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a b s t r a c t

We highlight the trends leading to the increased appeal of using hybrid multicore + GPU
systems for high performance computing. We present a set of techniques that can be used
to develop efficient dense linear algebra algorithms for these systems. We illustrate the
main ideas with the development of a hybrid LU factorization algorithm where we split
the computation over a multicore and a graphics processor, and use particular techniques
to reduce the amount of pivoting and communication between the hybrid components.
This results in an efficient algorithm with balanced use of a multicore processor and a
graphics processor.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Computing technology is currently undergoing a transition driven by power and performance limitations that provide
more and more on-die x86 cores each year. The current standard is homogeneous quad-core chips and the development road
map indicates that 8, 16, and 32 core chips will follow in the coming years. There is widespread recognition that performance
improvement on CPU-based systems in the near future will come from the use of multicore platforms. On the other hand,
homogeneous x86-based multicore machines are not the only proposed way forward. IBM, for example, introduced its
own heterogeneous multicore architecture, the CELL Broadband Engine. Other innovative solutions include GPUs, FPGAs,
and ASICs. GPUs stand out in a unique way from all these innovative solutions because they are produced as commodity pro-
cessors and their floating point performance has significantly outpaced that of CPUs in recent years (see Fig. 1). Moreover,
GPUs have become easier to program, which allows developers to effectively exploit their computational power [38]. Cur-
rently, major chip manufacturers are developing next-generation microprocessor designs that integrate multicore CPU
and GPU components [18,31].

The problems and challenges for developers in this new and quickly changing computational landscape are daunting.
Many familiar and widely used algorithms for prior sequential CPUs need to be rethought and rewritten to take advantage
of the new, highly parallel heterogeneous CPUs [5,8]. In many cases the new algorithmic designs may well be hybrid, map-
ping algorithmic requirements to the strengths of each component of the heterogeneous CPU. The ultimate goal of our work
in this area is to develop a dense linear algebra (DLA) library similar to LAPACK [1] but for heterogeneous CPUs, starting with
current multicore + GPUs systems. The underlying design philosophy consists of representing algorithms as a collection of
BLAS-based tasks that are executed over the multicore and the GPU. This abstracts us from the specificities in programming
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a GPU. The approach presented in this paper relies on high performance BLAS implementations, which are available for cur-
rent multicores and GPUs (see Fig. 1). The main difference from previous work in the field [2,4,13,34,36] is that our approach
allows us to use the multicore hosting the GPU more efficiently, resulting in algorithms of higher performance.

This paper is organized as follows. Section 2 gives an overview of the use of GPUs for HPC and DLA in particular, along
with highlights on GPU’s evolution and future trends. Section 3 describes our approach for combining GPUs and multicores
in DLA algorithms. Section 4 presents a specific example, namely a hybrid LU factorization, which further illustrates the con-
cept of hybrid multicore + GPU computing for DLA. Finally, Section 5 gives conclusions and future directions.

2. GPUs for HPC

Driven by the demands of the gaming industry, graphics hardware has substantially evolved over the years to include
more functionality and programmability. This, combined with the impressive floating point performance of the graphics
cards, has enabled and motivated their use in applications well beyond graphics. In this section, we give an overview of
the GPU’s evolution over the years and its use in the area of dense linear algebra.

2.1. GPU evolution and future trends

The gaming industry and the large market that it enjoys have pushed GPUs over the years to excell in graphics rendering.
There are three computational characteristics of graphics rendering [24]. Namely, it

1. Requires enormous computational power,
2. Allows for high parallelism, and
3. Stresses more on high bandwidth than low latency, as latency requirements can be compensated for by the deep graphics

pipeline.

This pattern of computation is common with many other applications. Therefore, GPUs have benefited a large number of
applications, turning them into General Purpose GPUs (GPGPUs), as often referred to in the literature.

The need for additional computational power, accuracy, and ability to implement complex simulations has pushed the
GPUs development for higher speed, higher precision arithmetic, and more programmability. Currently, GPUs have reached
a theoretical peak performance of 1 TFlop/s in single precision, support fully the IEEE double precision arithmetic standard
[22], and have a programming model (e.g. see CUDA [23]) that may revive the prospects of getting high performance for little
coding efforts [16]. CUDA, as an architecture and programming language, is not only easy to use but has also added and ex-
posed to the user more hardware resources than what other languages and previous generation cards have offered. For
example, CUDA extends the previous vision that GPUs are going to evolve towards more powerful stream processors [28],

Fig. 1. Peak measured performances of matrix–matrix multiplications on current multicore (from Intel) and GPU (from NVIDIA) architectures.
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by providing not only the data parallelism inherent for stream processors, but also multi-threading parallelism. CUDA also
provides multiple levels of memory hierarchy, support for pointers, asynchronicity, etc [23]. These features have cemented
even further the important role of GPUs in today’s general purpose HPC [25,37,38]. With the introduction of CUDA, software
developers do not have to know about graphics in order to use GPUs for general purpose computing. As CUDA numerical
libraries become rapidly available, users may not even have to learn CUDA to benefit from the GPUs.

