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ABSTRACT
The QR factorization is one of the most

important operations in dense linear alge-
bra, offering a numerically stable method for
solving linear systems of equations includ-
ing overdetermined and underdetermined sys-
tems. Classic implementation of the QR fac-
torization suffers from performance limita-
tions due to the use of matrix-vector type op-
erations in the phase of panel factorization.
These limitations can be remedied by using
the idea of updating of QR factorization, ren-
dering an algorithm, which is much more scal-
able and much more suitable for implementa-
tion on a multi-core processor. It is demon-
strated how the potential of the CELL proces-
sor can be utilized to the fullest by employing
the new algorithmic approach and successfully
exploiting the capabilities of the CELL proces-
sor in terms of Instruction Level Parallelism
and Thread-Level Parallelism.

KEYWORDS: CELL processor, multi-core, numer-
ical algorithms, linear algebra, matrix factorization

1 Introduction

State of the art, numerical linear algebra software uti-
lizes block algorithms in order to exploit the memory
hierarchy of traditional cache-based systems [1, 2].
Public domain libraries such as LAPACK [3] and

ScaLAPACK [4] are good examples. These imple-
mentations work on square or rectangular submatri-
ces in their inner loops, where operations are encap-
sulated in calls to Basic Linear Algebra Subroutines
(BLAS) [5], with emphasis on expressing the compu-
tation as level 3 BLAS (matrix-matrix type) opera-
tions.

The fork-and-join parallelization model of these li-
braries has been identified as the main obstacle for
achieving scalable performance on new processor ar-
chitectures. The arrival of multi-core chips increased
the demand for new algorithms, exposing much more
thread-level parallelism of much finer granularity.
This paper presents an implementation of the QR
factorization based on the idea of updating the QR
factorization. The algorithm, referred to as tile QR,
processes the input matrix by small square blocks
of fixed size, providing for great data locality and
fine granularity of parallelization. In the case of the
CELL processor, it also readily solves the problem of
limited size of private memory associated with each
computational core.

Section 2 provides a brief discussion of related
work. Section 3 presents a short description of the
algorithm. Section 4 gives a quick overview of pro-
cessor architecture, followed by a discussion of vec-
torization and parallelization of the code. Sections 5,
6 and 7 follow with the presentation of the perfor-
mance results, conclusions and possibilities for future
developments.

This article focuses exclusively on the aspects of
efficient implementation of the algorithm and makes
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no attempts at discussing the issues of numerical sta-
bility of the algorithm, nor issues stemming from the
use of single precision with truncation rounding, and
lack of support for NaNs and denorms (which is the
way the CELL processor implements single precision
floating point operations).

2 Related Work

The first experiences with implementing dense matrix
operations on the CELL processor were reported by
Chen et al. [6]. Performance results were presented
for single precision matrix multiplication and the so-
lution of dense systems of linear equations in single
precision using LU factorization. The authors of this
article refined this work by using the LU factorization
in single precision along with the technique of itera-
tive refinement to achieve double precision accuracy
of the final solution [7].

Cholesky factorization was identified as an algo-
rithm rendering itself easily to formulation as algo-
rithm by tiles. It was subsequently implemented, de-
livering parallel scaling far superior to that of LU (in
its classic form). A mixed-precision iterative refine-
ment technique was used to solve symmetric positive
definite systems of equations, producing results with
double precision accuracy while exploiting the speed
of single precision operations [8].

Other developments worth noting were further re-
finements of the work on optimizing the matrix multi-
plication, first by Hackenberg [9, 10] and then by Al-
varo et al. [11]. It is also worthwhile to note that im-
pressive performance was achieved by Williams et al.
for sparse matrix operations on the CELL proces-
sor [12].

A great body of work has been devoted to using
orthogonal transformations for matrix factorization.
Therefore, it would be hard to give a comprehensive
overview. Important work on parallelizing the QR
factorization on distributed memory multiprocessors
was done by Pothem and Raghavan [13] and Chu
and George [14]. Berry et al. successfully applied
the idea of using orthogonal transformations to an-
nihilate matrix elements by tiles, in order to achieve
a highly parallel distributed memory implementation

of matrix reduction to the block upper-Hessenberg
form [15].

