
Visualizing the Program Execution Control

Flow of OpenMP Applications ?

Karl Fürlinger and Shirley Moore

Innovative Computing Laboratory,
EECS Department,

University of Tennessee, Knoxville
{karl, shirley}@eecs.utk.edu

Abstract. One important aspect of understanding the behavior of an application
with respect to its performance, overhead, and scalability characteristics is knowledge
of its control flow. In comparison to sequential applications the situation is more
complicated in multithreaded parallel programs because each thread defines its own
independent control flow. On the other hand, for the most common usage models of
OpenMP the threads operate in a largely uniform way, synchronizing frequently at
sequence points and diverging only to operate on different data items in worksharing
constructs.
This paper presents an approach to capture and visualize the control flow of OpenMP
applications in a compact way that does not require a full trace of program execution
events but is instead based on a straightforward extension to the data collected by
an existing profiling tool.

1 Introduction

An important aspect of understanding the behavior of a parallel application
is knowledge about its control flow. In the context of this paper we define
the control flow as the sequence in which an application executes blocks of
code, where a block of code might be as big as a function body or as small
as individual statements. Typically, as we will discuss later, in our approach
the individual elements of the control flow representations are the source code
regions corresponding to whole OpenMP constructs such as parallel regions,
critical sections, functions, or user-defined regions. A user can add individual
statements to the control flow representation by manually instrumenting them,
but typically the user-defined regions would be larger and at least contain a
couple of statements.

To motivate the benefit of knowing the control flow of an application, con-
sider the following simple example. Assume our application calls two functions
foo() and bar() as show in Fig. 1a. The gprof output corresponding to an
execution of this application is shown in Fig. 1c. Now consider the alternative
version in Fig. 1b. Analyzing these two applications with gprof gives exactly
the same profile, even though the control flow with respect to the functions
foo() and bar() is different. In the first example bar() is always called after
foo() (20 times) while in the second case foo() is the predecessor of bar()

? This work was partially supported by US DOE SCIDAC grant #DE-FC02-06ER25761 (PERI)
and NSF grant #07075433 (SDCI).

in the control flow only once (at the beginning of the loop), while it is its own
predecessor 19 times. This is visualized in Figs. 1d and 1e, respectively.

void main() {

int i;

for(i=0; i<20; i++) {

 foo();

/* ... */

 bar();

 }

}

(a) Version A.

void main() {

int i;

for(i=0; i<20; i++) {

 foo();

 }

/* ... */

for(i=0; i<20; i++) {

 bar();

 }

}

(b) Version B.

index % time self children called name
 <spontaneous>
[1] 100.0 0.00 9.77 main [1]
 4.94 0.00 20/20 foo [2]
 4.83 0.00 20/20 bar [3]

 4.94 0.00 20/20 main [1]
[2] 50.6 4.94 0.00 20 foo [2]

 4.83 0.00 20/20 main [1]
[3] 49.4 4.83 0.00 20 bar [3]

(c) gprof profile, versions A and B.

201 1

19

foo()
20

bar()
20

(d) Control flow of version A.

1

1919

1 1foo()
20

bar()
20

(e) Control flow of version B.

Fig. 1: A simple example demonstrating that differences in the control flow are not reflected in
runtime profiles.

Knowledge about the control flow can be important with respect to perfor-
mance considerations related to data locality and reuse. If foo() and bar()

work on the same data items, version A keeps data in cache which can be
beneficial over version B, which iterates over all data items twice. Evidently
the control flow information is not retained in the gprof profiles, as in both
cases the functions have been called the same number of times and in both
cases bar() as well as foo() have been called from main(). Hence, analyzing
the callgraph cannot uncover the control flow information.

One approach to recover the control flow is of course to do a full trace of
all enter and exit events of all interesting functions, constructs or other source
code regions and to visually analyze this trace with tools like Vampir [9], Intel
Trace Analyzer [4] or Paraver [10]. However, with raw trace visualization it can
be cumbersome to visualize the essential parts of the control flow as the number
of events is often overwhelming. In this paper, we discuss an approach that

shows that full tracing is not necessary and that the control flow information
can be uncovered using a simple extension of a profiling tool.

