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Abstract—This paper describes the application of various
search techniques to the problem of automatic empirical code
optimization. The search process is a critical aspect of auto-tuning
systems because the large size of the search space and the cost
of evaluating the candidate implementations makes it infeasible
to find the true optimum point by brute force. We evaluate
the effectiveness of Nelder-Mead Simplex, Genetic Algorithms,
Simulated Annealing, Particle Swarm Optimization, Orthogonal
search, and Random search in terms of the performance of the
best candidate found under varying time limits.

I. I NTRODUCTION

Modern CPU design has been driven by a balance of
many factors, such as cost, power consumption, heat, and
performance, which leads to many slight differences in their
characteristics – clock speed, the number of cores per chip,
existence of hyper-threading, cache size and associativity,
number of functional units, latencies, etc. Traditionally, to
achieve the best performance, the developer had to hand-tune
the code with these characteristics in mind and would have
to repeat the process for each target architecture. The hand-
tuning process is very time consuming, often non-portable,
and requires the kind of expertise that only a limited number
of programmers possess. Meanwhile, the compiler community
has developed optimization techniques to transform programs
written in high-level languages to run efficiently on these
modern architectures [1], [2]. Some of these program transfor-
mations include loop blocking[3], [4], loop unrolling[1],loop
permutation, fusion and distribution[5], [6]. To select parame-
ters for transformations such as blocking and unrolling, most
compilers use analytical models. This is commonly referredto
as model-driven optimization. While compiler optimizations
are certainly beneficial (and require essentially no effortfrom
the user), the compiler models may not be accurate or up-to-
date with the newest hardware, leading to code that does not
achieve peak performance. In contrast with the model-driven
approach, empirical optimization techniques generate a large
number of code variants with different parameter values fora
given algorithm, for example matrix multiplication. All these

candidates are run on the target machine and the one that
gives the best performance is picked. This helps to cope with
differences in CPU characteristics by adapting the tuning to
the results obtained. To target a new architecture, the tuning
process is simply performed on that machine. With this em-
pirical optimization approach ATLAS[7], [8], PHiPAC[9], and
FFTW[10] successfully generate highly optimized libraries for
dense, sparse linear algebra kernels, and FFT respectively.

One requirement of empirical optimization methodologies is
an appropriate search heuristic, which automates the search for
the optimal implementation [7], [8]. Theoretically the search
space could be infinite, but in practice it can be limited
based on specific information about the hardware for which
the software is being tuned. For example, ATLAS bounds
NB (blocking size) such that16 ≤ NB ≤ min(

√
L1, 80),

where L1 represents the L1 cache size, detected by a micro-
benchmark. Usually the bounded search space is still very
large and it grows exponentially as the number of dimensions
in the search space increases. In order to find optimal cases
quickly, certain search heuristics need to be employed. The
goal of our research is to provide a general search infras-
tructure and heuristics that can be applied to many empirical
optimization tasks. In this paper, we present the results of
applying several such search techniques to the empirical
optimization of two dense linear algebra routines using four
different search spaces.

II. EMPIRICAL TUNING INFRASTRUCTURE

Current empirical optimization techniques such as ATLAS
and FFTW can achieve good performance in part because
the algorithms to be optimized are known ahead of time, so
problem-specific techniques can be applied. In our research,
we would like to address this limitation by applying the
techniques used in ATLAS to the optimization of arbitrary
code. Since the algorithm to be optimized is not known in
advance, it will require compiler technology to analyze the
source code and generate the candidate implementations. The
ROSE project[11], [12] from Lawrence Livermore National



Laboratory provides, among other things, a source-to-source
code transformation tool (LoopProcessor) that can produce
blocked and unrolled versions of arbitrary C input code. The
POET project [13] provides similar functionality except that it
takes as input a specification of the valid transformations and
allows generating parameterized source code as output. Since
the input specification already indicates the valid transforma-
tions, there is no analysis overhead, thus the code generation
is much faster than with the ROSE LoopProcessor. For that
reason, the results in this paper were obtained using POET,
but the generated code is essentially the same.
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Fig. 1. GCO Framework