One of the early references discussing methods
for updating matrix factorizations is the paper by
Gill et al. [16]. Gunter and van de Geijn employed
the idea of updating the QR factorization to imple-
ment an efficient out-of-core (out-of-memory) factor-
ization [17] and also introduced the idea of inner
blocking for reducing the amount of extra floating
point operations. Buttari et al. [18] identified the
potential for the out-of-memory approach for ”stan-
dard” (x86 and alike) multi-core processors and re-
ported results for QR, LU and also Cholesky factor-
izations.

This article is a result of the convergence of work on
implementing dense matrix operations on the CELL
processor and the work on new, scalable dense linear
algebra algorithms for multi-core architectures.

3 Algorithm

The tile QR algorithm is very well documented in the
literature [17, 18]. The algorithm produces the same
R factor as the classic algorithm (e.g., the implemen-
tation in the LAPACK library), but a different set of
Householder reflectors, which requires a different pro-
cedure to build the Q matrix. Whether the Q matrix
is actually needed depends on the application.

The algorithm relies on four basic operations im-
plemented by four computational kernels (Figure 1).
Here the LAPACK-style naming convention, intro-
duced by Buttari et al. [18], is followed. The capital
letter S at the beginning indicates the use of single
precision.

SGEQRT: The kernel performs the QR factoriza-
tion of a diagonal tile of the input matrix and
produces an upper triangular matrix R and a
unit lower triangular matrix V containing the
Householder reflectors. The kernel also produces
the upper triangular matrix T as defined by the
compact WY technique for accumulating House-
holder reflectors [19, 20]. The R factor overrides
the upper triangular portion of the input and the
reflectors override the lower triangular portion of
the input. The T matrix is stored separately.
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Figure 1: Basic operations of the tile QR factoriza-
tion.

STSQRT: The kernel performs the QR factoriza-
tion of a matrix built by coupling an R fac-
tor, produced by SGEQRT or a previous call
to STSQRT, with a tile below the diagonal tile.
The kernel produces an updated R factor, a
square matrix V containing the Householder re-
flectors and the matrix T resulting from accu-
mulating the reflectors V . The new R factor
overrides the old R factor. The block of reflec-
tors overrides the square tile of the input matrix.
The T matrix is stored separately.

SLARFB: The kernel applies the reflectors calcu-
lated by SGEQRT to a tile to the right of the
diagonal tile, using the reflectors V along with
the matrix T .

SSSRFB: The kernel applies the reflectors calcu-
lated by STSQRT to two tiles to the right of the
tiles factorized by STSQRT, using the reflectors
V and the matrix T produced by STSQRT.

LAPACK-style block QR factorization relies on
the compact WY technique for accumulating House-
holder reflectors in order to express computation in

terms of level 3 BLAS (matrix-vector) operations.
The technique requires calculation of a square matrix
T per each panel of the input matrix, where the size
of T is equal to the width of the panel and, most of
the time, much smaller than the height of the panel.
In this case, the overhead associated with manipulat-
ing the T matrices is negligible.

In a naive implementation of the tile QR factoriza-
tion, a T matrix is produced for each square tile of
the panel and used in updating tiles to the right of
each tile of the panel. This approach results in 25 %
more operations than the standard QR algorithm.

It can be observed, however, that in principle the
updating algorithm can be implemented relying on
level 2 BLAS (matrix-vector) operations, without the
use of the T matrices and associated overheads. In-
terestingly, in such case, the updating algorithm re-
sults in the same number of floating point operations
as the standard QR algorithm (2MN2−2/3N

3). Ob-
viously, such implementation has to perform poorly
due to the memory-bound nature of level 2 BLAS.

The key to achieving performance is to find the
right trade-off between extra operations and mem-
ory intensity. This can be achieved by implementing
the tile operations using the block algorithms within
the tile. With internal block size much smaller than
tile size, resulting T matrices are not ”full” upper
triangular matrices, but instead consist of upper tri-
angular blocks along the diagonal of size equal to the
inner block size (Figure2).

