
An open-source tool-chain for performance
analysis

K. COULOMB, A. DEGOMME, M. FAVERGE, and F. TRAHAY

Abstract Modern supercomputers with multi-core nodes enhanced by accelerators,
as well as hybrid programming models, introduce more complexity in modern appli-
cations. Efficiently Exploiting all of the available resources requires a complex per-
formance analysis of applications in order to detect time-consuming or idle sections.
This paper presents an open-source tool-chain for analyzing the performance of par-
allel applications. It is composed of a trace generation framework called EZTRACE,
a generic interface for writing traces in multipe format called GTG, and a trace vi-
sualizer called VITE. These tools cover the main steps of performance analysis –
from the instrumentation of applications to the trace analysis – and are designed to
maximize the compatibility with other performance analysis tools. Thus, these tools
support multiple file formats and are not bound to a particular programming model.
The evaluation of these tools show that they provide similar performance compared
to other analysis tools, while being generic.

1 Introduction

Numerical simulation has become one of the pillars of science in many domains: nu-
merous research topics now rely on computational simulation for modeling physical
phenomenons. The need for simulation in various computer power hungry research

Kevin COULOMB
SysFera e-mail: kevin.coulomb@sysfera.com

Augustin DEGOMME
INRIA Rhône-Alpes – Équipe Mescal e-mail: augustin.degomme@inrialpes.fr

Mathieu FAVERGE
University of Tennessee, Innovative Computing Laboratory e-mail: mfaverge@eecs.utk.edu

François TRAHAY
Institut Télécom, Télécom SudParis e-mail: francois.trahay@it-sudparis.eu

1



2 K. COULOMB, A. DEGOMME, M. FAVERGE, and F. TRAHAY

areas, such as climate modeling, computational fluid dynamics, and astrophysic, has
led to designing massively parallel computers that now reach petaflops. Given the
cost of such supercomputers, high performance applications are designed to exploit
the available computing power to its maximum. During the development of an appli-
cation, the optimization phase is crucial for improving the efficiency. However, this
phase requires extensive understanding of the behavior and the performance of the
application. The complexity of supercomputer hardware, due to the use of NUMA
architectures or hierarchical caches, as well as the use of various programming mod-
els like MPI, OpenMP, MPI+threads, MPI+GPUs and PGAS models, makes it more
and more difficult to understand the performance of an application. Due to the com-
plexity of the hardware and software stack, the use of convenient analysis tools is
a great help for understanding the performance of an application. Such tools permit
the user to follow the behavior of a program and to spot its problematic phases.

This paper describes a complete set of tools designed for performance analysis,
from the instrumentation of parallel applications using EZTRACE to the analysis of
their execution with VITE. This open-source tool-chain provides a convenient and
performant means to understand the behavior of an application.

The remainder of this paper is organized as follows: in Section 2, we present
various research related to performance analysis. The design of EZTRACE– our in-
strumentation framework – is described in Section 3. Section 4 presents the GTG
tracing library. Section 5 provides an overview of our trace visualization tool named
VITE. The results of experiments conducted on EZTRACE are discussed in Sec-
tion 6. Finally, in Section 7, we draw a conclusion and introduce future work.

2 Related work

Since the advent of parallel programming and the need for optimized applications,
numerous work has been conducted on performance analysis. Tools were designed
for tracing the execution of parallel applications in order to understand their be-
havior. Some of these tools are specific to a particular library – MPE [4] targets
MPI applications, POSIX THREAD TOOL [6] aims at applications that use pthreads,
OMPTRACE [3] instruments OpenMP applications, . . . – Others, such as VAMPIR-
TRACE [11], TAU [13] or SCALASCA [7], provide multiple modules and thus can
track calls to multiple libraries. Instrumenting custom libraries or applications can
be achieved with these tools by manually or automatically instrumenting the code.

The format of the trace generated by a tracing tool is usually specific, leading
to incompatibility between performance analysis tools. Generic trace formats were
designed to meet the needs of several tools. The PAJÉ format [8] permits the user
to depict the execution of a program in a generic and hierarchic way. The OPEN
TRACE FORMAT [9] (OTF) provides a generic and scalable means of tracing parallel
applications more adapted to MPI applications using various communicators.

