
PARALLEL LINEAR ALGEBRA SOFTWARE FOR MULTICORE ARCHITECTURES

TILE ALGORITHMS
Unlike LAPACK, which uses block algorithms, PLASMA 
relies on tile algorithms to enable the use of fine grained 
parallelism. 

Tile algorithms of Linear Algebra operations can be 
represented as Directed Acyclic Graphs (DAG) where 
nodes represent the tasks in which the  operation can be 
decomposed and the edges represent the dependencies 
among them. As long as the task execution order does 
not violate the dependencies, the result will be correct.

POTRF

POTRF

POTRF

POTRF

TRSM

TRSM

TRSM

TRSM

TRSM

TRSM SYRK

SYRK SYRK

SYRK

SYRK

SYRK

GEMM

GEMM

GEMMGEMM

Example of DAG for a 
Cholesky Factorization

THE PARALLEL LINEAR ALGEBRA SOFTWARE FOR MULTICORE ARCHITECTURES (PLASMA) PROJECT aims to address the critical and highly 
disruptive situation that is facing the Linear Algebra and High Performance Computing community due to the introduction of multicore 
architectures. PLASMA’s ultimate goal is to create software frameworks that enable programmers to simplify the process of developing 
applications that can achieve both high performance and portability across a range of new architectures. PLASMA uses a programming 
model that allows asynchronous, out-of-order scheduling of operations in order to achieve a scalable yet highly efficient software 
framework for Computational Linear Algebra applications.

Block Algorithms Tile Algorithms

PERFORMANCE RESULTS DOUBLE PRECISION

CPU Intel Xeon 2.4 GHz Quad-socket Quad cores (16 cores total)

CPU IBM Power6 4.7 GHz 16 Dual cores (32 cores total) 

CURRENT RESEARCH

PLASMA     2.1.0

Matrix Size

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000

Cholesky Factorization
Theoretical Peak

PLASMA 2.0
MKL 10.1

LAPACK 3.2

Gfl
op

/s

Matrix Size

LU Factorization
Theoretical Peak

PLASMA 2.0
MKL 10.1

LAPACK 3.2

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000

Gfl
op

/s

Matrix Size

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000

QR Factorization
Theoretical Peak

PLASMA 2.0
MKL 10.1

LAPACK 3.2

Gfl
op

/s

Matrix Size

0

80

160

240

320

400

480

560

640

0 2000 4000 6000 8000 10000 12000

Theoretical Peak

QR Factorization

Gfl
op

/s

PLASMA 2.0 

ESSL 4.3

LAPACK 3.2
LAPACK 3.2

Matrix Size

0

80

160

240

320

400

480

560

640

0 2000 4000 6000 8000 10000 12000

Theoretical Peak

Cholesky Factorization

Gfl
op

/s PLASMA 2.0 

ESSL 4.3

Matrix Size

0

80

160

240

320

400

480

560

640

0 2000 4000 6000 8000 10000 12000

Theoretical Peak

LU Factorization

Gfl
op

/s

PLASMA 2.0 

ESSL 4.3

LAPACK 3.2

DOWNLOAD THE LIBRARY AT http://icl.eecs.utk.edu/plasma/

• Singular Value Decomposition

• Symmetric and Non Symmetric 

   Eigenvalue Problems

• Dynamic Scheduling

• Communication Avoiding Algorithms

• Autotuning

• Distributed Memory Machines

• Hardware Accelerators

• Solution of Linear Equations

• Linear Least Squares Problems

• Multiple Precision Support

• Mixed-Precision Iterative Solver 

• Static Scheduling

• LAPACK Interface / Native Interface

• LAPACK-Compliant Error Handling

• LAPACK-Derived Testing Suite

• Thread Safety

• Windows, Linux, AIX, Mac OS

• PLASMA Users’ Guide

MATRIX ALGEBRA FOR GPU AND MULTICORE ARCHITECTURES

FIND OUT MORE AT http://icl.eecs.utk.edu/magma/

THE MATRIX ALGEBRA FOR GPU AND MULTICORE ARCHITECTURES (MAGMA) PROJECT aims to create a new generation of linear algebra 
libraries that achieve the fastest possible time to an accurate solution on hybrid/heterogeneous architectures, starting with current 
multicore+multiGPU systems. To address the complex challenges stemming from the heterogeneity of these systems, their massive 
parallelism, and the gap in computation vs. CPU-GPU communication speeds, MAGMA research is based on the idea that optimal software 
solutions will themselves have to hybridize, combining the strengths of different algorithms within a single framework.

