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Abstract—The GridRPC model is well suited for high per-
formance computing on grids thanks to efficiently solving most
of the issues raised by geographically and administratively split
resources. Because of large scale, long range networks and
heterogeneity, Grids are extremely prone to failures. GridRPC
middleware are usually managing failures by using 1) TCP or
other link network layer provided failure detector, 2) automatic
checkpoints of sequential jobs and 3) a centralized stable agent
to perform scheduling. Most recent developments have provided
some new mechanisms like the optimal Chandra & Toueg
& Aguillera failure detector, most numerical libraries now
providing their own optimized checkpoint routine and distributed
scheduling GridRPC architectures. In this paper we aim at
adapting to these novelties by providing the first implementation
and evaluation in a grid system of the optimal fault detector,
a novel and simple checkpoint API allowing to manage both
service provided checkpoint and automatic checkpoint (even for
parallel services) and a scheduling hierarchy recovery algorithm
tolerating several simultaneous failures. All those mechanisms
are implemented and evaluated on a real grid in the DIET
middleware.

Index Terms—GridRPC, Fault tolerant, Failure detector,
Checkpoint, Distributed algorithm.

I. INTRODUCTION

Because grids are gathering a wide variety of computing,
storage, and network resources, coming from several geo-
graphically distributed sites, it is especially challenging to use
those platforms for high performance computing applications.
Among existing computing models over a grid, one simple,
powerful, and flexible approach consists in using servers
available in different administrative domains through the clas-
sical client-server or Remote Procedure Call (RPC) paradigm.
Network Enabled Servers (NES) [1], [2], [3] is a family
of middleware implementing the GridRPC [4] API. Clients
submit computation requests to a scheduler whose goal is to
find a server available running a given computation service
over the grid. Scheduling is frequently applied to balance the
work among servers and a list of available servers is sent back
to the client; the clients are then able to send the data and the
request to one of the suggested servers to solve their problem.

Another challenging issue in grids is reliability: when the
number of components of an architecture increases, the mean
time between failures (MTBF) decreases accordingly; grids
are by nature gathering more resources than clusters. Hetero-
geneous components of a grid are even more prone to failure
because of mixed flavors of hardware or slight differences

of implementations in interoperating software from different
suppliers or operating systems. Moreover grids are using long
range networks where packet loss are common. Intermediate
routing peers may also introduce unexpected slowdown on
message speed. As a consequence, failures are not uncommon
events anymore and production deployments have been facing
unreliability issues [5]. This strengthen the need for a grid
convenient management of failures for any NES middleware
focusing on large scale platforms. The usual way to deal with
failure in NES systems is to rely on the transport layer (like
TCP) to detect failures of peers. Then, the corrective action is
whether to reschedule the lost tasks; whether, for the most
advanced ones, to restart from checkpoint to decrease the
amount of lost computation. Because the grid infrastructure
is usually centralized, nothing is done to cope with failures of
the scheduler.

All of those three aspects needs to be improved to address
the challenges raised by modern grids. 1) In grids, relying
on TCP heartbeats leads to long failure detection time (hours
timeouts) and poor accuracy, which in turns leads to low
throughput in an unreliable environment. 2) Many grid services
are bindings of well-known numerical library: a single call to
a routine might trigger a full scale parallel job (ScaLAPACK
is an example). Some libraries provide their own optimized
checkpoint routine; still NES have to preclude loss of recovery
data with the service resource. Middleware proposing check-
points could only manage sequential jobs so far, raising the
need for a simple yet flexible checkpoint interface to manage
all of those techniques. 3) Recent developments in GridRPC
systems have demonstrated the major performance improve-
ment of using a distributed scheduling architecture instead
of a centralized scheduler [6]. The DIET [3] project is the
first NES middleware proposing a scalable architecture based
on several hierarchies of agents. Recovering this architecture
requires a distributed fault tolerant algorithm between the
agents.