Over the years GPUs have moved ‘‘closer” to CPUs in terms of functionality and programmability. CPUs have also acquired
functionalities similar to that of GPUs. For example, Intel’s SSE and PowerPC’s AltiVec instructions offer a vector program-
ming model similar to GPUs’ (see the argument in [35] that modern GPUs should be viewed as multi-threaded multicore
vector units). Moreover, there are the AMD Fusion plans [18] to integrate a CPU and GPU on a single chip, and other hybrids
between multicore x86 and a GPU, e.g. Intel’s Larrabee system [31]. These trends make it more evident that future architec-
tures will be hybrid and will rely on the integration (in varying proportions) of homogeneous multicore and GPU type of
components.

2.2. GPUs for DLA

Due to the high ratio of floating point calculations to data required, many DLA algorithms have been of very high perfor-
mance (e.g., close to the machine’s peak) on standard CPU architectures. Older generation GPUs did not have memory hier-
archy and their performance exclusively relied on high bandwidth. Therefore, although there has been some work in the
field, the use of older GPUs has not led to significantly accelerated DLA. For example Fatahalian et al. [12] studied SGEMM
and their conclusion was that CPU implementations outperform most GPU implementations. Only the ATI X800XT produced
comparable results (close to 12 GFlop/s) with a 3 GHz Pentium 4. Similar results were produced by Galoppo et al. [14] on LU
factorization. Their results were, in general, outperformed by LAPACK routines using ATLAS on 3.4 GHz Pentium IV. Their
best result on LU with partial pivoting was approximately 5.7 GFlop/s on an NVIDIA 7800.

But this lack of acceleration has recently changed due to a combination of factors. First, GPUs have exponentially outp-
aced CPUs in performance. GPUs have been approximately doubling their performance every year vs. every year and a half
for CPUs. Second, GPUs have significantly outpaced CPUs in bandwidth/throughput, e.g., the GTX 280 has bandwidth of
141.7 GB/s, which is about an order of magnitude higher than current multi-socket multicore systems. Finally, by having
memory hierarchy the GPUs can be programmed for memory reuse and hence not rely exclusively on high bandwidth in
order to achieve a high percentage of their theoretical performance peak. A simple illustration about the impact on perfor-
mance of this combination of factors can be seen in Fig. 1 where we give the matrix-matrix multiplication performance of
two modern multicore processors and two GPUs. Note that in single precision, the GTX 280 is about 115 GFlop/s faster than
the quad-socket, quad-core Intel Xeon Tigerton (cores running at 2.4 GHz), and in double precision about 30 GFlop/s faster
than the dual-socket, quad-core Intel Xeon Harpertown (cores running 2.33 GHz).

The first CUDA GPU results that significantly outperformed standard CPUs on single precision DLA started appearing at
the beginning of 2008. To mention a few, in January, a poster by Volkov and Demmel [36] described an SGEMM kernel that
significantly outperformed the one released by NVIDIA in the CUBLAS library (125 GFlop/s in CUBLAS vs. more than 180
GFlop/s in their implementation in single precision). Moreover, the improved kernels were used in developing an LU factor-
ization running at up to 140 GFlop/s. In March, Tomov [32] presented at PPSC08 a Cholesky factorization running at up to 160
GFlop/s in single precision using Volkov’s sgemm kernel (later described in LAPACK Working Note 200 [2]). In May, Volkov
and Demmel [35] described LU, QR, and Cholesky factorizations running at up to 180 GFlop/s in single precision (with QR a
little bit more). The first results on a pre-released next-generation G90 NVIDIA card were presented at UGC2008 in May,
where Dongarra et al. [11] reported Cholesky running at up to 327 GFlop/s in single precision. Using again the newest gen-
eration card, in this paper, we describe an LU algorithm running at up to 388 GFlop/s in single precision and 99.4 Gflop/s in
double precision.