Exploring a trace file thus requires a tool designed for a particular trace for-
mat. For instance, OTF traces can be viewed with VAMPIR [10], TRIVA [12] dis-



An open-source tool-chain for performance analysis 3

plays PAJÉ traces, and the files generated with MPE can be visualized with JUMP-
SHOT [4]. TAU and SCALASCA embed their own trace file viewer. The lack of mul-
tiformat trace viewers forces users to switch from one system to another, depending
on the tracing tool in use. A complete tool-chain – from the application tracing to
the trace analyzer – able to manipulate several trace formats, would allow users to
use the most relevant format for each application to analyze.

3 Instrumenting applications with EZTRACE

EZTRACE [14] has been designed to provide a simple way to trace parallel appli-
cations. This framework relies on plugins in order to offer a generic way to ana-
lyze programs; depending on the application to analyze or on the point to focus on,
several modules can be loaded. EZTRACE provides pre-defined plugins that give
the ability to the user to analyze applications that use MPI libraries, OpenMP, or
Pthreads. However, user-defined plugins can also be loaded in order to analyze ap-
plication functions or custom libraries.

EZTRACE uses a two-phases mechanism for analyzing performance. During the
first phase that occurs while the application is executed, functions are intercepted
and events are recorded. After the execution of the application, the post-mortem
analysis phase is in charge of interpreting the recorded events. This two phase mech-
anism permits the library to separate the recording of a function call from its inter-
pretation. It thus allows the user to interpret a function call event in different ways
depending on the point he/she wants to focus on. It also reduces the overhead of
profiling a program; during the execution of the application, the analysis tool should
avoid performing time-consuming tasks such as computing statistics or interpreting
function calls.

3.1 Tracing the execution of an application

During the execution of the application, EZTRACE intercepts calls to the functions
specified by plugins and records events for each of them. Depending on the type of
functions, EZTRACE uses two different mechanisms for interception. The functions
defined in shared libraries can be overriden using LD_PRELOAD: When the EZ-
TRACE library is loaded, it retrieves the addresses of the functions to instrument.
When the application calls one of these functions, the version implemented in EZ-
TRACE is called. This function records events and calls the actual function. The
LD_PRELOAD mechanism cannot be used for functions defined in the application
since there is no symbol resolution. In that case, EZTRACE uses the DYNINST [2]
tool for instrumenting the program on the fly. Using DYNINST, EZTRACE modifies
the program to record events at the beginning and/or at the end of each function to
instrument.



4 K. COULOMB, A. DEGOMME, M. FAVERGE, and F. TRAHAY

For recording events, EZTRACE relies on the FXT library [5]. Each process being
instrumented by EZTRACE generates a trace file using FXT. In order to keep the
trace size as compact as possible, FXT records events in a binary format that contains
only the minimum amount of information: a timestamp, an event code and optional
parameters.

3.2 Instrumenting an application

Since EZTRACE uses a two-phases mechanism, plugins are organized in two parts:
the description of the functions to instrument, and the interpretation of each function
call. During the execution of the application, the first part of the plugin is in charge
of recording calls to a set of functions as described in Section 3.1. The second part
of the plugin is in charge of adding semantic to the trace. EZTRACE provides plug-
ins for major parallel programming libraries (MPI, OpenMP, PThread, etc) but also
allows user-defined plugins designed for custom libraries or applications. For exam-
ple, the PLASMA linear algebra library [1] is shipped with an EZTRACE plugin.

Fig. 1 Example of function instrumentation using the script language.� �
int submit_jobs(int nb_jobs) BEGIN ADD_VAR("Number of jobs",

nb_jobs)
CALL_FUNC EVENT("New jobs") END

void do_work() BEGIN RECORD_STATE("Working") END� �
In order to ease the creation of a plugin, we designed a compiler that generates

EZTRACE modules from a simple script file. As depicted in Figure 1, such a script
consists of a list of functions to instrument and the interpretation of each function.
In this example, when the function submit_jobs is called, EZTRACE increases
the value of a counter, calls the original function, and creates an event. A call to
do_work is represented as a change of the state in the output trace. This give the
possibility to the users to create easily new EZTRACE modules. Since the compiler
generates C files, advanced users can tune the created module to fit their needs.

