
 
 
 
 
 
 

PERI Auto-Tuning  

David H Bailey2, Jacqueline Chame4, Chun Chen4, Jack Dongarra5, Mary Hall4, Jeffrey K 
Hollingsworth3, Paul Hovland1, Shirley Moore5, Keith Seymour5, Jaewook Shin1, Ananta 
Tiwari3, Sam Williams2 and Haihang You5  
1Argonne National Laboratory, Argonne, IL  60439, USA 
2Lawrence Berkeley National Laboratory, Berkeley, CA  94720, USA 
3University of Maryland, College Park, MD  20742, USA 
4USC/ISI, Marina del Rey, CA  90292, USA 
5University of Tennessee, Knoxville, TN  37996, USA 

E-mail: mhall@isi.edu 

Abstract. The enormous and growing complexity of today’s high-end systems has  
increased the already significant challenges of obtaining high performance on   
equally complex scientific applications. Application scientists are faced with a daunting 
challenge in tuning their codes to exploit performance-enhancing architectural features. The 
Performance Engineering Research Institute (PERI) is working toward the goal of automating 
portions of the performance tuning process. This paper describes PERI’s overall strategy for 
auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating 
their success on kernels, some taken from large-scale applications. 

1.  Introduction  
As we are enter the era of petascale systems, as with earlier high-end systems, there is likely to be a 
significant gap between peak and sustained performance. Historically, the burden of achieving high 
performance on new platforms has largely fallen on the application scientists. To relieve application 
scientists of this burden, we would like to provide performance tools that are (largely) automatic, a 
long-term goal commonly called auto-tuning. This goal encompasses tools that analyze a scientific 
application, both as source code and during execution, generate a space of tuning options, and search 
for a near-optimal performance solution. There are numerous challenges to fully realizing this vision, 
including enhancement of automatic code manipulation tools, automatic run-time parameter selection, 
automatic communication optimization, and intelligent heuristics to control the combinatorial 
explosion of tuning possibilities. On the other hand, we are encouraged by recent successful results 
such as ATLAS, which has automatically tuned components of the LAPACK linear algebra library[1]. 
We are also studying techniques used in the highly successful FFTW library[2] and several other 
related projects [3-6].  

The Performance Engineering Research Institute (PERI) is formalizing a performance tuning 
methodology used by application developers and automating portions of this process. Auto-tuning is 
one of the three aspects of performance tuning that are the focus of PERI, in addition to performance 
modeling and application engagement. In the context of these three aspects, the goal of PERI is to 
migrate automatic and semi-automatic prototypes into practice for a set of important applications. This 
document focuses on the PERI auto-tuning strategy (Section 2), recent progress in developing 

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012089 doi:10.1088/1742-6596/125/1/012089

c© 2008 IOP Publishing Ltd 1



 
 
 
 
 
 

common interfaces to auto-tuning tools (Section 3), and tool infrastructure and experimental results 
(Section 4), followed by a conclusion.  

2.  PERI auto-tuning conceptual diagram 
Figure 1 provides a conceptual diagram of auto-tuning in PERI. Several phases are shown, as 
described here, but this document focuses on transformation, code generation, and off-line search. 
1. Triage. This step involves performance measurement, analysis and modeling to determine whether 

an application has opportunities for optimization. 
2. Semantic analysis. This step involves analysis of program semantics to support safe 

transformation of the source code. The analyses include traditional compiler analyses to determine 
data and control dependences and can exploit semantic information provided by the user through 
annotations or information about domain-specific abstractions. 

3. Transformation. Transformations modify source code to coax native compilers to generate better-
performing implementations. Transformations such as loop unrolling may be parameterized to 
allow for input size and machine characteristic tuning. 

4. Code generation. This phase produces a set of possible implementations to be considered.  
5. Offline search. Offline search entails running multiple variants of the generated code to identify 

the best-performing implementation, with guidance from performance models or user input.  
6. Application assembly. At this point, the optimized code components are integrated to produce an 

executable code, possible including instrumentation and support for dynamic tuning. 
7. Training runs. Training runs involve a separate execution step designed mainly to produce 

performance data for feedback into the optimization process.  

 
 

 
Figure 1.  Flow diagram of the auto-tuning process. 

 

Transformation  
API 

Search 
API 
 

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012089 doi:10.1088/1742-6596/125/1/012089

2



 
 
 
 
 
 

8. Online adaptation. Optimizations may occur during production runs, especially for problems or 
machines whose optimal configuration changes during execution. 