HYBRID ALGORITHMS

MAGMA BLAS
FEATURING:

MAGMA relies on hybrid algorithms that match algorithmic 
requirements to the architectural strengths of the 
system's hybrid components.

Small non-parallelizable tasks, often on the critical path, 
are scheduled on the CPU, and larger more parallelizable 
ones, often Level 3 BLAS, are scheduled on the GPU.

A complementary to CUBLAS subset of CUDA BLAS that 
are crucial for the performance of MAGMA routines. 

•  Solution of Linear Equations

•  Linear Least Squares Problems

•  Multiple Precision Support

•  Mixed-Precision, Iterative Solvers

•  Hessenberg Reduction

•  CPU / GPU Interfaces

•  LAPACK-Compliant Accuracy

•  Testing Suite and Examples

•  Current system requirements: 1 CUDA-enabled GPU, Linux

• Symmetric and Non Symmetric Eigenvalue Problems

• Singular Value Decomposition

• Multicore + MultiGPU Algorithms

PERFORMANCE RESULTS

MAGMA     0.2

CURRENT 
RESEARCH

GPU

GPU

GPU

Critical Path

0

50

100

150

200

250

300

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

QR Factorization SINGLE PRECISION

Gfl
op

/s

Matrix Size

MAGMA 0.2

MKL 10.1

CPU Intel Xeon 2.33 GHz, 8 cores, s/d gemm peak 128/65 GFlop/s   GPU NVIDIA GTX280 1.33 GHz, s/d gemm peak 375/75 GFlop/s

0

200

400

600

800

1000

1200

0 5000 10000 15000 20000 25000

Gfl
op

/s

Matrix Size

4 CPUs + 4GPUs

3 CPUs + 3GPUs

2 CPUs + 2 GPUs

1 CPUs + 1GPUs

Cholesky Factorization SINGLE PRECISION

CPU AMD Opteron 1.8GHz, 4 cores   GPU Tesla C1070 1.44GHz, 4 GPUs

• Auto-tuned kernels

• Removed performance “dips” for 
“bad” matrix sizes

• GEMM tuned for rectangular 
matrices

• SYRK, GEMV, and SYMV

• TRSM of high parallelism/performance 
(trade-off for numerical stability)

Hybrid Algorithms as DAGs

Solving A x = b using LU factorization

0

50

100

150

200

250

300

1000 2000 3000 4000 5000 6000 7000 8000

Single Precision

Mixed-precision
Iterative Refinement

Double
Precision

Matrix Size

Gfl
op

/s

0

50

100

150

200

250

300

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Reduction to Hessenberg Form for Eigenvalue computations 
      SINGLE PRECISION

MAGMA 0.2

MKL 10.1

Matrix Size

Gfl
op

/s

MAGMA
BLAS 0.2

CUBLAS 2.3

0

20

40

60

80

1000 2000 3000 4000 5000 6000 7000 8000

Gfl
op

/s

Matrix Size

DGEMM tuned for rectangular matrices
      (e.g.,Matrix Size Nx32)

NUMERICAL LINEAR ALGEBRA 
ON EMERGING ARCHITECTURES: 

SPONSORED BY

A COLLABORATION OF

University of 
Colorado DenverUNIVERSITY OF CALIFORNIA

WITH SUPPORT FROM

THE                    AND 
                 PROJECTS

The emergence and continuing use of multi-core architectures and 
graphics processing units require changes in the existing software 
and sometimes even a redesign of the established algorithms in order 
to take advantage of now prevailing parallelism. Parallel Linear 
Algebra Software for Multi-core Architectures (PLASMA) and Matrix 
Algebra on GPU and Multi-core Architectures (MAGMA) are two 
projects that aim to achieve high performance and portability across 
a wide range of multi-core architectures and hybrid systems 
respectively.

Emmanuel Agullo

Jim Demmel

Jack Dongarra

Bilel Hadri

Jakub Kurzak

Julien Langou

Hatem Ltaief

Piotr Luszczek

Rajib Nath

Stanimire Tomov

Vasily Volkov

Asim YarKhan

http://icl.eecs.utk.edu/


