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Abstract

Performance analysis of applications on modern high-end Petascale
systems is increasingly challenging due to the rising complexity and quan-
tity of the computing units. This paper presents a performance analysis
study with the Vampir performance analysis tool suite that examines the
application behavior as well as the fundamental system properties.

The study is done on the Jaguar system at ORNL, the fastest computer
on the November 2009 Top500 list. We analyze the FLASH simulation
code that is designed to scale towards tens of thousands of CPU cores.
This situation makes it very complex to apply existing performance anal-
ysis tools. Yet, the study reveals two classes of performance problems
that become relevant with very high CPU counts: MPI communication
and scalable I/O. For both, solutions are presented and verified. Finally,
the paper proposes improvements and extensions for event tracing tools in
order to allow scalability of the tools towards higher degrees of parallelism.

1 Introduction and Background

Estimating achievable performance and scaling efficiencies in modern Petas-
cale systems is a complex task. Many of the scientific applications running on
those high-end computing platforms are highly communication- as well as data-
intensive. As an example, the FLASH application is a highly parallel simulation
code containing complex performance characteristics.

The performance analysis tool suite Vampir is used to gain deeper insight
into performance and scalability problems of the application. It uses event trac-



ing and post-mortem analysis to survey the runtime behavior for performance
problems. This makes it challenging for highly parallel situations because it
produces huge amounts of performance measurement data [3, 4].

This performance evaluation of the FLASH software exposes two classes of
performance issues that become relevant for very high CPU counts. The first
class is related to inter-process communication and can be summarized under
the common heading “overly strict coupling of processes”. The second class
refers to massive and scalable I/O within the checkpointing mechanism where
the interplay of the Lustre file system and the parallel I/O produces unnecessary
delays. For both types of performance problems, solutions are presented that
require only local modifications, not affecting the general structure of the code.

The remaining paper is organized as follows: First we provide a brief de-
scription of the target system’s features. This is followed by a summary of the
applied performance analysis tool suite Vampir. A brief outline of the FLASH
code is provided at the end of the introduction and background section. In
section 2 and 3 we provide extensive performance measurement and analysis re-
sults that are collected on the Cray XT4 system, followed by a discussion of the
detected performance issues, the proposed optimizations and their outcomes.
Section 4 is dedicated to experiences with the highly parallel application of the
Vampir tools as well as to future adaptations for such scenarios. The paper ends
with the conclusions and an outlook to future work.

1.1 The Cray XT4 System Jaguar

We start with a short description of the key features - most relevant for this study
- of the Jaguar system, the fastest computer on the November 2009 Top500 list
[1]. The Jaguar system at Oak Ridge National Laboratory (ORNL) has evolved
rapidly over the last several years. When this work was done, it was based
on Cray XT4 hardware and utilized 7,832 quad-core AMD Opteron processors
with a clock frequency of 2.1 GHz and 8 GBytes of main memory (2 GBytes
per core). At that time, Jaguar offered a theoretical peak performance of 260.2
Tflops/s and a sustained performance of 205 Tflops/s on Linpack [2]. The nodes
were arranged in a three-dimensional torus topology of size 21 × 16 × 24 with
SeaStar2.

Jaguar had three Lustre file systems of which two had 72 Object Storage
Targets (OST) and one had 144 OSTs [17]. All three of these file systems shared
72 physical Object Storage Server (OSS). The theoretical peak performance of
I/O bandwidth was ∼50 GB/s across all OSSes.

1.2 The Vampir Performance Analysis Suite

Before we show detailed performance analysis results, we will briefly introduce
the main features of the used performance analysis suite Vampir (Visualization
and Analysis of MPI Resources) that are relevant for this paper.

The Vampir suite consists of the VampirTrace component for instrumen-
tation, monitoring and recording as well as the VampirServer component for
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visualization and analysis [5, 6, 3]. The event traces are stored in the Open
Trace Format (OTF) [7]. The VampirTrace component supports a variety of
performance features, for example MPI communication events, subroutine calls
from user code, hardware performance counters, I/O events, memory allocation
and more [5, 8]. The VampirServer component implements a client/server model
with a distributed server, which allows a very scalable interactive visualization
for traces with over a thousand processes and an uncompressed size of up to
one hundred GBytes [8, 3].