3.  Evolving an auto-tuning system through common interfaces 
The challenges in automating the performance tuning process require that the following three issues be 
addressed. First, the number of code variants for a complete application can be enormous. Strategies to 
avoid code explosion and to judiciously select what transformation techniques to apply to different 
sections of the application code are needed to keep the tuning time at manageable levels. Second, as 
the number of tuning parameters increases, the search space becomes high dimensional and 
exponential in size. Search algorithms that can cope with exponential spaces and deliver results within 
a few search iterations are needed. Finally, metrics that measure and isolate the performance of a 
section of code being optimized within an application is needed to accurately guide search algorithms. 
     Within PERI, five different research groups are developing auto-tuning tools to address these 
issues. These projects have complementary strengths and can, therefore, be brought together to 
develop an integrated auto-tuning system. Toward that end, we are working to develop a common 
framework to allow auto-tuning tools to share information and search strategies. Through common 
APIs, we can evolve an auto-tuning system that brings together the best capabilities of each of these 
tools, and also engage the broader community of tool developers beyond PERI researchers. 

We have focused development of the interfaces on two portions of the auto-tuning process. Any 
compiler-based approach will apply code transformations to rewrite application code from its original 
form to one that more effectively exploits architectural features such as registers, caches, SIMD 
compute engines, and multiple cores.  Commonly used code transformations include loop unrolling, 
blocking for cache, and software pipelining. Thus, we are designing a transformation API  that will be 
input to the Transformation box in figure 1. This API provides a transformation recipe that describes 
how to transform original source into an optimized source representation. By accepting a common 
transformation recipe, the auto-tuning system permits code transformation strategies derived by PERI 
compilers and tools (or users) to be implemented using any transformation and code generation tools, 
such as Chill (USC/ISI), LoopProcessor (LLNL) and POET (UTSA). The API supports the 
specification of unbound transformation parameters that are then tuned using search algorithms. The 
initial draft of the API includes a naming convention for specifying language constructs in source code 
and code transformations available in Chill and POET.  

A search API provides input into the empirical optimization process of running a series of 
experiments on actual hardware to determine the best optimized implementation. The search API 
allows the auto-tuning tools to exchange information about their available tuning options and 
constraints on the search space and to plug in different search algorithms. The common framework 
will support both auto-tuning using training runs (and recompilation) along with continuous 
optimization during production runs. For the search API, we are working on developing a simple and 
extensible language that standardizes the parameter space representation. Using the language, 
developers and researchers can expose tunable parameters to tuning frameworks. Relationships 
(ordering, dependencies, constraints, and ranking) between tunable parameters can also be expressed.  

To understand the requirements of integrating auto-tuning tools developed independently by PERI 
researchers, we have been engaging in the integration of several PERI tools. Researchers at the 
University of Tennessee have integrated auto-tuning search (described below) with the ROSE 
LoopProcessor (LLNL) and the POET code generator (UTSA). Similarly, an initial integration of the 
Active Harmony system (UMD) and the Chill transformation framework (USC/ISI) is providing 
experience in how to effectively integrate these separate tools into an auto-tuning system. 

4.  Auto-tuning infrastructure and experimental results 
We now describe recent performance results from applying auto-tuning to dense and sparse linear 
algebra kernels. The dense linear algebra experiments use our prototype compiler and code-generation 

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012089 doi:10.1088/1742-6596/125/1/012089

3



 
 
 
 
 
 

tools, while the more difficult-to-analyze sparse linear algebra experiments use a library-based auto-
tuning approach.  

4.1 Code generation and empirical search 

In conjunction with the previously described APIs, a goal in PERI is to easily substitute different code 
generators and search engines in the auto-tuning process. To that end, researchers at the University of 
Tennessee have developed a simple syntax for specifying the way to generate code to perform the 
evaluation of the code variants. In order to permit switching search techniques, the application-specific 
aspects of the evaluation process are described by a simple specification of the search bounds and 
constraints. This system allows evaluation of various search techniques to determine which work best 
in an auto-tuning context. We have evaluated some classic techniques such as genetic algorithms, 
simulated annealing, and particle swarm optimization, as well as some more ad hoc techniques such as 
a modified orthogonal search.  

As a simple example of an optimization search space, figure 2 shows optimization of square 
matrix-matrix multiplication (N=400), using an exhaustive search over two dimensions: block sizes up 
to 128 and unrolling up to 128. The x and y axes represent block size and unrolling amount, 
respectively, while the z axis represents the performance in Mflop/s of the generated code. In general, 
we see the best results along the blocking axis with a low unrolling amount as well as along the 
diagonal where blocking and unrolling are equal, but there are also peaks along areas where the block 
size is evenly divisible by the unrolling amount. The best performance was found with block size 80 
and unrolling amount 2. This code variant ran at 1459 Mflop/s compared to 778 Mflop/s for the naive 
version compiled with gcc. 

 

 
Figure 2. Example of parameter search space for auto-tuning. 

 
4.2  Compiler-based infrastructure 
Researchers at USC/ISI are developing the TUNE auto-tuning compiler and its constituent Chill 
transformation framework, which provide a compiler-based infrastructure for general application code. 
Chill takes source code and a transformation recipe with bound parameter values as input. Using a 

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012089 doi:10.1088/1742-6596/125/1/012089

4



 
 
 
 
 
 

polyhedral framework, Chill extracts a mathematical representation of the iteration space and array 
accesses and composes the transformations in the recipe through rewriting rules, to generate optimized 
code. A parameter sweep interface takes a transformation recipe with unbound parameter values and 
ranges and constraints on parameter values to derive a series of alternative implementations. 