Combined with our search techniques and other infrastruc-
ture, we can use POET (or any other parameterized code
generator) to perform empirical code optimization. To perform
the evaluations, we have developed a test infrastructure that
automatically generates a timing driver for the optimized rou-
tine based on a simple description of the arguments. We refer
to the overall system formed by combining of all these parts
Generic Code Optimization (GCO). As illustrated in Figure 1,
the code is first fed into POET or the ROSE LoopProcessor for
optimization and separately fed into the timing driver generator
which generates the code that actually runs the optimized code
variant to determine its performance. The performance results
are then fed back into the search engine. Based on these
results, the search engine will adjust the parameters used to
generate the next code variant. The initial set of parameters
could be estimated based on the characteristics of the hardware
(e.g. cache size) or could be selected based on the rules of the
search technique being used. The search engine also decides
when to stop the search process, whether dictated by the user
(time limits) or dictated by the results (lack of improvement).

III. SEARCH SPACE

Before introducing the search techniques, we discuss the
code to be tuned and the search spaces involved. The two
routines we will optimize are matrix-matrix multiplication
and matrix-vector multiplication (both dense). We start with
a naı̈ve C implementation, which can be fed directly into
the ROSE LoopProcessor or converted by hand to a POET
specification. Either way, the result will be a transformed C
implementation, which is compiled with the user’s choice of
compiler.

TABLE I
SUMMARY OF THE SEARCH SPACES

Code Dimension Bounds
Matrix-matrix i, j, and k loop blocking 2 - 128

Unroll Amount 2 - 128
Matrix-matrix i loop blocking 2 - 128

j loop blocking 2 - 128
k loop blocking 2 - 128
Unroll Amount 2 - 128
Loop order 1 - 6

Matrix-matrix i loop blocking 2 - 128
j loop blocking 2 - 128
k loop blocking 2 - 128
Unroll Amount 2 - 128
Loop order 1 - 6
Compiler flags 1 - 3
Compiler flags 1 - 4
Compiler flags 1 - 3
Compiler flags 1 - 3
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2
Compiler flags 1 - 2

Matrix-vector i loop blocking 2 - 128
j loop blocking 2 - 128
Unroll Amount 2 - 128
Loop order 1 - 2

Given the same code, we can define the search space in
different ways. See Table I for a summary of the search
spaces. For the matrix multiplication case, we have defined
three search spaces. The first search space has two dimensions:
blocking and unrolling. Having a single blocking dimension
means that all loops are blocked at the same amount. The next
search space includes separate blocking dimensions, unrolling,
and loop order. The loop order dimension represents the
possible reorderings of the loops (e.g. 1 = ijk, 2 = ikj, etc.).
The last search space for the matrix multiplication case in-
cludes 16 dimensions of compiler flags. For the matrix-vector
multiplication case, we have defined one search space similar
to the matrix-matrix case. The bounds of each dimension are
sometimes rather arbitrary, but in other cases, the bounds



are dictated by the capabilities of the code generator or the
characteristics of the code being tuned.

The two dimensional search space for the matrix-matrix
case was chosen to be feasible to exhaustively search so that
we can compare the results of the search techniques with the
real optimum point within the search space. The platform
used for the experiments is a 2.66GHz Intel Xeon X5355
running Fedora Core 6 (kernel 2.6.22-10-perfctr), PAPI 3.6.0,
and using gcc 4.1.2 for all compilations. Although the CPU is
quad-core, we are only tuning single-threaded performance.
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Fig. 2. Two-dimensional Search Space of Matrix Multiply

Figure 2 shows the results of running an exhaustive search
over both dimensions of our search space (block sizes up to
128 and unrolling up to 128). The x and y axes represent
block size and unrolling amount, while the z axis represents
the performance in Mflop/s of the generated code. The code
being optimized is an implementation of square matrix-matrix
multiplication (N=400). The dimension size is relatively small
to allow faster evaluations at each point while being large
enough to ensure repeatable timings. In general, we see the
best results along the blocking axis with a low unrolling
amount as well as along the diagonal where blocking and
unrolling are equal, but there are also peaks along areas where
the block size is evenly divisible by the unrolling amount. The
best performance was found with block size 80 and unrolling
amount 2. This code variant ran at 1459 Mflop/s compared to
778 Mflop/s for the naı̈ve version compiled with gcc.