1.3 The FLASH Application

The FLASH application is a modular, parallel AMR (Adaptive Mesh Refine-
ment) simulation code which computes general compressible flow problems for
a large range of scenarios [9]. FLASH is a set of independent code units, put to-
gether with a Python language setup tool to create various applications. Most
of the code is written in Fortran 90 and uses the Message-Passing Interface
(MPI) library for inter-process communication. The PARAMESH library [10]
is utilized for adaptive grids, placing resolution elements only where they are
needed most. The Hierarchical Data Format, version 5 (HDF5) is used as the
I/O library offering parallel I/O via MPI-IO [11]. For this study, the I/O due
to checkpointing is most relevant, because it frequently writes huge amounts of
data.

The examined three-dimensional simulation test case WD_Def is a deflagra-
tion phase of the gravitationally confined detonation mechanism for Type Ia
supernovae, a crucial astrophysical problem that has been extensively discussed
in [12]. The WD_Def test case is generated as a weak scaling problem for up to
15,812 processors where the number of blocks remain approximately constant
per computational thread.

2 MPI Performance Problems

The communication layer is a typical place to look for performance problems
in parallel codes. Although communication enables the parallel solution, it is
not directly contributing to the solution of the original problem. If communi-
cation accounts for a substantial portion of the overall runtime, this indicts a
performance problem.

Most of the time, communication delay is due to waiting for communicating
peers. Usually this becomes more severe as the degree of parallelism increases.

This symptom is indeed present in the FLASH application. Of course, it
can easily be diagnosed on the basis of profiling, but the statistical nature of
profiling makes it insufficient for detecting the cause of performance limitations
and even more so for finding promising solutions.

In the following, three different performance problems are discussed that
can be summarized under the heading “overly strict coupling of processes”. The
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Figure 1: Original communication pattern of successive MPI Sendrecv replace
calls. Message delays are propagated along the communication chain of consec-
utive ranks. See Figure 3 for an optimized alternative.

problems found are hotspots of MPI Sendreceive replace operations, hotspots
of MPI Allreduce operations, and unnecessary MPI Barrier operations.

2.1 Hotspots of MPI Sendrecv replace Calls

The first problem is a hotspot of MPI Sendrecv replace operations. It uses
six successive calls, sending small to moderate amounts of data. Therefore the
single communication operations are latency bound and not bandwidth bound.
Interestingly, it propagates delays between connected ranks, see Figure 1.

In the given implementation, successive messages cause a recognizable ac-
cumulation of the latency values. A convenient local solution is to replace
this hotspot pattern with non blocking communication calls. As there is no
non blocking version of MPI Sendrecv replace one can emulate the same be-
havior by non blocking point-to-point communication operations MPI Irecv,
MPI Ssend and a consolidated final MPI Waitall call. This would not produce
a large benefit for a single MPI Sendrecv replace call but it will for a series
of such calls, because for overlapping messages the latency values are no longer
accumulated. Of course, it requires additional temporary storage, which is not
critical for small and moderate data volumes.

The actual performance gain from this optimization is negligible at 1 to 2%
at first. But together with the optimization described in Section 2.3 this will
contribute a significant performance improvement.

The symptom of this performance limitation would be easily detectable with
profiling, because the accumulated run-time of MPI Sendrecv replace would
stand out. Yet, neither the underlying cause nor the solution could be inferred
from this fact alone. Plain profiling is completely incapable of providing any
further details because all information is averaged over the complete run-time.
With sophisticated profiling approaches like call-path profiling or phase profiling
one could infer the suboptimal run-time behavior when studying the relevant
source code. But this would be most tedious and time consuming especially if
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the analysts is different from the author.
Only tracing allows convenient examination of the situation with all neces-

sary information from one source. In particular, this includes the contexts of
the calls to MPI Sendrecv replace within each rank as well as the concurrent
situations in the neighbor ranks, see Figure 1. To keep the tracing overhead
as small as possible and to provide a sufficient as well as manageable trace file
size, we recorded tracing information of the entire FLASH application using not
more than 256 compute cores on Jaguar.