TUNE has been used to achieve hand-tuned levels of performance on dense linear algebra kernels 
such as matrix-matrix multiply, matrix-vector multiply, and LU factorization for older architectures 
such as the SGI R10K, Pentium M, and Pentium D. Recent work to optimize matrix-matrix multiply 
for newer architectures is promising, but show gaps between compiler-optimized and hand-tuned 
performance. Performance results for the Jacquard system at LBNL are 37% below hand-tuned 
performance, and we attribute the gaps to code generation for SSE-3, instruction scheduling, and 
control of prefetch. Collaborating researchers at Argonne have been experimenting with manually 
scheduled inner-loop bodies, have achieved performance within 83% of peak, and are developing 
automatic approaches to close this gap. On the Intel Core2Duo, we have achieved performance that is 
28% below near-peak hand-tuned results. The primary performance gap appears to be control of 
software prefetch at the source code level.  

4.3  Auto-tuning sparse-matrix vector multiply for multi-core architectures 

In a study of auto-tuning a sparse matrix-vector multiply (SpMV) kernel, PERI researchers  at 
Lawrence Berkeley National Laboratory compared performance on a dual-socket Intel Core2 Xeon, 
single- and dual-core AMD processors, a quad-core Opteron, a Sun Niagara2, and an IBM Cell 
Broadband Engine. This study found that these processors differed markedly in the effectiveness of 
various autotuning schemes on the SpMV kernel [6]. In two subsequent studies [7,8], these researchers 
analyzed similar but more sophisticated automatic optimizations for SpMV, the explicit heat equation 
PDE on a regular grid (Stencil), and a lattice Boltzmann application (LBMHD). This auto-tuning 
approach employs a code generator that produces multiple versions of the computational kernels using 
a set of optimizations with varying parameter settings. The optimizations include TLB and cache 
blocking, loop unrolling, code reordering, software prefetching, streaming stores, and use of SIMD 
instructions.  

The impact of each optimization varied significantly across architecture and kernel, necessitating a 
machine-dependent approach to auto-tuning in this study. In addition, detailed analysis revealed 
performance bottlenecks for each computation on the various systems mentioned above. The overall 
performance results showed that the Cell processor offers the highest raw performance and power 
efficiency for these computations, despite having peak double-precision performance and memory 
bandwidth that is lower than many other platforms in our study. The key architectural advantage of 
Cell is explicit software control of data movement between the local store (cache) and main memory, 
which is a major departure from conventional programming. These studies clarify that there is still 
considerable room for improvement in automatic tuning methods for all the candidate architectures. 

Acknowledgment 

This work was supported in part by the U.S. Department of Energy, under Contract DE-AC02-
06CH11357. 

References  
[1] Whaley C, Petitet A and Dongarra J 2001 Automated empirical optimizations of software and 

the ATLAS project Parallel Computing 27 (1): 3-25 
[2] Frigo M and Johnson S 1998 FFTW: an adaptive software architecture for the FFT Proc. 

International Conference on Acoustics, Speech, and Signal Processing (Seattle, Washington)  
[3] Bilmes J, Asanovic K, Chin C W and Demmel J 1997 Optimizing matrix multiply using PHi-

PAC: a Portable, High-Performance, ANSI C Coding methodology Proc. International 
Conference on Supercomputing (Vienna, Austria: ACM SIGARCH) 

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012089 doi:10.1088/1742-6596/125/1/012089

5



 
 
 
 
 
 

[4] Vuduc R, Demmel J and Yelick K 2005 OSKI: a library of automatically tuned sparse matrix 
kernels Proc. SciDAC 2005, Journal of Physics: Conference Series 

[5] Chen C, Chame J and Hall M 2005 Combining models and guided empirical search to optimize 
for multiple levels of the memory hierarchy Proc. Conference on Code Generation and 
Optimization 

[6] Williams S, Carter J, Oliker L, Shalf J and Yelick K 2008 Lattice Boltzmann simulation 
optimization on leading multicore platforms Proc. International Parallel & Distributed 
Processing Symposium (IPDPS) (Best paper, applications track) 

[7] Williams S, Oliker L, Vuduc R, Shalf J, Yelick K and Demmel J 2007 Optimization of sparse 
matrix-vector multiplication on emerging multicore platforms Proc. SC07 (ACM/IEEE)  

[8] Williams S,  Datta K, Carter J, Oliker L,  Shalf J, Yelick K and Bailey D 2008 PERI – auto-
tuning memory intensive kernels for multicore (available at 
http://crd.lbl.gov/~dhbailey/dhbpapers/scidac08_peri.pdf) 

SciDAC 2008 IOP Publishing
Journal of Physics: Conference Series 125 (2008) 012089 doi:10.1088/1742-6596/125/1/012089

6




