagonal matrix D=
diag(0, . . . ,0,�, . . . ,�), where � is a constant that is proportional to 10−5/�2max and the nonzero
terms in D correspond to the variables that need to be regularized. An example of the effect of
Kaula regularization is shown in Figure 3 where we consider the coefficients of order 0 also called
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Figure 3. Effect of regularization on zonal coefficients C�0 (2���50).

zonal coefficients. We compute here the absolute condition numbers of these coefficients using the
formula �i (b)=‖eTi U−1‖2. Note that the �i (b) are much lower that 1. This is not surprising because
typically in our application ‖b‖2∼105/ and |xi |∼10−12, which would make the associated relative
condition numbers greater than 1. We observe that the regularization is effective on coefficients of
highest degree that are in general more sensitive to perturbations.

6. CONCLUSION

To assess the accuracy of a linear least-squares solution, the practitioner of numerical linear algebra
uses generally quantities like condition numbers or backward errors when the statistician is more
interested in covariance analysis. In this paper we proposed quantities that talk to both communities
and that can assess the quality of the solution of a least-squares problem or one of its components.
We provided practical ways to compute these quantities using (Sca)LAPACK and we experimented
with these computations on practical examples including a real physical application in the area of
space geodesy. When there are measurement errors in matrices, it could be more appropriate to
use the TLS method. This will be studied in a future work.
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