Examining the plot, we notice two obvious characteristics.
First, the triangular area on the right is typically low and
flat. This area represents all the points where the unrolling
amount is larger than the block size. A possible reason the
performance is relatively low in this area is because the
unrolled portion will not be used when the unroll amount
is larger than the block size. It falls through to the clean-up
loop, which is not unrolled at all in the source. The second
glaring characteristic of the plot is the trough running along the
blocking dimension. To investigate this, we picked one block
size (80) and measured various CPU performance counters

at different unrolling amounts. We found two events that had
a correlation with the drops in performance. First, Figure 3
shows the number of branch mispredictions. As previously
mentioned, when the unroll amount becomes larger than the
block size, it falls into the clean-up loop, which corresponds
with the drop in performance at unroll amount 81, but it does
not correspond with the area of low performance from unroll
amounts 3 to 20. However, we found a second event that does
correspond with that area. Figure 4 shows the number of times
the Reservation Station (RS) is full. The RS is responsible
for buffering instructions until they can be sent to one of
the functional units. So, a high number of RS Full events
can signify pipeline stalls due to cache misses or due to poor
instruction scheduling. Our measurements did not indicatea
correlation with cache misses, so the performance drop seems
to be a result of the interaction between the way we are
transforming the C code and the compiler used to generate
the executable. To verify this, we ran the unroll tests with
different compilers, as shown in Figure 5. The interesting thing
is that gcc 4.3 and icc 9.1 do not exhibit the same drop in
performance above unroll amount 80 as gcc 4.1 does. Perhaps
these compilers are better at optimizing the simple clean-up
loop than the big unrolled loops, although for smaller unroll
amounts, there is a performance benefit. This illustrates an
important point about empirical tuning - as much as you are
tuning for the architecture, you are also tuning for the compiler
as well.
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While the exhaustive search we have done can reveal a lot
of interesting things about the search space, it is not usually
feasible due to the large amount of time required, especially as
new dimensions are added to the search space. Consequently
our research involves investigating various search techniques
to find an optimal set of parameters without performing an
exhaustive search.

IV. SEARCH TECHNIQUES

Essentially in GCO, we are trying to solve an optimization
problem of the function:
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f(x1, x2, · · · , xn)

The parametersx1 throughxn represent the code generation
options, such as block size and unrolling amount. Typically
these are integer values, but in some cases could be real
numbers. The value of the function is the performance of the
code generated using that set of parameters. Performance can
be evaluated in many ways, but the results presented in this
paper are based on using PAPI [14] to measure floating point
operations per second.

A. Nelder-Mead Simplex Method

Spendley, Hext, and Himsworth [15] introduced the simplex
method, which is a non-derivative based direct search method,
to solve the minimization problem:

min f(x)

wheref : R
n → R, and gradient information is not compu-

tationally available. In an n-dimension spaceR, a simplex is
a set of n+1 vertices, thus a triangle inR2 and a tetrahedron
in R

3. The simplex contracts to the minimum by repeatedly
comparing function values at n+1 vertices and replacing the

vertex with the highest value by reflecting it through the
centroid of the rest of the simplex vertices and shrinking. We
illustrate the basic idea of the simplex method in Figure 6.
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Fig. 6. Original simplex inR2 wheref(x1) ≥ f(x2) ≥ f(x3); Reflect
x1 throughxc, the centroid ofx2 andx3, to xr; The new simplex consists
of x2, x3 andxr .

Nelder and Mead improved the method by adding more
moves and making the search more robust and faster. We give
the description of the Nelder-Mead simplex algorithm [16]:

• Initialize a non-degenerate simplex of n+1 vertices on
R

n, compute function value or do a measurement at each
vertex, order n+1 vertices by valuef(xi).