2.2 Hotspots of MPI Allreduce Calls

The most severe performance issue in the MPI communication used in FLASH is
a hotspot of MPI Allreduce operations. Again, there is a series of MPI Allreduce
operations with small to moderate data volumes for all MPI ranks. As above,
the communication is latency bound instead of bandwidth bound.

In theory, one could also replace this section with a pattern of non block-
ing point-to-point operations similar to the solution presented above. However,
with MPI Allreduce or with collective MPI operations in general, the number
of point-to-point messages would grow dramatically with the number of ranks.
This would make any replacement scheme more complicated. Furthermore, it
would reduce performance portability since there is a high potential for produc-
ing severe performance disadvantages. Decent MPI implementations introduce
optimized communication patterns, for example tree-based reduction schemes
and communication patterns adapted to the network topology. Imitating such
behavior with point-to-point messages is very complicated or even impossible,
because a specially adapted solution will not be generic and a generic solution
will hardly be optimized for a given topology.

On this account, the general advice to MPI users is to rely on collective
communication whenever possible [13]. Unfortunately, there are no non blocking
collective operations in the MPI standard. So it is impossible to combine a non
blocking scheme with a collective one, at least for now [13].

However, this fundamental lack of functionality has already been identified
by the MPI Forum, the standardization organization for MPI. As the long term
solution to the dilemma of non blocking vs. collective, the upcoming MPI 3.0
standard will most likely contain a form of non blocking collective operations.
Currently, this topic is under discussion in the MPI Forum [14].

As a temporary solution for this problem, libNBC can be used [13]. It pro-
vides an implementation of non blocking collective operations as an extension
to the MPI 2.0 standard with an MPI-like interface. For the actual communi-
cation functionality, libNBC relies on non blocking point-to-point operations of
the platform’s existing MPI library [13, 15]. Therefore, it is able to incorporate
improved communication patterns but currently does not directly adapt to the
underlying network topology (compare above).

Still, the FLASH application achieves a significant performance improve-
ment with this approach. This is mainly due to the overlapping technique
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Figure 2: Corresponding communication patterns of MPI Allreduce in the orig-
inal code (top) and NBC Iallreduce plus NBC Wait in the optimized version
(bottom). The latter is more than seven times faster, taking 0.38s instead of
2.95.

of the successive NBC Iallreduce operations (from libNBC) while multiple
MPI Allreduce operations are executed in a strictly sequenced manner.

In Figure 2, two corresponding allreduce patterns are compared1. The orig-
inal communication pattern spends almost 3s in MPI Allreduce calls, see Fig-
ure 2 (top). The replacement needs only 0.38s, consisting mainly of NBC Wait
calls because the NBC Iallreduce calls are too small to notice with the given
zoom level, compare Figure 2 (bottom). This provides an acceleration of more
than factor 7 for the communication patterns only. It achieves a total runtime
reduction of up to 30% when using 256 processes as an example (excluding
initialization of the application).

Again, the actual reason for this performance problem is easily comprehensi-
ble with the visualization of an event trace. But it would be lost in the statistical
results offered by profiling approaches.

1Event tracing allows identification of exactly corresponding occurrences for compatible
test runs. In this example both are at the middle of the total runtime.
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2.3 Unnecessary Barriers

Another MPI operation consuming a high runtime share is MPI_Barrier. For
256 to 15,812 cores, about 18% of the total execution time is spent there.

Detailed investigations with the Vampir tools reveal typical situations where
barriers are placed. It turns out that most barriers are unnecessary for the cor-
rect execution of the code. As shown in Figure 3 (top) such barriers are placed
before communication phases, probably in order to achieve strict temporal syn-
chronization, i.e. communication phases starting almost simultaneously.