The first results just described form the general understanding on how to program DLA using CUDA. Namely, there are
three main ideas that define the approach:

1. Use BLAS-level parallelism, where the matrix resides on the GPU, and the CPU is running, for example, LAPACK-style code,
e.g., represented as a sequence of CUBLAS kernels, using the GPU pointer arithmetic,

2. Offload to the CPU small kernels that are inefficient for the GPU,
3. Use asynchronicity between CPU and GPU whenever possible in the offload/load process.

This is illustrated for Cholesky factorization (so called left-looking version) in Fig. 2 (the case reported in [11]). The matrix
to be factorized is allocated on the GPU memory and the code is as in LAPACK with BLAS calls replaced by CUBLAS, which
represents the first idea from the list above. As steps two and three of the algorithm are independent, and the Cholesky fac-
torization of matrix B (notations as on Fig. 2) would have been inefficient for the GPU (small problem of size 128 � 128 for
example, i.e. cannot have enough parallelism to utilize 240 cores GPU), B is offloaded and factorized on the CPU, which illus-
trates the second idea. Finally, steps 2 and 3 of the algorithm are done in parallel as calls to CUDA are asynchronous, namely
as the CPU calls cublasSgemm the execution continues (i.e., to SPOTRF, without waiting for the completion of cublasSgemm,
which illustrates the third idea). In addition to overlapping just the computation, for cards that support it, sending B to the
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CPU and moving the result back could be overlapped with the GPU computation (of cublasSgemm in this case) when asyn-
chronous copy calls are used.

3. DLA for hybrid multicore + GPU systems

3.1. Design philosophy

Whether designing DLA algorithms for multicores or GPUs, the requirements for efficient execution are the same, namely
algorithms should be of high parallelism and reduced communication to mask slow memory speeds. When we combine the
two architectures, algorithms should also be properly hybridized. This means that the work load should be balanced through-
out the execution, and the work scheduling/mapping should ensure matching of architectural strengths to algorithmic
requirements.

Elements of hybridization can be seen in previous work on DLA for GPUs. Namely, while developing LAPACK-style one-
sided matrix factorizations for GPUs, several groups [2,4,36] observed that the panel factorizations are often faster on the
CPU than on the GPU (the approach described in Section 2.2), which led to the development of highly efficient factorizations
[11,29,34] where a single CPU core is used to control the GPU and to factor the panels. In contrast to this previous work, the
importance here is on developing algorithms that will efficiently use both a multicore and a GPU. We note that the early
work did not use available cores of the multicore hosting the GPU. In the case of LU and QR factorizations, only one core
is used to factor the panel and, because the panel factorization is bandwidth limited, the core used is able to largely saturate
the bus of a multi-socket multicore system. This is important because it shows that modifications to those algorithms by just
scheduling work to the available multicore would not be the optimal solution [7,30].

Another approach is to hybridize BLAS and leave the LAPACK code almost untouched. Using this approach, Fatica [13]
developed hybrid DGEMM and DTRSM for multicore + GPU (and GPU-enhanced clusters) and used them to accelerate the
LINPACK benchmark. BLAS level parallelism has limitations for multicore use [7] as well as hybrid systems (experiments
are showing BLAS-level parallelism being up to 2–3� slower).

Our approach – based on hybridization of LAPACK – extends the previous work to overcome the shortcomings related to
multicore use. We describe it in Section 3.2. We also address the issue of designing algorithms recently referred to as com-
munication reducing/minimizing/avoiding/optimal algorithms [3,9,15]. This is a difficult problem and is a subject of current
research in the field of DLA. A classic example is the transition from algorithms based on optimized Level 1 BLAS (from the
LINPACK and EISPACK libraries) to algorithms that use block matrix operations in their innermost loops, which actually
formed LAPACK’s design philosophy. Current examples include work on LU and QR factorizations, in particular in the so
called tiled [7] and communication avoiding [9,15] algorithms. We developed a hybrid LU algorithm, described in Section
4, that is yet another example of a communication-optimal algorithm.

3.2. Hybridization of LAPACK

Our design philosophy is the hybridization of LAPACK:

� Represent LAPACK algorithms as a collection of BLAS-based tasks and dependencies among them (described in Section
3.2.1),

� Properly schedule the (BLAS-based) tasks execution over the multicore and the GPU (described in Section 3.2.2).