4 Creating trace files with GTG

During the post mortem analysis phase, EZTRACE browses the recorded events and
interprets them. It can then generate statistics – such as the length of messages,
the duration of critical sections, etc. – or create a trace file for visualizing the ap-
plication behavior. For generating trace files, EZTRACE relies on the Generic Trace



An open-source tool-chain for performance analysis 5

Generator (GTG) library 1. GTG provides an abstract interface for recording traces.
This permits the application to use a single interface for creating traces in multiple
formats. Thus, an application can generate PAJÉ traces or OTF files without any
modification.

4.1 Overview of GTG

Although trace formats are different, most of them rely on the same structures and
provide similar functionalities as it is depicted in Figure 2. A set of hierarchical con-
tainers (1) represents processing entities such as processes, threads, or GPUs. These
containers have states (2) that depict events that start at time T1 and end at time T2
– the execution of a function, the processing of a computing kernel, a pending com-
munication, etc. – Some events (3) (sometimes defined as markers) are immediate
(i.e. T1 = T2), and can represent the release of a mutex, the submission of a job,
etc. Most trace formats also provide a way to track a counter (4) such as the to-
tal allocated memory, the number of pending jobs or the number of floating point
operations per second. In order to symbolize the interaction between containers,
trace formats often provide a link (5) feature: a couple of events that may happen on
different containers. This permits the viewer tool to represent for example: commu-
nications between processes, or signals between threads.

Fig. 2 Features commonly
provided by trace formats.

p
ro

ce
ss

 1

th
re

a
d
 1

th
re

a
d
 2

1

2

3

4

5

GTG provides a simple interface for manipulating these features. This interface
then calls one of the available modules depending on the output trace format.

1 Available under the CeCILL-C license at http://gtg.gforge.inria.fr/



6 K. COULOMB, A. DEGOMME, M. FAVERGE, and F. TRAHAY

4.2 Interaction between GTG and EZTRACE

Once EZTRACE is running along with the application, fxt traces are generated.
The second part of EZTRACE is based on GTG, and transforms the raw traces
to real meaningful traces. First a meaning is added (for example 42 represents an
MPI_Send request according to the MPI plugin). The semantic can represent links,
events, states, etc. The hierarchical structure of the generated trace is PAJÉ like, al-
thought OTF traces can also be generated. The containers can have states (’ This
thread is in this function’), notify events, or count relevant data (number of mes-
sages, memory used, number of jobs, etc). This step is based on the plugins (plugins
give different meaning to the symbols). Using the EZTRACE convert tool based on
GTG, one can add meaning, define containers, and describe what is happening in a
function.
Althought Pajé and OTF are both traces format, they have some differences. Thus,
adding a meaning to a raw fxt event is the critical part and the event must be inter-
preted in a way that is conformed to the output format choosen by the user. Other-
wise, the traces will not represent the data they should.

5 Analyzing trace files with VITE

The trace files generated by tools such as GTG or VAMPIRTRACE can be parsed for
extracting statistics – such as the average message size –, however, understanding
the behavior and the performance of an application requires a more convenient tool.
In this Section, we present VITE 2 – which stands for Visual Trace Explorer –, an
open-source multi-format trace visualizer.

5.1 A generic trace visualizer

Originally, the PAJÉ [8] trace visualizer was designed to analyze parallel applica-
tions using a simple yet generic trace format. The decline of PAJÉ led students to
design a new PAJÉ trace viewer. VITE was designed as a generic trace visualizer,
and additional trace formats such as OTF and TAU were added later. To manage
multiple formats, VITE relies on a module architecture as depicted in Figure 3.