A priori this is neither beneficial nor harmful. Often, the time spent in the
barrier would be spent waiting in the beginning of the next MPI operation when
the barrier is removed. This is true for example for the MPI Sendrecv replace
operation. Yet, for some other MPI operations the situation is completely dif-
ferent. Removing the barrier will save almost the total barrier time. This can
be found for example for MPI Irecv, which starts without initial waiting time
once the barrier is removed. Here, unnecessary barriers are most harmful.

Now, reconsidering the hotspots of MPI Sendrecv replace calls discussed
in Section 2.1, this situation has been changed from the former case to the
latter. Therefore, the earlier optimization allows another improvement when
removing the unnecessary MPI Barrier calls. Figure 3 (bottom) shows the result
of this combined modification. According to the runtime profile (not shown) the
aggregated runtime of MPI Barrier is almost completely eliminated.

Besides the unnecessary barriers, there are also some useful ones. They are
mostly part of an internal measurement in the FLASH code which is aggregat-
ing coarse statistics about total runtime consumptions of certain components.
Furthermore, barriers next to checkpointing operations are sensible.

By eliminating the unnecessary barriers, the runtime share of MPI Barrier
is reduced by 33%. This lowers the total share of MPI by 13% while the run-
time of all non-MPI code remains constant. This results in an overall runtime
improvement of 8.7% when using 256 processes.

While the high barrier time would certainly attract attention in a profile,
the distinction of unnecessary and useful ones would be completely obscured.
The alternatives are either a quick and easy look at the detailed event trace
visualization or tedious manual work with phase profiles and scattered pieces of
source code.

3 I/O Performance Problems

The second important aspect for the overall performance of the FLASH code is
the I/O behavior, which is mainly due to the integrated checkpointing mecha-
nism. We collected I/O data from FLASH on Jaguar for jobs ranging from 256
to 15,812 cores. From this weak-scaling study it is apparent that time spent in
I/O routines began dramatically to dominate as the number of cores increased.
A runtime breakdown over trials with increasing number of cores, shown in
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Figure 3: Typical communication pattern in the FLASH code. An MPI Barrier
call before a communication phase ensures a synchronized start of the communi-
cation calls (top). When removing the barrier there is an un-synchronized start
(bottom). Yet, this imposes no additional time on the following MPI operations,
the runtime per communication phase is reduced by approximately 1/3.

Figure 4, illustrates this behavior2. More precisely, Figure 4 (a) depicts the
evolution of a selection of 5 important FLASH function groups without I/O
where the corresponding runtimes grow not more than 1.5-fold3. The same sit-
uation but with checkpointing in Figure 4 (b) shows a 22-fold runtime increase
for 8,192 cores which clearly indicates a scalability problem.

In the following three sections, multiple tests are performed with the goal of
tuning and optimizing I/O performance for the parallel file system so that the
overall performance of FLASH can be significantly improved.

3.1 Collective I/O via HDF5

For the FLASH investigation described in this section, the Hierarchical Data
Format, version 5 (HDF5) is used as the I/O library. HDF5 is not only a
data format but also a software library for storing scientific data. It is based
on a generic data model and provides a flexible and efficient I/O API [11].
By default, the parallel mode of HDF5 uses an independent access pattern for
writing datasets without extra communication between processes [9].

However, parallel HDF5 can also perform an aggregated mode, writing the
2Because of the great complexity of FLASH, we focus on those FLASH function groups

that show poor scaling behavior and imply I/O function calls.
3As compared to the 256 core case. With ideal weak-scaling it should be constant.
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Figure 4: Weak-scaling study for a selection of FLASH function groups: (a)
Scalability without I/O and (b) break-down of scalability due to checkpointing

Figure 5: FLASH scaling study with various I/O options

data from multiple processes in a single chunk. This involves network communi-
cations among processes. Still, combining I/O requests from different processes
in a single contiguous operation can yield a significant speedup [11]. This mode
is still experimental in the FLASH code. However, the considerable benefits
may encourage the FLASH application team to implement it permanently.