The rest of this paper is organized as follows: the next section introduces
the profiling tool that we extended to extract the control flow information and
describes the necessary extensions. Sect. 3 then discusses the visualization of
the control flow for OpenMP constructs and presents an example control flow
of an application from the NAS parallel benchmark suite. In Sect. 4 we describe
related work and in Sect. 5 we conclude and outline directions for future work.

2 The OpenMP Profiler ompP

ompP is a profiling tool for OpenMP applications designed for Unix-like sys-
tems. Since it is independent of the OpenMP compiler and runtime system,
it works with any OS/compiler combination. ompP differs from other profil-
ing tools like gprof or OProfile [7] in primarily two ways. First, ompP is a
measurement based profiler and does not use program counter sampling. The
instrumented application invokes ompP monitoring routines that enable a di-
rect observation of program execution events (like entering or exiting a critical
section). The direct measurement approach can potentially lead to higher over-
heads when events are generated very frequently, but this can be avoided by
instrumenting such constructs selectively. An advantage of the direct approach
is that the results are not subject to sampling inaccuracy and hence they can
also be used for correctness testing in certain contexts.

The second difference lies in the way of data collection and representation.
While general profilers work on the level of functions, ompP collects and displays
performance data in the user model of the execution of OpenMP events [5]. For
example, the data reported for critical section contain not only the execution
time but also list the time to enter and exit the critical construct (enterT
and exitT, respectively) as well as the accumulated time each threads spends
inside the critical construct (bodyT) and the number of times each thread
enters the construct (execC). An example profile for a critical section is given
in Fig. 2

R00002 main.c (20-23) (unnamed) CRITICAL

TID execT execC bodyT enterT exitT

0 1.00 1 1.00 0.00 0.00

1 3.01 1 1.00 2.00 0.00

2 2.00 1 1.00 1.00 0.00

3 4.01 1 1.00 3.01 0.00

SUM 10.02 4 4.01 6.01 0.00

Fig. 2: Profiling data delivered by ompP for a critical section.

Profiling data in a similar style is delivered for each OpenMP construct, the
columns (execution times and counts) depend on the particular construct. Fur-

thermore, ompP supports the query of hardware performance counters through
PAPI [1] and the measured counter values appear as additional columns in
the profiles. In addition to OpenMP constructs that are instrumented auto-
matically using Opari [8], a user can mark arbitrary source code regions such
as functions or program phases using a manual instrumentation mechanism.
Function calls are automatically instrumented on compilers that support this
feature (e.g., -finstrument-functions) for the GNU compilers

Profiling data are displayed by ompP both as flat profiles and as callgraph
profiles, giving both inclusive and exclusive times in the latter case. The call-
graph profiles are based on the callgraph that is recorded by ompP. An example
callgraph is shown in Fig. 3. The callgraph is largely similar to the callgraphs
given by other tools, such as callgrind [11], with the exception that the nodes
are not only functions but also OpenMP constructs and user-defined regions,
and the (runtime) nesting of those constructs is shown in the callgraph view.
The callgraph that ompP records is the union of the callgraph of each thread.
That is, each node reported has been executed by at least one thread.

ROOT [critical.i686.ompp: 4 threads]

REGION +-R00004 main.c (40-51) (’main’)

PARALLEL +-R00005 main.c (44-48)

REGION |-R00001 main.c (20-22) (’foo’)

REGION | +-R00002 main.c (27-32) (’bar’)

CRITICAL | +-R00003 main.c (28-31) (unnamed)

REGION +-R00002 main.c (27-32) (’bar’)

CRITICAL +-R00003 main.c (28-31) (unnamed)

Fig. 3: Example callgraph view of ompP.