• At iteration k, we have:
f(xk

0) ≤ f(xk
1) ≤ · · · ≤ f(xk

n)
• Step 1, Calculate centroid:

xk
c = 1

n

n∑

i=1

xk
i

• Step 2, Reflection:
xk

r = xk
c + ρ(xk

c − xk
n), whereρ > 0

– If f(xk
0) ≤ f(xk

r ) < f(xk
n−1), replacexk

n with xk
r

and go to next iteration;
– Else if f(xk

r ) < f(xk
0), go to step 3;

– Else if f(xk
r ) ≥ f(xk

n−1), go to step 4.

• Step 3, Expansion:
xk

e = xk
c + χ(xk

r − xk
c ), whereχ > 1

– If f(xk
e) < f(xk

r ), replacexk
n with xk

e and go to next
iteration;

– Else replacexk
n with xk

r and go to next iteration.

• Step 4, Contraction:

– If f(xk
r ) < f(xk

n),
xk

t = xk
c + γ(xk

r − xk
c ), where0 < γ < 1

∗ If f(xk
t ) ≤ f(xk

r ), replacexk
n with xk

t and go to
next iteration;

∗ Else go to step 5.

– Else
xk

t = xk
c + γ(xk

n − xk
c ), where0 < γ < 1

∗ If f(xk
t ) < f(xk

n), replacexk
n with xk

t and go to
next iteration;

∗ Else go to step 5.



• Step 5, Shrink:
xk

i = xk
0 + σ(xk

i − xk
0), where0 < σ < 1

B. Genetic Algorithm

The Genetic Algorithm (GA) is a search method based on
the evolutionary process of survival of the fittest. It starts with
a population of individuals, each of which is represented bya
gene. The gene can be represented as the implementor chooses,
but it is typically a bit field, a set of numbers, or a string of
characters. In our case, each member of the population is an
array of parameters and the fitness of that member is evaluated
by measuring the performance of the code generated using
those parameters.

The initial population is usually generated randomly, but
could be initialized with specific areas of the search space in
mind if the problem characteristics are known in advance. In
GCO, we start with a random population of 40 candidates. The
number is relatively small due to the time required to evaluate
each point. If it is too big, we could run out of time before
the GA is allowed to evolve much. Given a longer time limit,
the population size can be increased.
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Fig. 7. GA Operations

After the initial population is evaluated, each successive
generation is formed by means of several operators.

• The crossover operator merges two genes to produce an
offspring gene, similar to reproduction in nature. Since
the genes are represented as arrays of parameters, we
split two genes at a random point in the array and form
a new gene from the beginning of one array and the end
of the other (see Figure 7).

• Themutation operator affects a single member of the pop-
ulation and produces a mutated version of that member.
With a low probability, we choose a member and alter
one of the parameters slightly (see Figure 7).

• The selection operator is responsible for the “survival of
the fittest” aspect of the GA. After each generation, it
decides which members will be carried over to the next
generation. We choose the members with the best per-
formance, excluding the lowest performing members to
make room for the new members generated via crossover
and mutation.

There is a wide variety of techniques for performing these
GA operations. For example, [17] lists fifteen alternative
crossover and eight different mutation operations. For a given
application, the GA may perform very differently with dif-
ferent choices of operators and values for the crossover rate,
mutation rate, initial population, and selection rate.

C. Simulated Annealing

Simulated annealing [18] is a search heuristic based on the
annealing of substances such as metals. Since its introduction,
it has been used in a variety of applications, including cir-
cuit layout and classical optimization problems like traveling
salesman. In the annealing process, the substance undergoes
a series of heating and cooling cycles to alter its internal
structure, which results in a change in the characteristicsof the
material (e.g. making it less brittle). In simulated annealing,
the heating and cooling phases are simulated by means of a
global “temperature” setting. When the temperature is high,
the system is more likely to allow a change in state, similar to
the movement of atoms in the heated material. As it gradually
cools, the system should converge to a state of minimum
energy. In terms of GCO, that means high temperatures
encourage moving to a new part of the search space and
choosing new code generation parameters. During the cooling
phase, it should become less likely to move, thus converging
on the code variant with the best performance.

As with the genetic algorithm, simulated annealing has a
number of configurable aspects, which can affect the perfor-
mance of the search process.