4 Implementation

The process of implementing the algorithm on the
CELL processor included a few design choices (some
of them arbitrary), which the authors would like to
discuss here.

The tile size of 64×64 is a common practice for
implementing dense matrix operations in single pre-
cision on the CELL processor. It has been shown that
at this size matrix multiplication kernels can achieve
over 99 % of the SPE peak [11]. At the same time,
the DMA transfer of a single tile fully utilizes the
memory system consisting of 16 banks interleaved on
a cache line boundary of 128 bytes.
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Figure 2: Inner blocking of the tile operations.

Typically, the inner block size is chosen using some
method of auto-tuning. In this case the inner block
size of 4 has been chosen arbitrarily, mostly for coding
simplicity stemming from the size of the SIMD vector
of four single precision floating point elements. It turs
out, however, that even at such a small size, the code
does not become memory-bound thanks to the small,
flat latency of the Local Store. It also introduces an
acceptable amount of extra floating point operations.
It is very unlikely that a different choice would yield
significantly better results.

Finally, it has been chosen to implement the
SGEQRT and STSQRT kernels using LAPACK-style
block algorithm internally within the kernels. Poten-
tially, the tile algorithm could also be used inside the
kernels. Such approach would, however, dramatically
complicate the application of the reflectors. The up-
date operation could not be implemented efficiently.

4.1 CELL Architecture Overview

The CELL processor has been available since 2005
and is well known to the numerical computing com-
munity. It is not, however, a main-stream solution
and is often perceived as a special-purpose accelera-
tor device. As a result, the authors restrain from an
extensive overview of the architecture, but do intro-
duce the basic CELL vocabulary, and the highlights

of the chip computing core design.
The CELL processor is an innovative multi-core

architecture consisting of a standard proces-
sor, the Power Processing Element (PPE), and
eight short-vector, Single Instruction Multiple
Data (SIMD) processors, referred to as the Syn-
ergistic Processing Elements (SPEs). The SPEs
are equipped with scratchpad memory referred to
as the Local Store (LS) and a Memory Flow
Controller (MFC), to perform Direct Memory Ac-
cess (DMA) transfers of code and data between the
system memory and the Local Store.

The core of the SPE is the Synergistic Processing
Unit (SPU). The SPU is a RISC-style SIMD proces-
sor featuring 128 general purpose registers and 32-bit
fixed-length instruction encoding. An SPU imple-
ments instructions to perform single and double pre-
cision floating point arithmetics, integer arithmetics,
logicals, loads and stores, compares and branches.
SPU’s nine execution units are organized into two
pipelines, referred to as the odd and even pipeline.
Instructions are issued in-order, and two indepen-
dent instructions can be issued simultaneously if they
belong to different pipelines (what is referred to as
dual-issue).

SPU executes code form the Local Store and oper-
ates on data residing in the Local Store, which is a
fully pipelined, single-ported, 256 KB of Static Ran-
dom Access Memory (SRAM). Load and store in-
structions are performed within local address space,
which is untranslated, unguarded and noncoherent
with respect to the system address space. Loads and
stores transfer 16 bytes of data between the regis-
ter file and the Local Store and complete with fixed
six-cycle delay and without exception.

4.2 SIMD Vectorization

The keys to maximum utilization of the SPEs are
highly optimized implementations of the computa-
tional kernels, which rely on efficient use of the
short-vector SIMD architecture. For the most part,
the kernels are developed by applying standard loop
optimization techniques, including tiling, unrolling,
reordering, fusion, fission, and sometimes also col-
lapsing of loop nests into one loop spanning the same
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iteration space with appropriate pointer arithmetics.
Tiling and unrolling are mostly dictated by Local
Store latency and the size of the register file, and
aim at hiding memory references and reordering of
vector elements, while balancing the load of the two
execution pipelines. Due to the huge size of the SPU’s
register file, unrolling is usually quite extensive.