In this paper we describe and evaluate experimentally in
DIET three fault tolerant mechanisms intended to solve those
issues. We present the first implementation and evaluation in
a grid of the Chandra & Toueg & Aguilera [7] optimal failure
detector. Then we design a novel checkpoint interface between
the NES and the gridRPC middleware, providing automatic
checkpoint to non fault tolerant aware services (even parallel
ones) and reliable distributed grid storage of recovery data



to self checkpointing ones. Last we propose and evaluate a
distributed recovery algorithm rebuilding the scheduling agent
hierarchy when several failures can occur simultaneously.

The rest of this paper is organized as follows. The next sec-
tion discuss the basics of a gridRPC middleware by depicting
the architecture of DIET as an example. Then related works
section outlines the originality of our proposed mechanisms.
The third section presents the novel checkpoint API and
how it can manage automatic checkpoint of parallel services.
Then the next section defines the distributed algorithm for
scheduling hierarchy recovery. Sixth section gives an overview
of the failure detector algorithm used in DIET. Seventh
section presents experimental evaluation of those mechanisms
outlining their efficiency in a real grid deployment. Last we
conclude and discuss future works.

II. THE GRIDRPC CONTEXT: THE DIET EXAMPLE

The aim of a GridRPC middleware is to provide a toolbox
that will allow different applications to be ported efficiently
over the Grid and ease access to distributed and heterogeneous
resources. Several middleware have been developed to fulfill
those requirements; the architecture of every NES system
relies on three main entities: the servers offering computational
services to the grid, the clients using the grid to solve their
problems, and the infrastructure nodes matching the client
needs and the services offered by computing resources. DIET
is a good example of a production quality NES software as it
shares this basic architecture but also includes state of the art
distributed scheduling architecture. In this section we describe
the DIET architecture to better understand the fault tolerant
requirement induced by every GridRPC middleware.

A Client is an application that uses DIET to solve problems
using an RPC approach. Users can access DIET via different
kinds of client interfaces: web portals, PSEs such as Scilab, or
from programs written in C or C++. A SeD, or server daemon,
provides the interface to computational servers and can offer
any number of application specific computational services.
A SeD can serve as the interface and execution mechanism
for a stand-alone interactive machine, or it can serve as the
interface to a parallel supercomputer by providing submission
services to a batch scheduler. All the DIET entities use Corba
to communicate.

Agents provide higher-level services such as scheduling
and data management. These services are made scalable by
distributing them across a hierarchy of agents composed of a
single Master Agent (MA) and several Local Agents (LA)
as shown in Figure 1. In order to access DIET scheduling
services, clients only need a string-based name for the MA
(e.g. ”MA1”) they wish to access; this MA name is matched
with a Corba identifier object via a standard Corba naming
service. Clients submit requests for a specific computational
service to the MA. The MA then forwards the request in the
DIET hierarchy and the child agents, if any exist, forward
the request downward until the request reaches the SeDs.
The SeDs then evaluate their own capacity to perform the
requested service; capacity can be measured in a variety of
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Fig. 1. DIET hierarchical organization.

ways including an application-specific performance prediction,
general server load, or local availability of data-sets specif-
ically needed by the application. The SeDs forward their
responses back up the agent hierarchy. The agents perform
a distributed collation and reduction of server responses until
finally the MA returns to the client a list of possible server
choices sorted using an objective function (computation cost,
communication cost, machine load, . . . ). The client program
may then submit the request directly to any of the proposed
servers, though typically the first server will be preferred as it
is predicted to be the most appropriate server.

This architecture emphasis why we need to focus on two
aspects. Clients can be restarted from an external process and
results hold back until the restarted client collect them. Con-
versely without architecture recovery, resources disconnected
from the MA are never used by the scheduler and the platform
throughput reduced. Without SeD recovery, large amount
of time is lost recomputing several time the same service.
Because those two procedures are triggered by detection of
failed processes, a fast failure detector is a requirement to any
efficient recovery.

III. RELATED WORKS

A first approach to service recovery in RPC-like systems is
simple resubmission of lost jobs. Unfortunately this leads to
lose lot of elapsed computation time. Some global computing
platforms like SETI and BOINC [8] use process replication
to recover from computing resources crash. In replication, the
same job is running on several hosts and an atomic broadcast
based protocol ensures consistency of replicas. When a failure
hits some processes, the recovery procedure is to rebuild new
replicas. Because of the voluntary social model of the global
computing platform, overall available computing power far
oversize the application needs and replication comes at no cost.
However resources cannot be trusted; therefore the inherent
detection of process corruption provided by replication is
very appealing. Back in a classical grid system, compared to
checkpoint, replication would divide the available computing



power by the replication factor and induce a several order of
magnitude performance decrease in realistic deployments.