A set of modules are in charge of parsing traces and filling the generic data struc-
ture. VITE implements parsers for several trace formats: OTF, PAJÉ, extended PAJÉ
(a multiple files PAJÉ format) and TAU formats. Filling the generic data structure is
a critical part of VITE: traces may have millions of events and their processing –
storing events, browsing through the event list, finding associated data, etc. – has to
be efficient. The last modules are in charge of rendering traces. Such a module uses

2 freely available at http://vite.gforge.inria.fr/



An open-source tool-chain for performance analysis 7

Fig. 3 Modules architecture
in VITE.

OpenGL SVG PNG

OTF Pajé TAUParsers

Generic Trace 
Model

Viewers

Core

the data structure to display the trace as requested by the user. A graphical interface
based on QT and OpenGL allows for user-friendly browsing of the trace. Additional
rendering modules generate SVG or PNG files depicting traces to easily export the
results.

Although trace formats are different in their design, most of them provide similar
functionalities. VITE implements a generic data structure and manipulates abstract
objects representing the different features defined by trace formats. This abstrac-
tion permits the developpers to easily implement additional parsers for new trace
formats, while rendering traces in a homogeneous way.

5.2 Displaying millions of events

VITE is able to display millions of items. To manage such performances, an
efficient data structure and a good rendering is needed. The data structure is based
on sorted binary trees, as depicted in Figure 4. Thanks to these trees, any element can
be accessed in logarithmic time and unneeded branches of the tree can be avoided.

The binary tree structure is also useful for rendering the trace. In order to avoid
creating millions of graphical elements, portions of the trace have to be summarized.
VITE uses a resolution parameter for eliminating the events that are too small to be
rendered: if a node and his father are too close, then the resolution will not be enough
for displaying them, and it is useless to keep on browsing all the nodes between the



8 K. COULOMB, A. DEGOMME, M. FAVERGE, and F. TRAHAY

Fig. 4 Example of sorted
binary tree representation of
events.

T=127.02ms

T=126.57ms T=127.34ms

T=127.12ms T=132.21msT=126.83msT=125.79ms

1

2

3

4

6

5 7

two (the subtree of the node on the same side as the father). For example, when
rendering the binary tree depicted in Figure 4 with a resolution of 1 ms, VITE
browses event # 4. It then handles # 2. Since the interval between events # 2 and # 4
is lower than the resolution (T#4 −T#2 < 1ms), event # 3 is not taken into account.
Event # 1 is then handled normally. Then, VITE processes event # 6. Event # 5 is
skipped since it is beneath the resolution (T#6 −T#4 < 1ms) and event # 7 is handled
normally. As a result, the number of elements to display, as well as the number of
nodes to browse, is limited increasing the rendering performance. If the user zooms
in, the resolution decreases and the same algorithm is used.

The rendering is also critical; OpenGL has been chosen after benchmarking sev-
eral solutions based on Qt, GTK, SDL, GNUStep and JAVA. Despite the fact that Qt
and GTK could provide a better and easier interaction with the trace, the OpenGL
engine, with our own mouse placement detection, appeared to be the most scalable
solution. Moreover, on some machines, OpenGL can benefit from hardware opti-
mization with the GPU.

6 Evaluation

When analyzing the performance of parallel applications that generate millions of
events, the performance of the analysis tool is important. The overhead of the in-
strumentation should be as low as possible, and the visualization tool should allow
a smooth browsing of the resulting trace. In this Section, we assess the performance
of EZTRACE. We evaluate the raw performance of the instrumentation mechanisms
used in EZTRACE on a synthetic benchmark as well as on application kernels.

The results of this evaluation were obtained on the CLUSTER0 platform. It is
composed of 32 nodes, each being equipped with two 2.2 GHz dual-core OPTERON
(2214HE) CPUs featuring 4 GB of memory. The nodes are running Linux 2.6.32 and
are interconnected through MYRINET MYRI-10G NICs. We compare EZTRACE
with VAMPIRTRACE in its 5.9 version.