• The annealing schedule determines how the tempera-
ture is adjusted throughout the simulation. In [18], it
is described as a process of moving from a melted
state towards a freezing state such that each intermediate
temperature is held long enough for the state to reach
equilibrium. For GCO, we implement a straightforward
annealing schedule by reducing the temperature as the
search time limit decreases.

• The acceptance probability is a function that determines
the probability of accepting a new configuration. In GCO,
rather than using a probabilistic function, we use a
threshold function.

• The neighbor selection function chooses the next poten-
tial configuration. In GCO, we choose neighbors some-
what randomly, except that as the temperature decreases,
the choices will be closer to the current point.

D. Particle Swarm Optimization

Particle Swarm Optimization has its origins in the simula-
tion of social behavior, particularly the flocking or swarming
patterns of birds [19]. For example, it appeared that through
some form of social cooperation, many birds were able to flock
together and converge on a food source even with no prior
knowledge of its location. As applied to the optimization of
a function, PSO consists of a population of particles flying
through hyperspace, each one represented by a position and
velocity. The particle retains a memory of the best position



it has visited, but it is also aware of the best position found
by neighboring particles and the best position found by any
other particle (i.e. the current global best). The particles are
simultaneously drawn towards the global and local best points
based on some magic numbers that define the relative strength
of the different attractions.

In GCO, we define the initial population randomly, with
the number of members being based on an estimate of the
number of evaluations that can be done before the time limit
is exceeded. If the population is too large for the time limit,
the particles will not have a chance to move around much. In
our implementation, we do not have multiple neighborhoods
– the whole population is essentially one neighborhood. At
each iteration, the performance of every particle is evaluated
and the velocities are updated based on the results according
to the following formula.

vi+1 = w · vi + c1 · r1 · (BestP tlocal − Pti)
+ c2 · r2 · (BestP tglobal − Pti)

Pti+1 = Pti + vi+1

Wherevi is the velocity of particlei, BestP tlocal is the best
point seen by particlei, BestP tglobal is the best point seen by
any other particle,r1 and r2 are random numbers uniformly
distributed between[0.0, 1.0), w is a weight to influence the
importance of the previous velocity, andc1 andc2 are weights
to influence the importance of the best point seen by the
particle versus the best point seen globally.

Although we did not experiment with tweaking the magic
numbers, we did have to try a few techniques for handling
points that stray out of bounds. There are several techniques
described in [20]. You could let the point stay out of bounds,
but give the resulting performance an artificially bad value
(such as infinity) or simply place it back in the search space
randomly. We experimented with placing the point on the
boundary where it exited the search space, but they tended
to get stuck, so we ended up making them “bounce” a bit off
the bound back into the search space.

E. Orthogonal

In orthogonal search, one dimension is optimized while
keeping the other dimensions constant. Then each successive
dimension is optimized while retaining the best values for
the preceding dimensions. Naturally the main problem is
determining the order in which the dimensions are optimized.
In some systems such as ATLAS, the meaning of each
dimension is known ahead of time, so the order can be based
on experience and reasoning about the interactions between
the transformations. The GCO search engine does not know
what the dimensions represent, so it just optimizes them in
the order specified by the user. If the time limit has not been
exceeded, the search can start over at the first dimension
using all the previous best values. If the search converges
on one set of parameters and there is still time remaining,
it starts a new iteration with randomly chosen parameters. If
there is not enough time to complete an entire iteration of the
orthogonal search (i.e. one pass through each dimension), the

search engine reverts to random search. The determination is
made by estimating the average time required per evaluation.

F. Random

In random search, each point is chosen completely at
random and its performance has no impact on subsequent
selections. Random search is used as a baseline to which
we compare the other search techniques. To be considered
effective, a search heuristic should be able to do better than a
random number generator.