Checkpoint based approach has already been used in
Ninf [9]. The Condor Standalone Checkpoint Library is used
to build sequential process snapshot. Checkpoints are stored
on a stable centralized checkpoint server holding all recovery
data. Compared to our distributed approach, this checkpoint
server is a potential performance bottleneck and a single point
of failure. NETSOLVE [10] address this issue by replicating
checkpoint data in computing nodes volatile memory. Our
distributed mechanism spares the scarce and performance
crucial memory by using disk space to hold checkpoint data.
To our knowledge our checkpoint approach is the only one
able to manage service provided checkpoint and automatic
checkpoint of parallel services.

DIET is the only NES with distributed architecture. Thus
we provide the only implementation and evaluation of a
distributed recovery algorithm for hierarchical scheduling.

With failure detectors used in other gridRPC systems, even
with hours timeouts, production deployments still experience
large amount of false detections. The failure detector im-
plemented in DIET detects failures faster and can adapt
the network overhead it produces on the fly accordingly to
detected message loss probability and average delay. Because
this is the first implementation of this detector in a NES system
we are providing the first performance evaluation in a real
grid.

IV. BACKING UP SERVICE PROGRESS

Failures hitting computing resources have a larger impact
on application performance compared to those affecting infras-
tructure. This is mainly due to the large amount of lost com-
putation time when using large grain RPC [11]. Checkpoint is
an efficient mechanism to avoid restarting crashed jobs from
the beginning. An efficient grid checkpoint mechanism has to
be able to manage, automatic, service provided, and parallel
checkpoints. Recovery data must be preserved in some grid-
wise persistent storage to preclude their disappearance with
failed services.

A. Automatic checkpoint of sequential jobs

There is various checkpoint libraries creating a full disk
image of a process, like the Condor Standalone Checkpoint
Library (CSCL) [12] or the Berkeley Lab Checkpoint/Restart
(BLCR) [13]. They dump to a file the complete process
memory, stack and processor registers; this image can be
restarted on any similar architecture. Service code does not
need to be modified to integrate fault tolerance, it only has to
be linked with the checkpoint library. Therefore it is efficient
at reducing software development cost, which is an important
issue in grid exploitation. In DIET we currently use CSCL
but plan to migrate to BLCR soon.

B. Storing recovery data in a persistent storage

Recovery data such as checkpoints are useful only if they
are still available after failure. This can be achieved by 1)

using a centralized, stable, checkpoint server, holding all the
recovery data or 2) distributing several replicas of the recovery
data on the computing nodes themselves. We use the second
approach as it is more scalable and does not have a single
point of failure.

JUXMEM [14] is a grid data sharing software addressing
the issue of persistence across failures. Data are replicated
on several hosts to ensure that some copies still exists when
failures occur on the repositories. In DIET, all the SeD created
recovery data are transferred on the fly in the JUXMEM
distributed data storage.

C. Rescheduling failed jobs

The client is in charge of most service recovery tasks: it
monitors the services running the RPC it has initiated and
reschedules the failed ones as soon as possible. The client
management of failures is embedded in the RPC mapping
layer of the grid library and is processed without client code
interaction. The fault tolerance is always automatic from the
client point of view, independently of the selected checkpoint
technique for services.

Technically, in DIET, when a client initiates a new RPC,
the gridRPC library first contacts the Master Agent to get
some matching computing resource. It submits the RPC and
observes the selected SeD using a fault detector. Each time the
SeD has completed a new checkpoint, it sends the JUXMEM
data identifier to the client yet checkpoint data itself never
goes to the client. When the client library detects a failure, it
requests a new SeD to the MA and the RPC is restarted from
the last checkpoint.