An open-source tool-chain for performance analysis 9

6.1 Overhead of trace collection

In order to evaluate the raw overhead of program instrumentation, we use an MPI
ping pong program. We measure the latency obtained for 16-bytes messages. We in-
strument this program using the automatic (i.e. using LD_PRELOAD) and manual
(i.e. using DYNINST) mechanisms described in Section 3.1, then we compare the
overhead of using EZTRACE or VAMPIRTRACE to the performance obtained with-
out instrumentation. For VAMPIRTRACE, the automatic instrumentation is obtained
by using its MPI module. The manual instrumentation is obtained by inserting call
to VT_USER_START and VT_USER_END in the application.

Table 1 shows the results we obtained. Using VAMPIRTRACE automatic instru-
mentation degrades the latency by 1.1 µs while the manual instrumentation causes
an overhead of 700 ns. The difference is due to the fact that VAMPIRTRACE gen-
erates events at the entry and the exit of functions in both instrumentations, but it
also generates a SendMessage or ReceiveMessage event when the MPI module is
selected.

Instrumenting the application with EZTRACE causes an overhead of 700 ns for
both mechanisms. This is because EZTRACE records events at the entry and the
exit of functions for both manual and automatic modes. The SendMessage and Re-
ceiveMessage events are generated during the post mortem phase.

Table 1 Results of the 16-bytes latency test

Method Open MPI VampirTrace EZTrace
Automatic 4.99 µs 6.12 µs 5.68 µs
Manual 4.99 µs 5.71 µs 5.67 µs

6.2 NAS parallel benchmarks

In order to evaluate the overhead of EZTRACE on more realistic computing kernels,
we also measure its performance for NAS application kernels. The experiment was
carried out with 4 computing processes for Class A and 32 processes (or 36 for BT
and SP that require a square number of processes) for Class B. We instrument MPI
functions of these kernels with EZTRACE and VAMPIRTRACE automatic modules.

Table 2 summarizes the results we obtained. Since EZTRACE post mortem phase
crashes for the LU kernel for Class B, the number of events in the resulting OTF
trace is not reported. The results show that instrumenting these kernels with EZ-
TRACE or VAMPIRTRACE does not significantly affect the performance: variation
of the execution time is less than 2 %. This experiments also show that intensive
event recording kernels – such as MG or CG for Class B – do not suffer from the
overhead of the instrumentation.



10 K. COULOMB, A. DEGOMME, M. FAVERGE, and F. TRAHAY

Table 2 NAS Parallel Benchmark performance for Class A and B

Kernel Class # Processes OpenMPI VampirTrace EZTrace # Events / s
Execution (s) Overhead Execution (s) Overhead

BT A 4 70.57 70.58 0.01 % 70.39 -0.26 % 825
CG A 4 2.64 2.68 1.52 % 2.68 1.52 % 12 546
EP A 4 9.61 9.69 0.83 % 9.72 1.14 % 5
FT A 4 6.63 6.67 0.55 % 6.62 -0.20 % 22
IS A 4 0.63 0.64 2.13 % 0.62 -1.06 % 482
LU A 4 42.08 42.15 0.17 % 41.39 -1.64 % 12 282
MG A 4 5.04 5.06 0.46 % 5.07 0.66 % 2978
SP A 4 166.25 165.94 -0.18 % 166.32 0.04 % 696
BT B 36 26.08 25.83 -0.97 % 26.37 1.10 % 59 350
CG B 32 16.29 16.46 1.02 % 16.60 1.88 % 192 667
EP B 32 4.81 4.79 -0.42 % 4.76 -1.04 % 81
FT B 32 11.76 11.61 -1.30 % 11.55 -1.81 % 255
IS B 32 0.97 0.96 -1.03 % 0.96 -1.03 % 2 580
LU B 32 33.75 34.11 1.07 % 33.67 -0.24 % –
MG B 32 2.14 2.16 0.78 % 2.13 -0.62 % 215 515
SP B 36 51.18 51.98 1.57 % 52.07 1.75 % 59 922

7 Conclusion and future work

Programming a parallel application that efficiently exploits a supercomputer be-
comes more and more tedious due to the increasing complexity of hardware – mul-
ticore processors, NUMA architectures, GPGPUs, etc. – and the use of hybrid pro-
gramming models that mix MPI, OpenMP or CUDA. Tuning such an application
requires the programmer to precisely understand its behavior.