Fig. 2. Left looking Cholesky factorization: implementation (Left) and performance running the algorithm on an NVIDIA T10P and NVIDIA Quadro FX 5600
(Right) in single precision arithmetic.
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This approach allows us to reuse parts of LAPACK in a systematic way, and moreover, abstracts us from the specificities in
programming a GPU. We have applied it successfully for both one and two-sided matrix factorizations.

3.2.1. Task splitting
A fundamental concept in programming current parallel architectures is the flexible control over the data and execution

flow. Algorithms and their execution flows can be represented as Directed Acyclic Graphs (DAGs), where nodes represent the
tasks and the edges the dependencies among them. Fig. 3 gives a typical example of how a DLA algorithm may look like when
represented as a DAG. The nodes in red in this case represent the sequential part of the algorithm and the ones in green the
tasks that can be performed in parallel. Ideally the scheduling should be asynchronous and dynamic, so that the tasks in red
are overlapped with the tasks in green, without violating any dependency. This can be done by defining a ‘‘critical path”,
which is the most time-consuming sequence of basic operations that must be carried out sequentially even allowing for
all possible parallelism and scheduling for execution the tasks from the critical path as soon as possible (i.e., when all depen-
dencies have been computed).

The concept of representing algorithms and their execution flows as DAGs is used in the context of developing DLA for
multicores [5]. Similarly to multicore, we can apply the DAGs concept to the hybrid case. One of the differences is the task
granularity. For multicores small tasks work well [7]. For GPUs a task would be one GPU kernel invocation. Therefore, in or-
der to efficiently execute it, e.g. on the 240 processing elements of the GTX 280 GPU, we need the task to be larger than in the
multicore case (as shown in Fig. 3, right). Tasks from the critical path can be smaller and in general executed on the GPU’s
host.

Note that splitting LAPACK code into tasks is easy, because one has to only split the underlying BLAS calls. A challenge is
what to be the granularity of the tasks. A solution that we employ in our codes it to parameterize the granularity and tune it
empirically [21].

3.2.2. Task scheduling
The tasks scheduling is of crucial importance for the efficient execution of an algorithm. Proper scheduling, for example

scheduling tasks from the critical path to be executed as soon as possible, results in techniques that have been used in the
past. In particular these are the ‘‘look-ahead” techniques that have been extensively applied to the LU factorization. Such
methods can be used to remedy the problem of synchronizations introduced by non-parallelizable tasks by overlapping their
execution with the execution of more efficient ones [10]. It has been applied also in the context of GPUs in [35] as well as
here. See Fig. 3, right, where if we overlap the execution of the 2 circled tasks on the critical path (by the host), with the
execution of the green tasks circled and marked GPU (by the GPU), we get a hybrid version of the look-ahead technique.

Another aspect of the scheduling, besides the order mentioned above, is where to schedule tasks – on the multicore or the
GPU. Currently we do this type of scheduling statically. We use the multicore for tasks on the critical path because they are in
general small and may have conditional statements. The LU example below demonstrates this for the one-sided factoriza-
tions. The hybrid Hessenberg reduction algorithm [33] demonstrates this for the two-sided factorizations. The case of Hes-
senberg reduction is particularly interesting because it cannot be accelerated on multicore alone. Using multicore + GPU
though, and applying the approach descried here, we can achieve up to 16� performance acceleration compared to just
its multicore performance [33]. The panel factorization for the Hessenberg reduction is mostly scheduled on the multicore
except for a large Level 2 BLAS part of it, which is bandwidth limited and therefore is scheduled on the GPU to use its high
bandwidth.

Fig. 3. Algorithms as DAGs.
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4. An example of DLA algorithms for hybrid systems

To further motivate and illustrate the main ideas on the hybrid multicore + GPU approach for DLA, we give an example of
an algorithm for hybrid systems along with its performance results.

4.1. An LU factorization design for hybrid multicore + GPU systems

We consider a right looking block LU factorization and design an algorithm for hybrid multicore + GPU systems. The ap-
proach is based on splitting the computation as shown in Fig. 4. The numbers are under the assumption that the host has 8
cores, which is the case for our test system. Having an N�N matrix, the splitting is such that the first N – 7 NB columns reside
on the GPU memory and the last 7 NB on the host where NB is the algorithm’s block size [1]. The value of NB is determined
empirically. The tuned NB values corresponding to different matrix sizes N are given in Section 4.3.

A description of the hybrid algorithm is given as follows:

1. Current panel is downloaded to the CPU. For example the dark blue part of the matrix of NB columns is the panel for the
first iteration.