D. Common interface for automatic, parallel, and service
provided checkpoint

Common point between all the checkpoint techniques is that
they generate files. However, in service provided checkpoint,
the grid middleware is not in charge of generating checkpoints.
The service itself provides a suitable and more efficient check-
point routine. Still the checkpoint data needs to be preserved
in the persistent storage. The same holds for parallel services.
This leads a generic checkpoint service to have a file centric
approach; providing a convenient procedure for the service to
register any files to be included in the recovery data set, and
to notify when those data are ready. In DIET, the checkpoint
interface includes four functions:

• DietCkpt_RegisterFile: this function allows a
service provided checkpoint mechanism to point out any
data required to recover from failure. This function may
also be used to embed shell scripts suitable for restarting
the failed process.

• DietCkpt_Notify: this function is called by the ser-
vice provided checkpoint mechanism when local check-
point data pointed by the previous function has been
successfully updated. All registered files are merged into
a service checkpoint and transferred to the persistent data
storage.



• DietCkpt_CkptNow: This is basically a convenience
function build on top of the two previous to provide semi-
automatic checkpoint. It lets a service self-checkpoint
immediately, using the Condor checkpoint library. The
application decides when it is wise to take a checkpoint
but do not need to manage how.

• DietCkpt_Automatic: this function initializes a
timer to trigger periodically the DietCkpt_CkptKnow.
This provides fully automatic checkpoint.

E. Automatic checkpoint of parallel jobs

A grid service can also be a front-end to a parallel appli-
cation. The ScaLAPACK library is a good example: a single
function actually starts a fully distributed application using the
Message Passing Interface (MPI) to manage communications
between processes. It is out of the scope of a grid middleware
to manage internal processes and communications of the ser-
vice, thus distributed processes not providing their own routine
to build a coherent -recoverable- set of process checkpoints
cannot be restarted.

Hopefully, some efforts have been developed in MPI li-
braries to provide automatic fault tolerance; among them
MPICH-V [15] is able to build a coherent checkpoint recovery
set from any MPI application. Using the interface proposed
in previous paragraph, we designed a SeD capable of inter-
acting with MPICH-V. The SeD builds a configuration file
emplacing MPICH-V’s checkpoint server on its own host;
the MPI job is then started as usual. During execution, the
SeD controls the checkpoint pace trough a socket connexion
with MPICH-V’s checkpoint scheduler. Because checkpoint
server is located on the same node, checkpoint files are always
locally available to the SeD and are registered for duplication
using the DietCkpt_RegisterFile function. Thanks to
this original cooperation between grid and MPI fault tolerant
middleware, any MPI parallel service can be managed by
DIET.

V. AGENTS TOPOLOGY RECOVERY

The main task of a gridRPC system is to establish a
relationship between clients submitting jobs and computing
resources. Distributing the scheduling algorithm on a tree
hierarchy allows to reach better performance than using a
centralized scheduler [16]. However when some sub-trees are
disconnected from the architecture by failures, all computing
resources they manage become unavailable to clients and
the computing throughput is reduced. A distributed algorithm
among agents can help to rebuild a connected architecture.

A. Model

The distributed scheduling architecture is a never-ending
service. Therefore we propose to use a model similar to self-
stabilization [17]. A program is self-stabilizing if 1) starting
from any arbitrary initial state (a failure), it eventually reaches
a legitimate global state and 2) from any legitimate global state
the program execution leads to reach only a legitimate state. In
other words the property “the program is in a legitimate state”

is stable and eventually true. Although self-stabilization is
achievable as soon as a long enough failure free period occurs,
no process in the system can ever know whether the system
has self-stabilized, and during recovery some properties of the
program may be false.

We restrict this model by considering the following stronger
hypothesis: the network is pseudo-synchronous and the only
type of failures are process crash and definitive link shutdown.
Transient network failures such as message loss or message
modification are supposed to be addressed at a lower -hardware
or software- network level. Non reachable agents due to net-
work failures are considered as failed. These strong hypothesis
have two main consequences: failed agents can be detected,
but we cannot assume arbitrary initial state.

B. Tree rebuild Algorithm

The basic idea of the algorithm is to reconnect the tree
by keeping a list of ancestors on each agent. When an agent
detects the death of its father, it tries to reconnect to some
ancestor upper in the hierarchy. If too many agents fail at
the same time, an agent could know only failed ancestors.
This vulnerability period is the consequence of restraining the
recoverable initial states.