While Figure 4 depicts the evolution of 5 important FLASH function groups
only, now Figure 5 summarizes the weak-scaling study results of the entire
FLASH simulation code for various I/O options. It can be observed that collec-
tive I/O yields a performance improvement of 10% for small core counts while
for large core counts the entire FLASH code runs faster by up to a factor of
2.5. However, despite the improvements so far, the scaling results are still not
satisfying for a weak-scaling benchmark. We found two different solutions to
notably improve I/O performance. The first one relies only on the underlying
Lustre file system without any modifications of the application. The second one
requires changes in the HDF5 layer of the application. Therefore, the latter is
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of an experimental nature but more promising in the end. Both solutions are
discussed below.

3.2 File Striping in Lustre FS

Lustre is a parallel file system that provides high aggregated I/O bandwidth by
striping files across many storage devices [16]. The parallel I/O implementation
of FLASH creates a single checkpoint file and every process writes its data to
this file simultaneously via HDF5 and MPI-IO [9]. The size of such a checkpoint
file grows linearly with the number of cores. As an example, in the 15,812 core
case the size of the checkpoint file is approximately 260 GByte.

By default, files on Jaguar are striped across 4 OSTs. As mentioned in
section 1.1, Jaguar consists of three file systems of which two have 72 OSTs
and one has 144 OSTs. Hence, by increasing the default stripe size, the single
checkpoint file may take advantage of the parallel file system which should
improve performance. Striping pattern parameters can be specified on a per-file
or per-directory basis [16]. For the investigation described in this section, the
parent directory has been striped across all the OSTs on Jaguar, which is also
suggested in [17]. More precisely, depending on what file system is used, the
Object Storage Client (OSC) communicates via a total of 72 OSSes - which are
shared between all three file systems - to either 72 or 144 OSTs.

From the results presented in Figure 5, it is apparent that using parallel
collective I/O in combination with striping the output file over all OSTs is
highly beneficial. The results show a further improvement by a factor of 2 for
midsize and large core counts by performing collective I/O with file striping
compared to the collective I/O results. This yields an overall improvement for
the entire FLASH code by a factor of 4.6 when compared to the results from
the näıve parallel I/O implementation.

This substantial improvement can be verified by the trace-based analysis of
the I/O performance counters for a single checkpoint phase, shown in Figure 6.
It reveals that utilizing efficient collective I/O in combination with file striping
(right) results in a faster as well as more uniform write speed, while the näıve
parallel I/O implementation (left) behaves slower and rather irregularly.

3.3 Split Writing

By default, the parallel implementation of HDF5 for a PARAMESH [10] grid
creates a single file and every process writes its data to this file simultaneously
[9]. However, it relies on the underlying MPI-IO layer in HDF5. Since the
size of a checkpoint file grows linearly with the number of cores, I/O might
perform better if all processes write to a limited number of separate files rather
than a single file. Split file I/O can be enabled by setting the outputSplitNum
parameter to the number N of files desired [9]. Every output file will be then
broken into N subfiles. It is important to note that the use of this mode with
FLASH is still experimental and has never been used in a production run. This
study uses collective I/O operations but the file striping is set back for the
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Figure 6: Performance counter displays for write speed of processes. The original
bandwidth utilization is slow and irregular (left). It becomes faster and more
uniform when using collective I/O in combination with file striping (right). All
counters show the aggregated per-node bandwidth of 4 processes. (The rather
slow maximum bandwidth of 6MB/s corresponds to share of the total bandwidth
for 1,004 out of 31,328 cores for the scr72a file system.)

default case on Jaguar. Furthermore, it is performed for two test cases only but
with various numbers of output files. Figure 7 shows the total execution time for
FLASH running on 2,176 and 8,192 cores while the number of output files varies
from 1(which is default) to 64 and 4,096 respectively. In this figure the results
from the split writing analysis are compared with those from collective I/O
investigations when data is written to a single file. For the investigated cases, it
is noticeable that writing data to multiple files is more efficient than writing to
a single file followed by striping the file across all OSTs. This is most likely due
to the overhead of the locking mechanism in Lustre. For the 2,176 core run it
appears that writing to 32 separate files delivers best performance. Even when
compared with the ’collective I/O + file striping’ trial that has a run time of
∼529 seconds, the split writing strategy decreases the run time to ∼381 seconds
which delivers a speedup of approximately 28% for the entire application. For
the same comparison, the 8,192 core run saw a run time reduction from ∼1551
to ∼575 seconds when data is written to 2,048 separate files. This results in
a performance gain of nearly a factor of 2.7. Note the slowdown for the 8,192
core run when going from 2,048 files to 4,096 files. This might be an issue due
to the use of too many files. A future intent is to find the optimal file size or
optimal number of files to obtain the best performance.
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Figure 7: I/O analysis of writing data to a single file versus multiple files.