Most of the techniques used to build the tile QR
kernels are similar to those used to build the Cholesky
factorization kernels [8] and the high performance
SGEMM (matrix multiplication) kernels [11]. The
main difference here is the use of inner blocking,
which substantially narrows down the design choices.
Most importantly, the use of inner blocking imposes
the structure of nested loops, where a single iteration
of the outermost loop implements a single block op-
eration. For instance, one iteration of the outermost
loop of SGEQRT and STSQRT produces a block of
four reflectors and the associated 4×4 upper triangu-
lar block of T ; one iteration of the outermost loop of
SLARFB and SSSRFB applies a block of four reflec-
tors and utilizes a 4×4 block of T .

All kernels are written in C using mostly SIMD
language extensions (intrinsics) and sometimes inline
assembly. Table 1 shows the size of the C source
code, assembly code and object code of the kernels.
Since all the code is hand-written, it gives some idea
of its complexity. Table 2 reports the performance
of the kernels in terms of Gflop/s and percentage of
the peak (of a single SPE). The authors are only able
to achieve this performance while compiling the ker-
nels with SPU GCC 3.4.1. The paragraphs that fol-
low briefly discuss technicalities related to each of the
kernels.

The SSSRFB kernel, being the most
performance-critical (contributing the most floating
point operations), is optimized the most. This kernel
actually allows for the most extensive optimizations,
since all loops have fixed boundaries. Therefore, the
technique of collapsing loop nests into one loop is
used here, along with double-buffering, where odd
and even iterations overlap each other’s arithmetic
operations with loads, stores and vector element
permutations. Also, input arrays are constrained
with 16 KB alignment, and pointer arithmetic is
implemented by calculating data offsets from the

Table 1: Complexity characteristics of tile QR SPE
micro-kernels. (Bold font indicates the most complex
kernel.)

Kernel Lines Lines Object
Name of Code of Code Size

in Ca in ASMb [KB]c

SSSRFB 1,600 2,200 8.8
STSQRT 1,900 3,600 14.2
SLARFB 600 600 2.2
SGEQRT 1,600 2,400 9.0

Total 5,700 8,800 34.2
asize of code in C before or after preprocessing,

whichever is smaller
bsize of code in assembly after removing

the .align statements
csum of .text and .rodata sections

(not size of the .o file)

Table 2: Performance charecteristics of tile QR
SPE micro-kernels. (Bold font indicates the most
performance-critical kernel.)

Kernel Exec. Flop Exec. Fraction

Name Time Count Rate of Peak

[µs]a Formulab [Gflop/s]c [%]a,d

SSSRFB 47 4b3 22.16 87
STSQRT 46 2b3 11.40 45
SLARFB 41 2b3 12.70 50
SGEQRT 57 4/3b

3 6.15 24
avalues are rounded
btile size b = 64
cvalues are truncated
dsingle SPE

iteration variable (loop counter) by using bit manip-
ulation. It turns out that all these operations can be
implemented using quadword shifts, rotations and
shuffles, and placed in the odd pipeline, where they
can be hidden behind floating point arithmetics.
Interestingly, it also turns out that for some loops,
mostly rearranging vector elements, shuffles can be
replaced with bit select operations to yield more
balanced odd and even pipeline utilization.
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In principle, the SSSRFB kernel shares many prop-
erties with the SGEMM kernel, and one could expect
performance similarly close to the peak (99.8 % was
reported for SGEMM [11]). This is not the case for
a few reasons. The main contributor of performance
loss of the SSSRFB kernel is the prologue and epi-
logue code of the inner loops, which cannot be hid-
den behind useful work. Also, the reported perfor-
mance of the SSSRFB kernel cannot reach the peak
because of the extra operations, related to the ap-
plication of the T matrix, which are not accounted
for in the standard formula for operation count, 4b3.
The actual number of operations is 4b3 + sb2, where
s is the size of internal blocking.