1) Definition: legitimate global state. A legitimate global
state of the algorithm is a state where all non failed
agents are organized on a tree topology and each knows
at least f ancestors or an entire path up to the root.

2) Definition: recoverable initial state. A recoverable
initial state of the algorithm is a state were all non failed
agents are organized on a forest topology and knows at
least one non-failed agent. An eventually reliable oracle
locating the root exists.

Every agent except the root is running the algorithm pre-
sented in Figure 2. When detecting the failure of its parent,
the agent tries to reconnect to the nearest (in the tree) alive
ancestor. If this ancestor has also failed, it then tries with the
second nearest until it is able to reconnect the tree. If the agent
has tried every known ancestor of its list and all has failed,
then it gets the root location by asking an eventually accurate
oracle. The oracle process is an external stable process in
charge of locating and observing the root of the hierarchy.
Each time an agent becomes the new father of a subtree, it
broadcasts its own ancestors list downward to update the list
of the agents knowing less than f alive ancestors.

This algorithm is always able to recover without central
coordination from at most f − 1 simultaneous failures, where
simultaneous means occurring before a full recovery. Actually
it can recover from more failures most of the time, as long
as a there do not exist a consecutive chain of f failed
ancestors. Despite eventually all resources are available to
clients, infrastructure provides a best effort service: during
recovery some computing resources may not be reached and
due to failure, some requests might be totally lost.



i n i t i a l i z a t i o n
∀i ∈ [1..f ], Φ[i]← i d ( ancestori (A ) )
i← 1
observe (Φ[1] )

end

# My f a t h e r d ied , c o n n e c t t o g r a n d f a t h e r
when f a i l e d (Φ[1] ) then

i← i + 1
i f def ined (Φ[i] ) then

Φ[1]← Φ[i]
else

# manage c o n n e c t i o n t o r o o t
Φ[1]← orac le ( )

endif
connect (Φ[1] )
observe (Φ[1] )

end

# New son c o n n e c t e d ( my c h i l d d i e d )
# Updat ing h i s a n c e s t o r s l i s t
when idson ← new connexion (ANY) then

add ( s o n l i s t , idson )
send ( idson , Φ[1..f − 1] )

end

# R e c e i v e d an a n c e s t o r s l i s t
# Propaga te i t i n my s u b t r e e
when recv (Ψ[2..f ]) then

i← 1
i f ∃ i d ∈ Ψ[2..f − 1] ∧ i d 6∈ Φ[2..f − 1] then

# Some o f my a n c e s t o r s changed : up da t e my sons
Φ[2..f ]← Ψ[2..f ]
∀ idson in s o n l i s t , send ( idson , Φ[1..f − 1] )

else
Φ[f ]← Ψ[f ]

endif
end

Fig. 2. The distributed agent tree hierarchy recovery algorithm.

C. Implementation

All DIET components are considered as agents, LA and
MA are nodes while SeD are leafs yet also maintaining
an ancestors list. Communication between agents relies on
RPC and ancestor lists contains Corba identifiers. During
initialization a downward broadcast fills the initial ancestor list
of agents. Because some request can be lost during architecture
recovery, clients reschedule requests based on a timeout.

The oracle is composed of a stable machine hosting both
the Corba name service and a small program in charge of
observing and restarting the root using the DIET fault detector.
As soon as the root gets restarted on a new resource the Corba
name service gets locally updated. During failure detection
time the oracle might give a wrong answer; this is a normal
behavior. As the agent keeps asking until it successfully
connects, it will eventually get the correct answer.

Each agent may observe from one to f of its parents
depending on a user defined parameter. While knowing an
agent is just having its Corba identifier in the ancestor list,
observing an agent involves actively monitoring it using a
failure detector. An agent does not observe all its known
ancestors to decrease network overhead. However there is
a tradeoff between the number of observed ancestors and
recovery speed: when its grandfather also died, an agent
observing only its father would have to wait for two failure
detection delays before succeeding in the recovery procedure.
By observing both ancestors it can detect failure of both earlier
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Fig. 3. Sample execution of the DIET fault detector.