We proposed in this paper an open-source tool-chain for analyzing the perfor-
mance of modern parallel applications. This software suite is composed of EZ-
TRACE – a generic framework for instrumenting applications –, GTG – a tool
for generating traces in multiple formats –, and VITE – a trace visualizer that
supports several trace formats –. These tools were designed to provide an open-
source alternative to other performance analysis tools, while allowing interoperabil-
ity with other tools such as Vampir or TAU. The evaluation shows that this genericity
does not imply extra overheads since EZTRACE provides similar performance when
compared to VAMPIRTRACE.

In the future, we plan to study more precisely the performance of the whole soft-
ware suite and to improve it. Additional modules are to be developped in EZTRACE
in order to allow the analysis of programs running CUDA or OpenCL. We also plan
to improve EZTRACE performance analysis capabilities so that it can detect pro-
gramming or runtime issues such as network congestion or insufficient overlap of
communication and computation. Future work concerning GTG includes the sup-
port for other trace formats – such as TAU – and enhancing the API. We also plan
to merge VITE and TRIVA [12] projects. TRIVA is based on PAJÉ software and pro-
vides new ways of displaying information such as treemaps, or network graphs that



An open-source tool-chain for performance analysis 11

will benefit to ViTE. On the other side, TRIVA will benefit from the multi-format
parser and from the OpenGL display.

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H., Luszczek,
P., Tomov, S.: Numerical linear algebra on emerging architectures: The plasma and magma
projects. In: Journal of Physics: Conference Series, vol. 180, p. 012037. IOP Publishing (2009)

2. Buck, B., Hollingsworth, J.: An API for runtime code patching. International Journal of High
Performance Computing Applications 14(4), 317–329 (2000)

3. Caubet, J., Gimenez, J., Labarta, J., DeRose, L., Vetter, J.: A dynamic tracing mechanism for
performance analysis of OpenMP applications. OpenMP Shared Memory Parallel Program-
ming pp. 53–67 (2001)

4. Chan, A., Gropp, W., Lusk, E.: An efficient format for nearly constant-time access to arbitrary
time intervals in large trace files. Scientific Programming 16(2-3), 155–165 (2008)

5. Danjean, V., Namyst, R., Wacrenier, P.: An efficient multi-level trace toolkit for multi-threaded
applications. Euro-Par 2005 Parallel Processing pp. 166–175 (2005)

6. Decugis, S., Reix, T.: NPTL Stabilization Project. In: Linux Symposium, vol. 2, p. 111 (2005)
7. Geimer, M., Wolf, F., Wylie, B., Ábrahám, E., Becker, D., Mohr, B.: The scalasca performance

toolset architecture. Concurrency and Computation: Practice and Experience 22(6), 702–719
(2010)

8. de Kergommeaux, J., de Oliveira Stein, B.: Pajé: an extensible environment for visualizing
multi-threaded programs executions. In: Euro-Par 2000 Parallel Processing, pp. 133–140.
Springer (2000)

9. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.: Introducing the open trace format
(OTF). Computational Science–ICCS 2006 pp. 526–533 (2006)

10. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M., Nagel,
W.: The Vampir Performance Analysis Tool-Set. Tools for High Performance Computing pp.
139–155 (2008)

11. Muller, M., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.: Develop-
ing scalable applications with Vampir, VampirServer and VampirTrace. Proceedings of the
Minisymposium on Scalability and Usability of HPC Programming Tools at PARCO (2007)

12. Schnorr, L.M., Huard, G., Navaux, P.O.: Triva: Interactive 3d visualization for performance
analysis of parallel applications. Future Generation Computer Systems 26(3), 348 – 358
(2010)

13. Shende, S., Malony, A.: The TAU parallel performance system. International Journal of High
Performance Computing Applications 20(2), 287 (2006)

14. Trahay, F., Rue, F., Faverge, M., Ishikawa, Y., Namyst, R., Dongarra, J.: EZTrace: a generic
framework for performance analysis. In: IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid). Newport Beach, CA (2011)