The STSQRT kernel has been identified as the sec-
ond most critical for performance. STSQRT pro-
duces data, which is consumed by many SSSRFB ker-
nels in parallel. As a result, it is important, in the
context of parallel scheduling, that the STSQRT ker-
nel executes in a shorter time than the SSSRFB ker-
nel. This task proved quite difficult and the STSQRT
kernel took significant coding effort and results in the
longest code. One fact that is taken advantage of is
that, at each step (each outer loop iteration), a block
of reflectors of the same size is produced (64×4). This
allowes for performing the panel factorization (pro-
duction of four reflectors) to be executed entirely in
the register file, using 64 registers. First, the panel
is loaded, then four steps are performed, each pro-
ducing one reflector and applying it to the rest of the
panel, then the panel is stored. The whole procedure
is completely unrolled to one block of straight-line
code.

As extreme as it might seem, this step alone proves
to be insufficient to deliver the desired performance.
The operations applying the panel to the remaining
submatrix have to also be extensively optimized by
heavy unrolling and addressing of special cases (e.g.,
different treatment of odd and even loop boundaries).
It took significant effort to accomplish execution time
slightly below the one of the SSSRFB kernel at an
execution rate of less than half of the peak.

There is less to be said about the two remaining
kernels, SLARFB and SGEQRT. The SLARFB ker-
nel turnes out to deliver very good performance with-
out much effort. On the other hand, SGEQRT does

SGEQRT STSQRT SLARFB SSSRFB

0 1 2 3 4

5 6 7 0

1 2 3

4 5

6

Figure 3: Cyclic partitioning of work to eight SPEs in
the five consecutive steps of factorizing a 5×5 blocks
matrix.

not deliver good performance despite efforts similar
to the STSQRT kernel. This is to be expected, how-
ever, since none of the loops have fixed boundaries.
This kernel is executed the least and its poor perfor-
mance does not affect the overall performance much.
The situation is analogous to the SPOTRF kernel of
the Cholesky factorization, for which similar perfor-
mance is reported (roughly 6 Gflop/s [8]).

The last technical detail, which has not been re-
vealed so far, is that the T factors are stored in a
compact format. Each element of T is pre-splatted
across a 4-element vector; each 4×4 triangular block
of T is stored in a column of 10 vectors and the T
array contains 16 such columns of overall size of 2560
bytes.

4.3 SPE Parallelization

For the distribution of work for parallel execution on
the SPEs, static 1D cyclic partitioning is used, shown
in Figure 3. The effect of ”wrapping” the SPEs as-
signment from one step to another results in pipelin-
ing of factorization steps, basically implementing the
technique known in linear algebra as the lookahead.
Following Figure 3, one can observe that SPE 5 can
start factorizing the second panel as soon as SPE 1
finishes the first SSSRFB operation.

Static work partitioning makes the synchronization
extremely straightforward. With all the work prede-
termined, each SPE can proceed on its own, and only
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Figure 4: The DAG (Direct Acyclic Graph) of a tile
QR factorization of a 4×4 blocks matrix.

needs to check if dependencies are satisfied for each
operation. Figure 4 shows the dependencies between
tasks of the tile QR algorithm expressed as a DAG
(Direct Acyclic Graph).

Before fetching a tile for an operation in a given
step, the SPE needs to check if the preceding step
has completed on that tile. The SPE does that by
looking up a progress table in its Local Store. The
progress table contains the global progress informa-
tion and is replicated on all SPEs. The progress ta-
ble holds one entry (byte) for each tile of the input
matrix, indicating the number of the step which has
completed on that tile. At the completion of an op-
eration, an SPE broadcasts the progress information
to all progress tables with an LS-to-LS DMA.

As one can see, the scheme implements the
right-looking (aggressive) variant of the algorithm.
Although different scenarios can be easily imagined,
this version makes sense from the standpoint of ease
of implementation. In this arrangement, an SPE fac-
torizing the panel can hold the diagonal tile in place,

Algorithm 1 Double buffering of communication in
the tile QR implementation.

1: while more work to do do
2: if data not prefetched then
3: wait for dependencies
4: fetch data
5: end if
6: if more work to follow then
7: if dependencies met then
8: prefetch data
9: end if

10: end if
11: compute
12: swap buffers
13: end while

while streaming the tiles below diagonal through Lo-
cal Store. Similarly, an SPE updating a column of
the trailing submatrix can hold the topmost tile in
place, while streaming the tiles below it through Lo-
cal Store. Data reuse is accomplished this way, which
minimizes the traffic to main memory. It needs to be
pointed out, though, that this is absolutely not neces-
sary from the standpoint of memory bandwidth. The
tile QR factorization is so compute intensive that all
memory traffic can easily be hidden behind compu-
tation with data reuse or without it.