(thus stabilize faster). Oracle failure detector is set to detect
failed root in at most 1s, while agents are detecting failure
of observed ancestors in 5s. Each agent is observing the f−1

4
closest ancestors among the f he locally knows. Those default
settings may be user tuned through configuration files.

VI. FAILURE DETECTION

In the algorithms discussed in the two previous sections,
recovery actions are triggered by the detection of some failure.
This suggest that time to detect a failure has a major impact
on fault recovery efficiency. Pseudo-synchronous message
passing is a good model to describe grid systems. Processes
communicate trough messages. There is no global clock but
there are (unknown) bounds on process speed and maximum
message delay. In such systems classical failure detectors
suffer from long detection time, poor accuracy and do not
even provide good computability [18]. Fortunately unreliable
failure detectors of the � P class are more adequate. They have
two properties: strong completeness (failed process are even-
tually suspected by each correct process) and strong accuracy
(correct processes are eventually not suspected). In this paper
we propose to use the Chandra Toueg & Aguilera detector
(CTA-FD) [7]. Quality of service (QoS) of a failure detector
can be determined by considering how fast it suspects failures
and how well it avoids false detection. Another important
parameter is the network overhead from heartbeats. Given a
heartbeat frequency and a maximum time to detect a failure,
the CTA-FD has an optimal accuracy. Another nice feature is
its ability to self reconfigure according to fluctuating network
delay and message loss probability.

A. Fault detector’s algorithm

Figure 3 presents a sample execution of the fault detector.
The basic idea of the algorithm is, given an expected QoS, to
compute a heartbeat period U for p and some time intervals
[Fi, Fi+1) for heartbeat Hi+1 to arrive on q. The QoS parame-
ters are the upper bound on time to detect a failure (TDu), the
upper bound on average mistake duration and lower bound on
average mistake recurrence time. At time Fi, if q has received
a heartbeat Hj , j ≥ i, then q trusts p for the entire time
interval [Fi, Fi+1). If not, q starts suspecting p until it receives
a heartbeat Hj , j ≥ i.

Fi+1 is the freshness point of heartbeat Hi: if Hi arrives
after Fi+1 it is discarded. Thanks to freshness points, maxi-
mum time to detect a failure does not depend on maximum
message delays, but on average message delay E(D); a great



#processes 1 2 3 4 5 6 7 8
Memory (KB) 4 4 4 4 4 4 8 8

Accuracy 1 1 1 1 1 1 1 1
#Processes 9 10 11 12 13 14 15 16

Memory 8 8 8 8 12 12 12 12
Accuracy 1 1 1 1 1 1 1 1

#Processes 32 64 128 256 512 1024
Memory 24 48 96 184 364 728
Accuracy 1 1 1 1 .9997 1

Fig. 4. Failure detector memory footprint and accuracy depending on the
number of observed processes (Giga Ethernet).

improvement compared to other failure detectors. Another
benefit is independence between heartbeats; a faster than
average heartbeat does not trigger a timeout earlier. To set
freshness points, three values are computed from the history
of received heartbeats: 1) EAi the expected arrival date of
Hi on q, 2) V (D) the variance of message delay and 3) Pl

the message loss probability. When network performance are
fluctuating, the observing process adapts heartbeat period and
freshness points accordingly to history.

B. Implementation in DIET

Fault detector of DIET (DIET FD) is implemented in a
standalone C++ library providing 1) a simple interface to
observe other services and 2) observable service registration
and heartbeat emission. When a new RPC is submitted, the
instance of the service registers its process and Corba identifier
to the heartbeat library. The observer makes a RPC including
the desired heartbeat frequency and the name of the service to
start monitoring. As long as the state of the instance is correct
(read trough /proc in Linux), heartbeats are sent.

There is no centralized fault detector in DIET. Agents uses
the detector to observe ancestors and clients to observe SeDs.
The detector is initialized with pessimistic parameters until a
first history is built. Once we received 100 heartbeats, the fault
detector reconfigures to match sample properties. Then, every
time a heartbeat is received a new period is computed; if it is
10% different from previous one a reconfiguration occurs.