2.1 Data Collection to Reconstruct the Control Flow Graph
(CFG)

As discussed in the introduction, the callgraph does not contain enough infor-
mation to reconstruct the CFG. However, a full trace is not necessary either. It
is sufficient to keep a record that lists all predecessor nodes and how often the
predecessors have been executed for each callgraph node. A predecessor node
is either the parent node in the callgraph or a sibling node on the same level.
A child node is not considered a predecessor node because the parent–child
relationship is already covered by the callgraph representation. An example of
this is shown in Fig. 4. The callgraph (lower part of Fig. 4) shows all possi-
ble predecessor nodes of node A in the CFG. They are the siblings B and C,
and the parent node P . The numbers next to the nodes in Fig. 4 indicate the
predecessor nodes and counts after one iteration of the outer loop (left hand
side) and at the end of the program execution (right hand side), respectively.

Implementing this scheme in ompP was straightforward. ompP already keeps
a pointer to the current node of the callgraph (for each thread) and this scheme

P() {

 for(i=0; i<5; i++) {

 A();

 B();

 C();

 }

}

 P

 +-A

 | +-X

 | +-Y

 +-B

 +-C

 +-Z

(P:1)

(A:1)

(X:1)

(A:1)

(B:1)

(C:1)

 P

 +-A

 | +-X

 | +-Y

 +-B

 +-C

 +-Z

(P:1,C:4)

(A:5)

(X:5)

(A:5)

(B:5)

(C:5)

A() {

 X();

 Y();

}

C() {

 Z();

}

predecessor

list

predecessor

list

Fig. 4: Illustration of the data collection process to reconstruct the control flow graph.

is extended by keeping a previous node pointer as indicated above. Again this
information is kept on a per-thread basis, since each thread can have its own
independent callgraph as well as flow of control.

The previous pointer always lags the current pointer one transition. Prior
to a parent → child transition, the current pointer points to the parent while
the previous pointer either points to the parent’s parent or to a child of the
parent. The latter case happens when in the previous step a child was entered
and exited. In the first case, after the parent → child transition the current
pointer points to the child and the previous pointer points to the parent.
In the latter case the current pointer is similarly updated, while the prior
pointer remains unchanged. This ensures that the previous nodes of siblings
are correctly handled.

With current and previous pointers in place, upon entering a node, infor-
mation about the previous node is added to the list of previous nodes with an
execution count of 1, or, if the node is already present in the predecessor list,
its count is incremented.

3 Visualizing the CFG of OpenMP Applications

The data generated by ompP’s control flow analysis can be displayed in two
forms. The first form visualizes the control flow of the whole application, the
second is a layer-by-layer approach. The full CFG is useful for smaller appli-
cations, but for larger codes it can quickly become too large to comprehend
and cause problems for automatic layout mechanisms. An example of an ap-
plication’s full control flow is shown in Fig. 5. The code corresponds to the
callgraph of Fig. 3 where the critical section’s body contains work for exactly
one second.

0:3|5

0:3|5

0:3|5

0|1

0:3|5

0|1

0:3|5

0|4

R00004.0 USER REGION
main.c (40-51) ('main')

R00005.0 PARALLEL
main.c (44-48)

R00001.0 USER REGION
main.c (20-22) ('foo')

R00002.1 USER REGION
main.c (27-32) ('bar')

R00002.0 USER REGION
main.c (27-32) ('bar')

R00003.0 CRITICAL
main.c (28-31) (unnamed)

enterT: (7.01, 0.00, 8.01,15.02)
bodyT: (5.01, 5.01, 5.01, 5.01)

R00003.1 CRITICAL
main.c (28-31) (unnamed)

enterT: (15.03,15.03,15.03,15.03)
bodyT: (5.01, 5.01, 5.01, 5.01)

Fig. 5: An example for a full control flow display of an application.

Rounded boxes represent source code regions. That is, regions correspond-
ing to OpenMP constructs, user-defined regions or automatically instrumented
functions. Solid horizontal edges represent the control flow. An edge label like
i|n is interpreted as thread i has executed that edge n times. Instead of draw-
ing each thread’s control flow separately, threads with similar behavior are
grouped together. For example the edge label 0–3|5 means that threads 0, 1, 2,
and 3 combined executed that edge 5 times in total. This greatly reduces the
complexity of the control flow graph and makes it easier to understand.