3.4 Limited I/O-Tracing Capabilities on Cray XT4

The I/O tracing capabilities of VampirTrace are very limited on the Jaguar
system, because two important features cannot be used. The first is the record-
ing of POSIX I/O calls which is deactivated because of missing shared library
support on the compute nodes. The second is the global monitoring of the
Lustre activity which would require administrative privileges. Both features are
extensively described in [5, 18].

Therefore, the only alternative was to rely on client-side Lustre statistics
which are shown in Figure 6. They represent the total I/O activity per compute
node with maximum granularity of 1/s.

This compromise solution is sufficient for a coarse analysis of the checkpoint
phases and the I/O speed. It allows us to observe the I/O rate over time, the load
balance across all I/O clients for each individual checkpoint stage, and in general
to observe the distributions of I/O among the processes. Due to the limitations
and due to the coarse sampling rate the I/O performance information comes
close to what an elaborate profiling solution could offer. Still to the best of our
knowledge there is no such profiling tool for parallel file systems available. Yet,
more detailed insight into the behavior of the HDF5 library would be desirable,
e.g. concerning block sizes and scheduling of low-level I/O activities. An I/O
monitoring solution (which is working on this plattform) as described in [18]
would also allow observation of the activities on the metadata server, the OSSes
and the RAID systems.
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4 Lessons Learned with Tracing

Event tracing for highly scalable applications is a challenging task, in particular
due to the huge amount of generated data. The default configuration of Vam-
pirTrace is limited to record not more than 10,000 calls per subroutine and rank
(MPI process) and to 32 MB of total uncompressed trace size per rank. This
avoids excessively huge trace files and allows the generation of a custom filter
specification for successive trace runs. These filters reduce frequent subroutine
calls completely and keep high-level subroutines untouched. Usually, this results
in an acceptable trace size per process and a total trace size growing linearly
with the number of parallel processes. Filtering everything except MPI calls
is a typical alternative if the analysis focuses on MPI only. With the FLASH
code, the filtering approach works well in order to create reasonably sized traces.
As one exception, additional filtering for the MPI function MPI Comm rank was
necessary, because it is called hundreds of thousands of times per rank.

The growth of the trace size is typically not linear with respect to the run-
time or the number of iterations. Instead, there are high event rates during
initialization with many different small and irregular activities. Afterwards,
there is a slow linear growth proportional to the number of iterations. This can
be described coarsely by the following relation

trace size = 6 MB/rank + 0.1 MB/iteration/rank (1)

(in compressed OTF format) where the first part relates to initialization.
On the analysis and visualization side, VampirServer provides very good

scalability by its client/server architecture with a distributed server. It is able
to handle 1 to n trace processes with one analysis process and requires ap-
proximately the uncompressed trace file size in distributed main memory. This
combined approach is feasible up to a number of several hundred to a few thou-
sand processes but not for tens of thousands because of the following reasons:

1. the total data volume that grows to hundreds of GBytes,
2. the distributed memory consumption for analysis, and
3. limited screen size and limited human visual perception.

For the three problems, there are different solutions. The general method for
this paper was to do trace runs with medium scale parallelism (several hundred
to a few thousand ranks). Then identify and investigate interesting situations
based on these experiments, interpolating the behavior for even larger rank
counts. This successfully reveals certain performance problems and allows the
design of effective solutions. Yet, it is not sufficient for detecting performance
problems that emerge only for even higher degrees of parallelism.

Some of the current investigations are also based on analyzing partial traces
where all processes are recorded but only a (manual4) selection is loaded by
VampirServer. This results in few warnings about incomplete data, yet the
remaining analysis works as before.