VII. PERFORMANCE

A. Testbed

The Grid’5000 platform has been used as testbed. It is
constituted of 9 clusters distributed all over France and linked
trough a 10Gb/s WAN. We used the Paris cluster (260 IBM
e325 nodes), the Lyon cluster (64 IBM e325, 64 Sun Fire
V20Z) and the Sophia cluster (100 IBM e325). IBM ma-
chines have 2 Opteron 2GHz processors, Sun ones have 2
Opteron 2.2GHz. Each node have 2GB DDR memory and
giga-Ethernet network. The operating system is Linux Debian
using a 2.6.18 kernel. We inject failures by sending UDP
orders to a small helper process running on every node; it
triggers kill -9 on the target.

B. Failure detector

Because failure detection of SeDs is centralized on the
client and a client may submit a large number of simultaneous
RPC calls, capability of the failure detector to observe a large
number of services is a major issue. Table 4 shows two main

parameters of the failure detector considering the number of
observed processes: memory footprint and accuracy. Up to 256
processes, client and all observed SeD are located on the Paris
cluster. When more processes are observed some are running
on Sophia and Lyon. One process is running per node even for
dual CPU ones (because our observations are network related).
Measurement begins after one hour (to avoid startup effect)
and last for one hour.

The first row gives memory footprint of the observer de-
pending on the number of observed processes. The client is
instrumented to give the stack and heap memory from the
/proc/pid/statm file. Memory usage unrelated to fault
detection is removed by subtracting memory footprint of the
client not observing any process. Memory footprint increases
by 4KB steps, due to kernel paging memory allocation al-
gorithm. Aside from this stair effect, the memory footprint
increases linearly with the number of observed processes.
Average memory used per observed process is 708 bytes as
confirmed by the Valgrind tool.

The second row shows the accuracy of the failure detector.
Failure detector is set to 1) detect failures in maximum 30
seconds, 2) maximum false detection is 60 seconds, 3) at most
1 false detection occurs per month. In this experiment we do
not introduce any failures. When all processes are on the same
cluster (up to 256 processes), accuracy is perfect. When using
WAN links, accuracy is nearly perfect, whatever is the number
of observed processes. Actually we only observed some false
detection when observing 512 processes, due to some poor
network conditions on long range links during the experiment.

Detected network parameters sets the failure detector to
send a heartbeat every 9.8s. Each heartbeat is a 40 bytes
message (including UDP headers). 1024 observed processes
are sending an overall 33.5Kbit/s of heartbeat data, a very
moderate overhead for the 1Gb/s network.

C. Architecture rebuild

Figure 5 shows time to recover after an increasing number
of failures hitting the architecture. We use a vertical chain of
32 agents in this experiment (1 MA, 1 SeD, 30 LA) as depicted
in Figure 5(a). The number of known ancestors by each agent
is set to 16, among those the 4 first are actively observed by
the internal DIET failure detector of the agent. Maximum time
to detect a failure is set to 5s. Presented values are average
of 50 runs measured with the gettimeofday system call
from the initial detection of the failure to the detection of the
full recovery (postmortem by trace analysis).

In the worst case failure pattern we crash ancestors of the
lower node in the hierarchy in order, up to reach the desired
number of failures. When the number of failure is less than 4 -
the number of observed ancestors in this experiment- recovery
overhead consists only in transmitting the ancestors lists over
the tree. It is the same order of magnitude as RPC calls latency
and the overall recovery overhead is clearly dominated by
failure detection. When the number of simultaneous failures
is greater than the number of observed ancestors, recovery is
slowed by the time to detect that the reconnected agent already
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Fig. 6. Makespan of 1000 BLAS DGEMM depending on the architecture recovery algorithm.

failed. Observing every known ancestors would flatten this
overhead at the cost of increasing network load.