For each node the box contains the most important information. This in-
cludes the type of the region (such as CRITICAL), the source code location (file
name and line number) and performance data. Due to space limitations the
included performance data do not list the full profile but only the most impor-
tant aspects for the particular construct. This information includes the overall
execution time as well as the most likely cause for a potential bottleneck. For
critical sections this is the time required to enter the construct (enterT) and
for parallel loops it is the waiting time at the implicit barrier, for example.

Dotted vertical lines represent control flow edges from parent to child (with
respect to the callgraph). The important difference in interpreting these two
types of edges is that a solid edge from A to B means that B was executed
after A finished execution while a dotted line from C to D means that D is
executed (or called) in the context of C (i.e., C is still “active”).

The graphs shown in Figs. 5 and 6 are created with the Graph::Easy

tool [2], which takes a textual description of the graph and generates the
graph in HTML, SVG, or even ASCII format. For graphs that are not overly

complicated the automated layout engine of Graph::Easy does a very good
job. However, for bigger graphs a full control flow graph can be unwieldy and
it is advisable to do a layer-by-layer visualization in this case.

An example of the layer-by-layer visualization is shown in Fig. 6. Here each
graph only shows a single layer of the callgraph, i.e., a parent node and all its
child nodes. Since the predecessor nodes of each node are only its siblings or
the parent node, this view is sufficient to cover the local view of the control
flow graph. The horizontal and vertical edges have the same meaning as in the
previous case. To indicate which nodes have child nodes, the text box contains
a (+) sign. Clicking on such a node brings up the control flow graph of the
child nodes to allow an interactive exploration of the CFG.

The example in Fig. 6 is derived from an execution of the CG benchmark
of the OpenMP version of the NAS parallel benchmarks [6] (class C) on a
4-way AMD Opteron processor node (1.8 GHz, 3 GB of main memory). The
application is automatically instrumented with Opari and the initialization
phase and the iteration loop have been additionally instrumented manually.

As shown in Fig. 6a, the application spends 17.8 seconds in the initializa-
tion phase and then executes 75 iterations of the main iteration loop with a
total of 702.6 seconds of execution time. Fig. 6b shows the control flow of the
initialization phase, while Fig. 6c is the control flow of the main iteration loop.
The initialization proceeds in a series of parallel constructs and parallel loops1.
Significant time is only spent in the regions R00017 and R00027.

Fig. 6c shows the control flow of the iteration loop. We see a nested loop
around the R00017 parallel region which is executed 1875 times in total and
represents by far the most time consuming region. Region R00017 is called in
the initialization as well as in the iteration phase. Drilling down to this parallel
region in Fig. 6d, we see that it contains four loops (R00018, R00019, R00020,
R00021) of which the first one is the most time consuming. The performance
data include the waiting time at the end of worksharing regions (exitBarT).
It is an indicator for load imbalance but does show any severe performance
problems in this case.

Note that in Figs. 6a, 6b, and 6c the edges are only executed by the master
thread (thread 0). Since the application executes sequentially in the phases
outside of parallel regions (only the master thread is active). Only after a
parallel region is entered, a thread team (with four threads in this case) is
created and several threads show up in the control flow graph as in Fig. 6d.

4 Related Work

Control flow graphs are an important topic in the area of code analysis, gener-
ation, and optimization. In that context, CFGs are usually constructed based
on a compiler’s intermediate representation (IR) and are defined as directed
multi-graphs with nodes being basic blocks (single entry, single exit) and nodes

1 A parallel loop is one of OpenMP’s combined parallel-worksharing constructs.

0|1

0|1 0|74

R00001.0 USER REGION
cg.f (101-470) ('main')

bodyT: (720.39)
(+)

R00002.0 USER REGION
cg.f (103-305) ('initialization')

bodyT: (17.76)
(+)

R00011.0 USER REGION
cg.f (321-374) ('iteration_loop')

bodyT: (702.63)
(+)

(a) Toplevel control flow.