2. The panel is factored on the CPU and the result is sent back to the GPU to update the trailing sub-matrix (colored in red for
the first iteration).

3. The GPU updates the first NB columns (next panel) of the trailing matrix, the updated panel is sent to the CPU and asyn-
chronously factored on the CPU while the GPU updates the rest of the matrix (note that this is the look-ahead technique
described in Section 3.2.2).

4. The rest of the host cores (7 in this case) update the last 7 NB columns (one core per block of NB columns).
5. There is a synchronization between the 7 cores and the 1 core + 1 GPU after the LU factorization of the sub-matrix colored

in red (and the corresponding updates of the trailing matrix). At this point, based on N and NB, we determine empirically
what hardware to use in factoring the trailing 7 NB � 7 NB matrix. Choices are multicore + GPU (with block size tuned for
matrix of size 7 NB), 1 core + GPU, or multicore.

This algorithm is general enough to be applicable to many forms of LU factorizations, where the distinction can be made
based on the form of pivoting that they employ.

4.2. The issue of pivoting in LU factorizations

Pivoting is a well-known technique to ensure stability in matrix algorithms. In particular, the commonly used method of
Gaussian elimination (GE) with partial pivoting (PP) is implemented in current linear algebra libraries for solving square lin-
ear systems Ax ¼ b, resulting in reliable algorithms. In the LAPACK [1] implementation of GE, rows are swapped at once dur-
ing pivoting, which inhibits the exploitation of more asynchronicity between block operations.

Reference [15] describes a pivoting strategy that minimizes the number of messages exchanged during the panel factor-
ization and demonstrates that this approach is stable in practice. For multicore, pairwise pivoting (PwP) is often considered

Fig. 4. Load splitting for a hybrid LU factorization.
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(e.g., in [7]) but this generates a significant overhead since the rows are swapped in pairs of blocks. Still for multi-threaded
architectures, [30] describes an algorithm by blocks for LU factorization that uses a pivoting technique referred to as incre-
mental pivoting based on principles used for out-of-core solvers.

For implementation of PP LU on GPUs, [35] designs an algorithm using innovative data structures where storing the ma-
trix in row-major layout helps in reducing the pivoting overhead from 56% of the total factorization time to 1–10% (depend-
ing on the machine and on the problem size).

In the following, we show the performance of our hybrid design using an extension of the technique proposed in [2].
Briefly, the approach in [2] follows the idea of [26,27] to transform the original matrix into a matrix that would be suffi-
ciently ‘‘random” so that, with probability close to 1, pivoting is not needed. These transformations are, in general, chosen
as unitary because they are numerically stable and they keep the condition number of the matrix unchanged (when using
the 2-norm). The random transformation proposed in [27] is based on the Discrete Fourier Transform and the transformation
proposed in [26] is referred to as Random Butterfly Transformation (RBT), which consists of preconditioning a given matrix
using particular random matrices referred to as butterfly matrices or products of them. We will refer to the resulting method
as RBT NP LU. The easiest way to think of the method is as performing LU with no pivoting (NP) on a preconditioned matrix,
where the cost of preconditioning is negligible compared to the cost of the factorization itself.

Similarly to the Cholesky factorization, where no pivoting is required for symmetric and positive definite matrices, the NP
LU can be of direct use for diagonally dominant matrices, as this case does not require pivoting. For general matrices, the RBT
transformation helps but in general the accuracy is reduced and requires adding iterative refinement in the working preci-
sion (see [2] where solutions of linear systems using PP LU, RBT NP LU and QR are compared for some matrices from Hig-
ham’s collection [17]). Another technique to improve the stability is to add ‘‘limited” pivoting (LP). By limited pivoting
we mean that the search for pivots will not be the entire panel as in PP LU, but will be limited to the first few rows of
the panel, e.g., NB rows or NB + 64. In Fig. 5, we compare, for different sizes of random matrices, the error in the LU factor-
ization expressed by the relative error kPA� LUk2=kAk2. This error is plotted for the following algorithms: partial pivoting (PP
LU), limited pivoting (RBT LP LU), and no pivoting (RBT NP LU; for this case we mention the maximum and minimum values
obtained for a sample of matrices). PP LU is the LU factorization as it is implemented in LAPACK. The accuracy of RBT LP LU is
computed when pivoting within the first NB rows and within the first NB + 64 rows of the panel (or less if this exceeds the
rows in the panel). RBT LP LU(NB + invert) corresponds to the case where we pivot within the first NB rows; the obtained L
factor is explicitly inverted and the inverse is used in updating the trailing sub-matrix on the right of the current block. Note
that the computational cost of adding limited pivoting is affordable because it does not change the Level 3 BLAS nature of the
current implementation (performance results are given in the next section).