Random failure pattern consists in randomly crashing some
of the nodes in the architecture. For a small number of simul-
taneous failures, the probability of running into the worst case
scenario is low (less than 1% for 5 simultaneous failures). As a
consequence the recovery occurs in parallel for different agents
and does not cost additional failure detection time. When the
number of simultaneous failures is high, the probability of
reaching a worst case scenario increases. It is near 100%
to pay one failure detection cycle considering one fourth of
the agents are failing. Although, should the number of agent
be greater, with the same number of observed ancestors, the
worst case scenario probability would have been dramatically
reduced. It is related to choosing consecutive sequences of m
nodes among n. When n is large enough the number of such
sequences is low compared to the overall number of random
sequences, thus there is no need in practice to observe every
ancestor.

Figure 6 shows the number of completed tasks and
makespan of an application using DIET when using architec-
ture failure recovery algorithm or not. In this experiment the
DIET infrastructure is deployed as described in Figure 6(a).
Client application submits a large number of independent

dgemm calls. The dgemm DIET service is a remap of the
BLAS DGEMM. Matrix size is set to 6000x6000, accuracy
to 0.1 ; Average time to run a single job is 28.24s. An
initial batch of 100 jobs is submitted. Then each time 10 jobs
are completed 10 new jobs are submitted. We always inject
failures following the same scenario: first a failure hits Paris
cluster (loosing 16 computing nodes), then two simultaneous
failures at Lyon (loosing 24 computing nodes), last one failure
hits the root node of Lyon (loosing entire Lyon’s deploy-
ment: 48 nodes). Compared to fault free execution, failures
of 4 infrastructure nodes without recovery action leads to a
major performance degradation. Most computing nodes are
unavailable for computation due to only a few failures. When
using the failure recovery algorithm, most failures are not
even noticeable. The recovery algorithm gets back computing
resources available faster than the grain of the submitted
tasks, typically unavailable nodes are still running previously
allocated jobs during architecture recovery. Though the third
failure occurs when a slice of nodes have to be allocated.
As a consequence no more free nodes are available and new
jobs share computing power with previous ones, increasing
execution time.



VIII. CONCLUDING REMARKS

We introduce three mechanisms intended to decrease the
cost of failures in Network Enabled Servers environments.
These mechanisms are implemented in the DIET GridRPC
environment and their performance are evaluated experimen-
tally in a large Grid System.

First we introduce a novel checkpoint interface to manage
service recovery. It allows for using both automatic or, if
available, service provided checkpoint. Parallel services can
also be automatically recovered by cooperating with some au-
tomatic distributed checkpoint library. We provide a MPICH-V
enabled service as a proof of concept. Checkpoint data are
stored in a distributed grid persistent storage to recover from
the complete loss of the computing resource, should it be a
parallel cluster.

We also propose a distributed recovery algorithm eventually
ensuring that all computing resources are kept available to the
NES architecture. It can tolerate several simultaneous failures
of agents, depending on the number of known ancestors kept
by each agents. Our experiments shows a fast recovery time,
indeed dependent on the failure detection time. Worst case
scenarios where detection time stacks are unlikely to hap-
pen. Over a real grid deployment, most architecture recovery
overhead is overlapped with computation, and the overall
throughput of a typical BLAS based numerical application is
greatly improved compared to a non fault tolerant architecture.

Finally our results outline the large impact of failure
detection time, which is added to recovery overhead. We
provide the first implementation and evaluation of the Chan-
dra & Toueg & Aguillera failure detector in a grid system. It
shows a very little overhead on network and memory and a
nearly perfect accuracy when observing thousands of processes
in real Grid.

Future works

The architecture recovery algorithm presented in this paper
only keeps the hierarchy connected. It does not replaces
failed agents, so overtime the scalability of the architecture
might decrease. Next step is to restart agents to rebuild the
same hierarchy. A first idea consists in using a centralized
stable node to detect failures and restart failed nodes with the
JADE [19] framework.

Most scheduling algorithms are relying on bandwidth per-
formance prediction [20] to choose which server should be
used to compute the request. Checkpoint data traffic may
impact the available bandwidth. We plan to investigate the
overall cost on application execution time and on scheduling
accuracy of checkpoint data distribution on nodes.

During restart of a failed node, we request the DIET
architecture to get a new resource to run the recovered job.
Currently the standard scheduling algorithm is used. Restart
time may be improved by scheduling the restarted job on a
resource “close” to one of the replicated checkpoint holders.
We plan to implement such a scheduling and to evaluate its
merits.
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