At each step, the tiles of the input matrix are
exchanged between the main memory and Local
Store. Important aspect of the communication is
double-buffering. Since work partitioning is static,
upcoming operations can be anticipated and the nec-
essary data fetched. In fact all data buffers are du-
plicated and, at each operation, a prefetch of data is
initiated for the following operation (subject to de-
pendency check). If the prefetch fails for dependency
reasons, data is fetched in a blocking mode right be-
fore the operation. Algorithm 1 shows the mechanism
of double buffering in the tile QR implementation.

Figure 5 shows the execution trace of factorizing a
512×512 matrix using all the eight SPEs.
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Figure 5: Execution trace of a factorization of a 512×512 matrix. (total time: 1645 µs, execution rate:
109 Gflop/s).

5 Results

Results presented in this section are produced on a
single 3.2 GHz CELL processor of a QS20 dual-socket
blade running Fedora Core 7 Linux and on a PlaySta-
tion 3 running Fedora Core 7 Linux. The code is
cross-compiled using x86 SDK 3.0, although, as men-
tioned before, the kernels are cross-compiled with an
old x86 SPU GCC 3.4.1 cross-compiler, since this
compiler yields the highest performance. The results
are checked for correctness by comparing the R factor
produced by the algorithm to the R factor produced
by a call to the LAPACK routine SGEQRF ran on
the PPE.

It also needs to be mentioned that the implemen-
tation utilizes Block Data Layout (BDL), where each
tile is stored in a continuous 16 KB portion of the
main memory, which can be transferred in a sin-
gle DMA, what puts an equal load on all 16 mem-
ory banks. Tiles are stored in the row-major or-
der, and also data within tiles is arranged in the
row-major order, a common practice on the CELL
processor. Translation from standard, (FORTRAN)
layout to BDL can be implemented very efficiently on
the CELL processor [7]. Here the translation is not
included in timing results. Also, in order to avoid the
problem of TLB misses, all the memory is allocated
in huge TLB pages and ”faluted in” at initialization.
As a result, an SPE never incurs a TLB miss during
the run. Finally, on the QS20 blade it is assured that
the memory is allocated on the NUMA node associ-
ated with the processor.

Table 3 and Figure 6 show the performance of the

algorithm in Gflop/s, while using the standard for-
mula, 2MN2 −2 /3N

3, for operation count. Table 3
also shows the percentage of the processor’s peak of
204.8 Gflop/s and the percentage of the SSSRFB per-
formance times the number of SPEs, which may serve
as a quality measure for scheduling, synchronization
and communication.
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Figure 6: Performance of the tile QR factorization in
single precision on a single CELL processor (8 SPEs)
of a QS20 dual-socket blade and on a PlayStation 3 (6
SPEs). Square matrices were used. The dashed hori-
zontal lines mark performance of the SSSRFB kernel
times the number of SPEs.
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Table 3: Performance of the tile QR factorization in
single precision on a single 3.2 GHz CELL processor
(8 SPEs) of a QS20 dual-socket blade. (Bold font
indicates the point of exceeding half of the processor
peak.)

Matrix Execution Fraction Fraction of
Sizea Rate of Peak SSSRFB Peak

[Gflop/s]b [%]c [%]c

128 12 6 7
256 40 20 23
384 81 40 46
512 109 53 62
640 124 61 70
768 137 67 77
896 146 71 83
1024 150 73 85
1280 157 77 89
1536 162 79 91
2048 166 81 94
2560 168 82 95
3072 170 83 96
3584 171 84 97
4096 171 84 97

asquare matrices were used
bvalues are truncated
cvalues are rounded

The presented implementation crosses half of the
peak performance for problems as small as 512×512.
For a 1024×1024 problem, it reaches 150 Gflop/s. It
plateaus (gets close to its asymptotic performance)
for problems larger than 2,500×2,500.