4.3. Performance and numerical results

Here we give the performance of our implementation of the RBT LP LU algorithm and put it in the context of other LU
factorizations and their performances. The performance results are for NVIDIA’s GeForce GTX 280 GPU and its multicore host,
a dual-socket quad-core Intel Xeon running at 2.33 GHz. On the multicore we use LAPACK and BLAS from MKL 10.0 and on
the GPU CUBLAS 2.1. To compile we use gcc version 4.1.2. The parameter NB is tuned empirically [21]. In particular, for dou-
ble precision arithmetic for matrices of size up to 1024, we use NB = 64, for matrices from 1024 to 4096 we use NB = 128, and
for larger we use NB = 256. For single precision arithmetic for matrices of size up to 4032, we use NB = 64, from 4032 to 8064

Fig. 5. Accuracy of double precision LU factorizations on random matrices.
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we use NB = 128, from 8064 to 9984 we use NB = 192, and for larger we use NB = 256. For this particular algorithm the work
done by the core processing the panels is proportional to the work for the other cores as they all perform Level 3 BLAS oper-
ations on NB columns of the same length. This ensures load balance among the cores. The trailing 7 NB � 7 NB matrix from
item 5 of the algorithm (in Section 4.1) is factored using 1 core + GPU with new block size equal to NB divided by 2. Fig. 6
shows the performance results. On the left we have the performance for single precision arithmetic and on the right for dou-
ble precision. The algorithm denoted by ‘RBT LP LU’ is performing local pivoting within the block size and uses explicitly in-
verted lower triangular matrices resulting from the panel factorization to update the trailing matrix (as suggested in [35] for
performance reasons). All the pivoting is done on the CPU. The pivoting and the following update on the submatrix on the
right of the diagonal is replaced by flipping the corresponding rows of the explicitly inverted lower triangular matrix from
the panel factorization (done on the CPU) and multiplying it by the rectangular submatrix on the right of the current block.

Both graphs show performances on a multicore and on a multicore enhanced with a GPU. The multicore performance is
for a pairwise pivoting LU algorithm from the PLASMA library [7]. In both cases the host is an Intel Xeon Harpertown with
GEMM performance as shown on Fig. 1.

Compared to V. Volkov’s single precision PP LU, our RBT LP LU code runs from 17 Gflop/s (for small matrices) to 82 Gflop/s
faster on the platform under consideration. Overall this is about 28% faster.

As already mentioned, one of the techniques to improve the accuracy consists in adding limited pivoting. Another pos-
sibility is to add iterative refinement in the working precision. The cost of adding it can also be reduced by having explicitly
available triangular matrix inverses that are byproducts of the factorization. For example, we developed blocked CUDA
STRSV-like and DTRSV-like routines [19] that replace triangular solves (within the block) with matrix multiplication to
get a corresponding performance of up to 14 GFlop/s (for matrix of size 14,000) and 6.7 GFlop/s (for matrix of size 7000).
Note that just using cublasStrsm or cublasDtrsm, the performance would be, respectively, 0.24 GFlop/s and 0.09 GFlop/s.
And then the cost of iterating refinement will not be negligible compared to the cost of the factorization (cublasStrsv and
cublasDtrsv are about 5 times faster but the matrix size should not exceed, respectively, 4070 and 2040). We note that
the new routines can be used for mixed-precision iterative refinement solvers [6,20] as well, where performing iterative
refinement on the GPU has a negligible cost compared to that of the factorization itself.

5. Conclusions and future directions

Major chip manufacturers are developing future next-generation microprocessors that are heterogeneous, integrating
multicore CPU and GPU components. In order to fully exploit these architectures, software designers would need to use both
of their GPU and CPU multicore components. We presented a new approach for developing efficient DLA algorithms on hy-
brid multicore + CPU architectures and we illustrated this technique with a hybrid LU factorization. Besides its hybridization,
this new LU algorithm is of interest by itself, as it reduces the amount of pivoting (to an asymptotic minimum) while main-
taining accuracy comparable to the accuracy of LU with partial pivoting. This paper is a first step in describing an example for
the benefits of hybrid systems for DLA, motivating future work for creating a self contained DLA library similar in function-
ality to LAPACK but for hybrid architectures.
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