V. EXPERIMENTAL RESULTS

To evaluate the various search techniques, we performed
searches of the spaces described in Section III. Unless other-
wise specified, the experiments were performed on a 2.66GHz
Intel Xeon X5355 running Fedora Core 6 (kernel 2.6.22-
10-perfctr), gcc 4.1.2, and PAPI 3.6.0. Each point on the
graphs presented here represents the average of 10 runs of
each search technique within the specified run-time constraint
(either limited by time or by the number of evaluations to be
performed).
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First we examine the results of tuning matrix multiply
in the two dimensional search space. The methodology is
a bit different in this case compared to the others that will
be presented. Since we had already performed an exhaustive
search of this space, we decided to run the searches on the data
that had already been collected. This would allow comparing
the best case found by the search to the absolute best point
in the search space, which turned out to be 1459 Mflop/s.
Looking at Figure 8, above 600 evaluations, the orthogonal
search consistently hits the maximum point. The others are
a bit worse, but only by a few percent. Even random search
does quite well. We speculated that random performs well
because there are a lot of points that perform fairly close to
the global maximum. To verify this, we plotted a histogram
of the performance of all the points in the two dimensional
search space, shown in Figure 9. There are 182 points out of
the total 16129 points which have a performance within 5% of



the maximum. So if we think of it as a binomial experiment,
the probability of finding at least one point within 5% of the
maximum by doing 100 evaluations would be around 68%,
which closely matches our observations (7 of the 10 runs found
points within 5% of the maximum). By the time we reach 500
evaluations, the probability is over 99%. Therefore, it appears
that this two dimensional search space is a relatively easy one
to search and even a random search is likely to give good
results.
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The next case we will examine is the five dimensional search
space for matrix multiply. As summarized in Table I, this
search space has separate blocking dimensions, an unrolling
dimension, and a loop order dimension. There is very little
separation between the various search techniques in this case,
as shown in Figure 10. Only Particle Swarm Optimization
appears to have a consistent advantage, but even that is quite
small (on the order of a few percent). We do not have a
visualization of this search space since it is not feasible to
exhaustively search it, but one possible reason PSO does a bit
better here is because the swarming activity tends to produce
a better local search around the maximum points.

The four dimensional matrix-vector multiply case is very
similar to the five dimensional matrix multiply case just
discussed. As Figure 11 shows, PSO does well and most of
the others are grouped together. The main difference in this
case is the poor performance of the orthogonal search. It starts
off doing well because for short time limits, it estimates that a
full orthogonal search is not possible, so it reverts to random
search. Thus for the 1 and 5 minute searches, the results are
almost identical to the random search results. At 15 minutes
and above, there is enough time to do at least one iteration
of the orthogonal search, but it picks a bad value for the last
dimension, which only has two values (representing the loop
order). It starts the search with the last dimension set to the
lower bound and optimizes the first three dimensions based on
that. So, by the time it reaches the last dimension, the previous
dimensions have been optimized to work well with the current
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setting, so changing it does not improve the performance. Even
when more iterations can be done, it does not improve much
because it retains the bad value picked in the first iteration.
To measure the effect of the dimension ordering, we ran a
quick experiment in which we sorted the dimensions based
on size so that the loop order dimension came first. Running
the orthogonal search again with a time limit of 15 minutes
produced an average performance of 1000.2 Mflop/s versus
774.7 Mflop/s for the unordered dimensions.
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Since we were not getting much separation between the
various search techniques, we decided to try to vastly increase
the search space to make it more difficult. We had already used
all the available code transformation options, so we added 16
dimensions of compiler optimization flags to the mix. Most
of these dimensions are small – either the feature is enabled
or disabled – but some of them have a range of values (e.g.
optimization level 0, 1, 2, 3). From Figure 12, we can see
that we did not get the separation we were hoping for. The
orthogonal search still shows some suffering because of the
small discrete dimensions at the end of the search space.