The code used to produce the reported results is
freely available through one of the author’s web site,
http://www.cs.utk.edu/~kurzak/.

6 Conclusions

The presented implementation of tile QR factoriza-
tion on the CELL processor allows for factorization
of a 4000×4000 dense matrix in single precision in
exactly half a second. To the authors’ knowledge, at
present, it is the fastest reported time of solving such
problem by any semiconductor device implemented

on a single semiconductor die.

It has been demonstrated that a complex dense
linear algebra operation, such as the QR factoriza-
tion, can be very efficiently implemented on a mod-
ern multi-core processor, such as the CELL proces-
sor, through the use of appropriate algorithmic ap-
proaches. Specifically, fine granularity of paralleliza-
tion and loose model of synchronization allow for
achieving high performance.

It has been shown that a short-vector SIMD ar-
chitecture, such as the one of the SPE, can handle
complex operations very efficiently, although, at this
moment, significant programming effort by an expe-
rienced programmer is required.

7 Future Work

Based on experiences with Cholesky factorization,
the authors have no doubt that the QR implementa-
tion can easily be extended to efficiently utilize two
CELL processors in the QS20 blade.

Experiences with solutions of linear systems of
equations using LU and Cholesky factorizations show
that the technique of mixed-precision, iterative re-
finement can be used to achieve double precision ac-
curacy, while exploiting the speed of single precision.
It would be straightforward to apply the same ap-
proach to solve linear systems of equations or least
squares problems using QR factorization. In fact,
due to the higher cost, in terms of floating point op-
erations of the QR factorization, the overhead of the
iterative process will be much smaller than for the
other cases.

Finally, it should be pointed out that LU factoriza-
tion can be implemented in the same manner, yield-
ing the tile LU algorithm that is bound to produce
scaling similar to the QR and Cholesky algorithms,
which is superior to the LU implementation reported
so far. Although, it needs to be pointed out that the
tile LU algorithm has different properties in terms of
numerical stability.

9

http://www.cs.utk.edu/~kurzak/


8 Acknowledgements

The authors thank Alfredo Buttari and Julien Lan-
gou for their insightful comments, which helped im-
mensely to improve the quality of this article.

References

[1] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and
H. A. van der Vorst. Numerical Linear Algebra
for High-Performance Computers. SIAM, 1998.

[2] J. W. Demmel. Applied Numerical Linear Alge-
bra. SIAM, 1997.

[3] E. Anderson, Z. Bai, C. Bischof, L. S. Black-
ford, J. W. Demmel, J. J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKen-
ney, and D. Sorensen. LAPACK Users’ Guide.
SIAM, 1992.

[4] L. S. Blackford, J. Choi, A. Cleary,
E. D’Azevedo, J. Demmel, I. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley.
ScaLAPACK Users’ Guide. SIAM, 1997.

[5] Basic Linear Algebra Technical Forum. Basic
Linear Algebra Technical Forum Standard, Au-
gust 2001.

[6] T. Chen, R. Raghavan, J. Dale, and E. Iwata.
Cell Broadband Engine architecture and its
first implementation, A performance view.
http://www-128.ibm.com/developerworks/
power/library/pa-cellperf/, November
2005.

[7] J Kurzak and J. J. Dongarra. Implementation
of Mixed Precision in Solving Systems of Lin-
ear Equations on the CELL Processor. Concur-
rency Computat.: Pract. Exper., 19(10):1371–
1385, 2007.

[8] J. Kurzak, A. Buttari, and J. J. Dongarra. Solv-
ing Systems of Linear Equation on the CELL
Processor Using Cholesky Factorization. Trans.
Parallel Distrib. Syst., 2008.

[9] D. Hackenberg. Einsatz und Leistungsanalyse
der Cell Broadband Engine. Institut für Tech-
nische Informatik, Fakultät Informatik, Technis-
che Universität Dresden, February 2007. Großer
Beleg.

[10] D. Hackenberg. Fast matrix multi-
plication on CELL systems. http:
//tu-dresden.de/die_tu_dresden/
zentrale_einrichtungen/zih/forschung/
architektur_und_leistungsanalyse_von_
hochleistungsrechnern/cell/, July 2007.