4by modifying the anchor file of an OTF trace.
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5 Future Plans

For a future solution we propose a new partial tracing method as the result
of the presented study. It will apply different levels of filtering, based on the
assumption that (most) processes in SPMD (Single Program Multiple Data)
applications behave very similarly. Only a selected set of processes is considered
for normal tracing including normal filtering. For another set, there will be a
reduced tracing, that collects only events corresponding to the first set, e.g.
communication with peers in the first set. All remaining processes will refrain
from recording any events.

The longer term development will focus on the automatic detection of regu-
lar sections in an event trace in order to reduce the amount of data for a deeper
analysis. Based on this, the visualization will provide a high-level overview
about regular areas of a trace run as well as anomalous parts. Then, a single
instance of a repeated pattern can serve as the basis for a more detailed in-
spection that represents many similar occurrences. Single outliers with notably
different behavior can be easily identified and compared with the regular case.

6 Related Work

Detailed performance analysis tools are becoming more crucial for the efficiency
of large scale parallel applications and at the same time the tools face the same
scalability challenge. Currently, this seems to produce two trends. On the one
hand, profiling approaches are being enriched by additional data, e.g. with
phase profiles or call path profiles [19, 20]. On the other hand, data intensive
event tracing methods are adapted towards data reduction, e.g. the extension
in Paravar by Casas et al. [21]. A compromise between profiling and tracing
was proposed by Fürlinger et al. [22]

A way to cope with huge amounts of event trace data was initially proposed
by Knüpfer et al. [23, 24] with the Compressed Call Graph method, followed
by Müller et al. [25] with the ScalaTrace approach for MPI replay traces. Both
can be used for automatic identification and utilization of regular repetition
patterns. In the past, the same goal has been approached with different methods
by Roth et al. [26] or Samples [27]. A good overview about different approaches
by Mohror et al. can be found in [28].

7 Conclusions

This paper presents a performance analysis study of the parallel simulation
software FLASH that examines the application behavior as well as the funda-
mental high-end Petascale system hierarchies. The approach is performed using
the scalable performance analysis tool suite called Vampir on the ORNL’s Cray
XT4 Jaguar system. The trace-based evaluation provides important insight
into performance and scalability problems and allows us to identify two major
bottlenecks that are of importance for very high CPU counts.
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The FLASH application was considered already rather well optimized. In our
opinion, the fact that we were able to identify notable potential for improvement
still shows that high scale performance is a very complex topic and that special
tailored tools are crucial.

The use of the Vampir suite allows not only the detection of severe hotspots
in some of the communication patterns used in the FLASH application but
is also beneficial in pointing to feasible solutions. Consequently, a speedup of
the total runtime of up to 30% can be achieved by replacing multiple, strictly
successive MPI Allreduce operations by non blocking NBC Iallreduce opera-
tions (from libNBC) that permit overlapping of messages. Furthermore, another
MPI-related bottleneck could be eliminated by substituting the latency bound
MPI Sendrecv replace operations with non blocking communication calls; as
well as by removing unnecessary MPI Barrier calls. This reduces the total por-
tion of MPI in FLASH by 13% while the runtime of all non-MPI code remains
constant.

A deeper investigation of the derivation of time spent in FLASH routines
shows in particular that time spent in I/O routines began dramatically to dom-
inate as the number of CPU cores increase. A trace-based analysis of the I/O
behavior allows a better understanding of the complex performance characteris-
tics of the parallel Lustre file system. Using various techniques like aggregating
write operations, allowing the data from multiple processes to be written to
disk in a single path, in combination with file striping across all OSTs yields a
significant performance improvement by a factor of 2 for midsize CPU counts
and approximately 4.6 for large CPU counts for the entire FLASH application.
An additional investigation shows that writing data to multiple files instead of
a single file delivers a performance gain of nearly a factor of 2.7 for 8,192 cores
as an example. Since the size of the output file grows linearly with the number
of cores, it is a future intention to find the optimal file size or optimal number
of output files to obtain best performance for various core cases.
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