0|10|10|1

0|1

R00002.0 USER REGION
cg.f (103-305) ('initialization')

bodyT: (17.76)
(+)

R00003.0 PARALLEL
cg.f (186-190)

bodyT: (0.00, 0.00, 0.00, 0.00)
exitBarT: (0.00, 0.00, 0.00, 0.00)

0|10|1

R00028.0 PARALLEL
cg.f (982-1004)

bodyT: (0.28, 0.28, 0.28, 0.28)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(+)

0|1

0|1

R00022.0 PARALLEL
cg.f (683-705)

bodyT: (0.36, 0.36, 0.36, 0.36)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(+)

0|1

0|1

0|1

0|1

R00025.0 PARALLEL
cg.f (788-811)

bodyT: (0.17, 0.33, 0.49, 0.64)
exitBarT: (0.48, 0.32, 0.16, 0.00)

R00004.0 PARALLEL
cg.f (209-234)

bodyT: (0.05, 0.05, 0.05, 0.05)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(+)

R00008.0 PARALLEL LOOP
cg.f (266-272)

bodyT: (0.00, 0.00, 0.00, 0.00)
exitBarT: (0.00, 0.00, 0.00, 0.00)

R00026.0 PARALLEL
cg.f (865-879)

bodyT: (0.03, 0.04, 0.04, 0.03)
exitBarT: (0.01, 0.00, 0.00, 0.01)

R00014.0 PARALLEL
cg.f (521-545)

bodyT: (0.00, 0.00, 0.00, 0.00)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(+)

R00009.0 PARALLEL LOOP
cg.f (280-284)

bodyT: (0.00, 0.00, 0.00, 0.00)
exitBarT: (0.00, 0.00, 0.00, 0.00)

R00027.0 PARALLEL
cg.f (899-973)

bodyT: (7.24, 7.29, 7.32, 7.38)
exitBarT: (0.14, 0.09, 0.06, 0.00)

0|24

R00017.0 PARALLEL
cg.f (557-671)

bodyT: (9.00, 9.00, 9.00, 9.00)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(+)

R00010.0 PARALLEL LOOP
cg.f (295-299)

bodyT: (0.00, 0.00, 0.00, 0.00)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(b) Control flow of the “initialization” phase.

0|750|75 0|75 0|75

0|75

R00011.0 USER REGION
cg.f (321-374) ('iteration_loop')

bodyT: (702.63)
(+)

R00014.1 PARALLEL
cg.f (521-545)

bodyT: (0.15, 0.15, 0.15, 0.15)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(+)

0|1800

R00017.1 PARALLEL
cg.f (557-671)

bodyT: (675.23,675.20,675.21,675.25)
exitBarT: (0.10, 0.12, 0.12, 0.09)

(+)

R00022.1 PARALLEL
cg.f (683-705)

bodyT: (26.81,26.81,26.81,26.81)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(+)

R00012.0 PARALLEL LOOP
cg.f (347-353)

bodyT: (0.02, 0.02, 0.02, 0.02)
exitBarT: (0.00, 0.00, 0.00, 0.00)

R00013.0 PARALLEL LOOP
cg.f (368-372)

bodyT: (0.02, 0.02, 0.02, 0.02)
exitBarT: (0.01, 0.01, 0.01, 0.01)

(c) Control flow of the “iteration phase”.

0:3|18750:3|18750:3|1875

0:3|1875

R00017.1 PARALLEL
cg.f (557-671)

bodyT: (675.23,675.20,675.21,675.25)
exitBarT: (0.10, 0.12, 0.12, 0.09)

(+)

R00018.1 LOOP
cg.f (572-580)

bodyT: (668.68,668.01,670.43,668.37)
exitBarT: (2.80, 3.47, 1.05, 3.12)

R00019.1 LOOP
cg.f (622-626)

bodyT: (0.75, 0.75, 0.72, 0.74)
exitBarT: (0.09, 0.09, 0.12, 0.10)

R00020.1 LOOP
cg.f (643-656)

bodyT: (1.60, 1.64, 1.59, 1.61)
exitBarT: (0.12, 0.09, 0.13, 0.11)

R00021.1 LOOP
cg.f (666-670)

bodyT: (0.71, 0.69, 0.69, 0.71)
exitBarT: (0.00, 0.00, 0.00, 0.00)

(d) Most time is spent in the region R00017.