Simplex can be a little erratic for low time limits (especially
when the number of dimensions is high) because it may not
be able to complete at least one full iteration of the Simplex
algorithm within the allotted time. Unlike orthogonal search,
we do not have an easy prediction of the number of evaluations
that Simplex will need to do, so we cannot determine when
it would be beneficial to revert to random search for low
time limits. After some experimentation, it turns out that
most of the flags have very little effect on the performance,
so that is probably why the search techniques are grouped
together once again. The promising aspect of this experiment
is that the performance is up to almost 2400 Mflop/s with
the optimization flags, versus 2000 Mflop/s without them (the
previous experiments were all done using only-O3). Most
of that gain came from the-funroll-loops flag, but it
is interesting to note that the selection of compiler flags also
affects the selection of the best code generation parameters,
so we found that it is useful to tune them in conjunction with
each other.
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VI. RELATED WORK

There are several projects that adopt an automatic per-
formance tuning strategy to produce highly optimized li-
braries, but with different approaches to the heuristic
search. PHiPAC[9] is a methodology for developing High-
Performance linear algebra libraries in ANSI C. It searches
for the optimal block sizes starting from register level (L0
cache), then L1 cache, L2 cache, and so on. A random search
strategy is used for searching the L0 search space and a
heuristic-based search is used for the other levels. ATLAS[7],
[8] is an empirical tuning system which generates an optimized
BLAS library. ATLAS first bounds the search space based on
hardware information detected by microbenchmarks. It then
uses an orthogonal search, which starts with an initial set
of parameters and searches for the optimal value for one
parameter at a time and keeps the rest unchanged. After each
one-dimensional linear search, the selected parameter value
will be preserved. FFTW[10] generates a highly optimized

library for computing the discrete Fourier transform (DFT). Its
search strategy is called dynamic programming, which takes
advantage of the recursive nature of the problem and solutions
of smaller problems can be used to construct solutions of larger
problems. SPIRAL[21] generates highly optimized code for
a broad set of digital signal processing transforms. It uses
dynamic programming primarily, but when that fails, it has
several other methods to fall back on (e.g. genetic algorithms
and random search). A genetic algorithm approach has also
been used for selecting the best sequence of optimizations
applied within a traditional compiler [22] and for optimizing
the set of flags to specify [23].

Other research has focused on deriving a mathematical
model for ATLAS [24] and achieved performance nearly as
good as the empirically optimized version on certain platforms.
There has also been some research on combining analytic
models with an empirical search. In [25], an analytic model
of ATLAS was refined with an empirical search, leading to
shorter search time than ATLAS with higher performance than
the purely analytic approach. Our goal, however, is to develop
a generic tuning and search infrastructure that is adaptable to
a variety of different applications.

VII. C ONCLUSION

In this paper, we have examined a variety of search
heuristics and applied them to several practical empirical
tuning tasks. The experiments have demonstrated that for
a very modest investment in search time (15-30 minutes),
the performance can be more than tripled compared to the
naı̈ve C implementation. As the code generators for automatic
empirical tuning become more sophisticated and the search
spaces consequently grow, having effective search techniques
will become increasingly important.

The strength of random search (and our subsequent exami-
nation of the distribution of performance in the search space)
indicates that the search spaces are not incredibly difficult –
there are many points with performance within 5% of the
true maximum. Even trying to artificially make the search
more difficult by adding many dimensions of compiler flags
did not result in a big distinction between the random search
and other methods, although as we mentioned, many of those
dimensions were probably not very influential. PSO had a
clear (though modest) advantage in some of the experiments,
possibly because the swarming provides a kind of local search
functionality towards the end of the cycle. Another observation
is that some of the dimensions have their best performance
near the bounds and PSO tends to search these areas well
due to the way it handles the positioning of particles that
go out of bounds. In other cases, the orthogonal search had
an advantage, but it suffered when the dimensions were not
ordered well.

We have not spent much time trying to tweak the search
strategies, so it is possible that with more effort, we could
get more of an improvement over random search. Since
the tweaks could work well for certain search spaces, but
be worse on others, it would be worthwhile to do more



experiments to determine a good set of general parameters that
would work well for many tuning problems. Based on some
initial experiments, a modified orthogonal search that sorts the
dimensions based on size could be a strong technique. We are
also interested in looking into hybrid and adaptive techniques.
The orthogonal search is a rudimentary example – it can adapt
to the search time limit by falling back on random search when
it estimates that a full iteration cannot be completed. However,
perhaps we could use one search to “prime” another one,
switch techniques in mid-stream, or combine search techniques
in other ways.
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