[11] W. Alvaro, J. Kurzak, and J. J. Dongarra. Fast
and small short vector SIMD matrix multiplica-
tion kernels or the synergistic processing element
of the CELL processor. In 2008 International
Conference on Computational Science. Lecture
Notes in Computer Science 5101:935-944, 2008.

[12] S. Williams, L Oliker, R. Vuduc, J. Shalf,
K. Yelick, and J. Demmel. Optimization of
sparse matrix-vector multiplication on emerging
multicore platforms. In ACM/IEEE SC’07 Con-
ference, 2007.

[13] A. Pothen and P. Raghavan. Distributed orthog-
onal factorization: givens and householder algo-
rithms. SIAM J. Sci. Stat. Comput., 10(6):1113–
1134, 1989.

[14] E. Chu and A. George. QR factorization of
a dense matrix on a hypercube multiprocessor.
SIAM J. Sci. Stat. Comput., 11(5):990–1028,
1990.

[15] M. W. Berry, J. J. Dongarra, and Y. Kim. LA-
PACK Working Note 68: A Highly Parallel Al-
gorithm for the Reduction of a Nonsymmetric
Matrix to Block Upper-Hessenberg Form. Tech-
nical Report UT-CS-94-221, Computer Science
Department, University of Tennessee, 1994.

[16] P. E. Gill, G. H. Golub, W. A. Murray, and
M. A. Saunders. Methods for Modifying Ma-
trix Factorizations. Mathematics of Computa-
tion, 28(126):505–535, 1974.

10

http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898714281/
http://www.amazon.com/exec/obidos/ASIN/0898713897/
http://www.amazon.com/exec/obidos/ASIN/0898713897/
http://www.netlib.org/lapack/lug/
http://www.netlib.org/scalapack/slug/
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1002/cpe.1164
http://dx.doi.org/10.1109/TPDS.2007.70813
http://dx.doi.org/10.1109/TPDS.2007.70813
http://dx.doi.org/10.1109/TPDS.2007.70813
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/architektur_und_leistungsanalyse_von_hochleistungsrechnern/cell/
http://dx.doi.org/10.1137/0910067
http://dx.doi.org/10.1137/0910067
http://dx.doi.org/10.1137/0910067
http://dx.doi.org/10.1137/0911057
http://dx.doi.org/10.1137/0911057
http://www.netlib.org/lapack/lawnspdf/lawn68.pdf
http://www.netlib.org/lapack/lawnspdf/lawn68.pdf
http://www.netlib.org/lapack/lawnspdf/lawn68.pdf
http://www.netlib.org/lapack/lawnspdf/lawn68.pdf


[17] B. C. Gunter and R. A. van de Geijn. Paral-
lel Out-of-Core Computation and Updating the
QR Factorization. ACM Transactions on Math-
ematical Software, 31(1):60–78, 2005.

[18] A. Buttari, J. Langou, J. Kurzak, and J. J.
Dongarra. LAPACK Working Note 191: A
Class of Parallel Tiled Linear Algebra Algo-
rithms for Multicore Architectures. Technical
Report UT-CS-07-600, Electrical Engineering
and Computer Science Department, University
of Tennessee, 2007.

[19] C. Bischof and C. van Loan. The WY represen-
tation for products of householder matrices. J.
Sci. Stat. Comput., 8:2–13, 1987.

[20] R. Schreiber and C. van Loan. A storage-efficient
WY representation for products of householder
transformations. J. Sci. Stat. Comput., 10:53–
57, 1991.

11

http://doi.acm.org/10.1145/1055531.1055534
http://doi.acm.org/10.1145/1055531.1055534
http://doi.acm.org/10.1145/1055531.1055534
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf
http://www.netlib.org/lapack/lawnspdf/lawn191.pdf

	Introduction
	Related Work
	Algorithm
	Implementation
	CELL Architecture Overview
	SIMD Vectorization
	SPE Parallelization

	Results
	Conclusions
	Future Work
	Acknowledgements