Fig. 6: Four layers of the control flow graph of the CG application of the NAS parallel benchmarks
(class C).

representing branches that a program execution may take (multithreading is
hence not directly an issue). The difference to the CFGs in our work is primar-
ily twofold. First, the nodes in our graphs are generally not basic blocks but
they are usually larger regions of code containing whole functions. Secondly,
the nodes in our graphs record transitions that have actually happened during
the execution and also contain a count that shows how often the transition
occurred.

Dragon [3] is a performance tool from the OpenUH compiler suite. It can
display static as well as dynamic performance data such as the callgraph and
control flow graph. The static information is collected from OpenUH’s analysis
of the source code, while the dynamic information is based on the feedback
guided optimization phase of the compiler. In contrast to our approach, the
displays are based on the compiler’s intermediate representation of source code.
The elements of our visualization are the constructs of the user’s model of
execution to contribute to a high-level understanding of the program execution
characteristics.

5 Conclusion

We have presented an approach to visualize the control flow graph of OpenMP
applications. We have extended an existing profiling tool to collect the data
required for the visualization and used a versatile automated layout tool to
generate the graph images.

We believe that the CFG represents valuable information to anyone trying
to understand the performance characteristics of an application. Naturally, the
author of a code might be very well aware already of their application’s control
flow and benefit little from the insight ompP’s control flow graph can offer.
For someone working on a foreign code and especially for big and unfamiliar
applications, we believe the CFG view is very helpful to get an understanding of
the application’s behavior, to understand the observed performance behavior
and to identify tuning opportunities.

Future work is planned in several directions. First, ompP cannot currently
handle nested parallelism but adding support for this is planned for a future
release. Visualizing nested parallelism will pose new challenges when displaying
the control flow graph as well. Secondly, we plan to develop an integrated
viewer for the profiling data delivered by ompP, eliminating the need for an
external graph layout mechanism. Among other graphical displays such as
overhead graphs this viewer will also be able to display the control flow graph.
We plan to support both the full CFG display as well as the layered approach
in an interactive way, i.e., navigating between the nodes of the control flow
graph and call graph and linking this information to the detailed profiling data
as well as the source code.

References

1. Shirley Browne, Jack Dongarra, N. Garner, G. Ho, and Philip J. Mucci. A portable pro-
gramming interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl., 14(3):189–204, 2000.

2. The graph::easy web page: http://search.cpan.org/~tels/Graph-Easy/.
3. Oscar Hernandez, Chunhua Liao, and Barbara Chapman. Dragon: A static and dynamic tool

for OpenMP. In Proceedings of the Workshop on OpenMP Applications and Tools (WOMPAT
2004), pages 53–66, 2004.

4. Intel Trace Analyzer http://www.intel.com/software/products/cluster/tanalyzer/.
5. Marty Itzkowitz, Oleg Mazurov, Nawal Copty, and Yuan Lin. An OpenMP runtime API for

profiling. Accepted by the OpenMP ARB as an official ARB White Paper available online at
http://www.compunity.org/futures/omp-api.html.

6. H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of NAS parallel benchmarks
and its performance. Technical Report NAS-99-011, 1999.

7. J. Levon. OProfile, A system-wide profiler for Linux systems. Homepage: http://oprofile.
sourceforge.net.

8. Bernd Mohr, Allen D. Malony, Sameer S. Shende, and Felix Wolf. Towards a performance tool
interface for OpenMP: An approach based on directive rewriting. In Proceedings of the Third
Workshop on OpenMP (EWOMP’01), September 2001.

9. Wolfgang E. Nagel, Alfred Arnold, Michael Weber, Hans-Christian Hoppe, and Karl Solchen-
bach. VAMPIR: Visualization and analysis of MPI resources. Supercomputer, 12(1):69–90,
1996.

10. V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A tool to visualise and analyze
parallel code. In Proceedings of WoTUG-18: Transputer and Occam Developments, volume 44,
pages 17–31, Amsterdam, 1995. IOS Press.

11. Josef Weidendorfer, Markus Kowarschik, and Carsten Trinitis. A tool suite for simulation
based analysis of memory access behavior. In ICCS 2004: 4th International Conference on
Computational Science, volume 3038 of LNCS, pages 440–447. Springer, 2004.

