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Abstract. We address some key issues in designing dense linear alge-
bra (DLA) algorithms that are common for both multi/many-cores and
special purpose architectures (in particular GPUs). We present them in
the context of an LU factorization algorithm, where randomization tech-
niques are used as an alternative to pivoting. This approach yields an
algorithm based entirely on a collection of small Level 3 BLAS type com-
putational tasks, which has emerged as a common goal in designing DLA
algorithms for new architectures. Other common trends, also considered
here, are block asynchronous task execution and “Block” layouts for the
data associated with the separate tasks. We present numerical results
and other specific experiments with DLA algorithms on NVIDIA GPUs
using CUDA. The GPU results are also of interest themselves as we show
a performance of up to 160 Glop/s on a single Quadro FX 5600 card.
Keywords: dense linear algebra, parallel algorithms, LU factorization,
multicore processors, graphic process units.

1 Introduction

Parallel platforms based on multicore chips are becoming dominant systems in
High Performance Computing (HPC). In the Top500 list released in November
2007, almost 90% of the systems are based on dual-core or quad-core architec-
tures. Moreover, special-purpose hardware, like GPUs or the CELL BE, and
even reconfigurable hardware (e.g FPGAs), are also becoming pervasive in the
HPC world, as evident from many current conferences in the field (e.g. including
PARA08) and as they are included more often as accelerators in HPC systems.
The changes introduced in these new architectures create a need for the devel-
opment of innovative algorithms that would efficiently use the new hardware.
Major common challenges here are not only to design algorithms of high paral-
lelism but also algorithms that would overcome the exponentially growing gap
between processor speed and memory (e.g. CPU speeds have been improving at
59% per year, main memory bandwidth at only 23%, and main memory latency
at a mere 5.5% [6]). In other words, we need parallel algorithms of high enough
ratio of floating point calculations to data required to mask slow memory speeds.
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There is a common understanding on how to design certain DLA algorithms
for current multicores chips. As mentioned in [4], algorithms should satisfy the
following criteria to take advantage of multicore processors:

- fine granularity, as cores are associated with relatively small local memories,
- asynchronicity, to hide the latency of access to memory.

These ideas are applied in current efforts for developing efficient DLA algorithms
for multicore [4, 18]. The fine granularity is achieved by splitting the operations
into tasks that operate on smaller blocks, resulting in so-called “tiled” algo-
rithms while asynchronicity is achieved by dynamically scheduling the tasks
using a Directed Acyclic Graph (DAG). Data storage is also essential for effec-
tive computations and Block Data Layout [9] can be successfully applied to tiled
algorithms. Variations of these ideas can be also recognized in algorithms for
GPUs as we show in Section 3, the CELL BE [13], and even FPGAs (e.g. in the
case of out-of-core FPGA problems or multi-FPGA use).

The general directions just outlined work well when an algorithm can gener-
ate a collection of independent tasks, each of high ratio of floating point calcu-
lations to data required. A subject of current research in the field is to design
algorithms where all the tasks involved are of Level 3 BLAS. For example, block
Cholesky already has this property, but the traditional block Householder QR
and block LU with partial pivoting do not, as they have panels involving Level
2 BLAS. For QR, certain out-of-core versions remove this limitation [8], and for
LU, the randomization techniques (among others) lead to entirely Level 3 BLAS
algorithms, as described in Section 2.

2 An Alternative to Pivoting in Algorithms for New

Architectures

2.1 Randomization Technique to Avoid Pivoting

Pivoting is a well-known technique to ensure stability in matrix algorithms.
In particular, the commonly used method of Gaussian elimination (GE) with
partial pivoting (GEPP) is implemented in current linear algebra libraries for
solving square linear systems Ax = b resulting in very stable algorithms. In the
LAPACK [1] implementation of GE, during pivoting rows are swapped at once,
which inhibits the exploitation of more asynchronicity between block operations.

In a recent paper, [7] describes a pivoting strategy that minimizes the number
of messages exchanged during the panel factorization and shows that this ap-
proach is stable in practice. For multicore, pairwise pivoting is often considered
(e.g in [4]) but this generates a significant overhead since the rows are swapped
in pairs of blocks. Still for multithreaded architecture, [18] describes an algo-
rithm by blocks for LU factorization that uses a pivoting technique referred to
as incremental pivoting based on principles used for out-of-core solvers [11]. For
implementation of GE on GPUs, the cost of pivoting may represent more than
30% of the global computation. To achieve higher performance on the new ar-
chitectures like multicore or GPUs, it is worth investigating other forms of GE,
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possibly less stable than GEPP.
This study is experimental and based on statistical results and observations. The
first question we may ask is: do we have to pivot for random matrices? In Fig-
ure 1, we consider matrices normally distributed N (0, 1) of various sizes (sample
of 100 matrices for each size) and we compare the error in the LU factorization
obtained when we do partial pivoting (GEPP) and no pivoting at all (GENP).
We observe that the error obtained with GENP is almost always between 10−10

and 10−14 and thus, following [19] and [10, p. 239], we could get a solution as
accurate as GEPP just by adding iterative refinement in fixed precision. Then a
first empirical result here is that there would be no need for pivoting when the
matrix is N (0, 1). Moreover, it is observed in [20] that for many distributions of

Fig. 1. Pivoting vs nonpivoting in LU on matrices ∼ N (0, 1)

matrices, the matrix elements after the first few steps of GE (using partial or
complete pivoting) are approximately normally distributed.

Then the case without pivoting was studied in [22] where satisfying prob-
abilistic bounds on growth factors are given for the occurrence of small pivots
and for the growth factors when the entries of A are N (0, 1).

The idea of [16, 17] was to transform the original matrix into a matrix that
would be sufficiently “random” so that, with probability close to 1, pivoting is
not needed. These transformations are in general chosen as unitary because they
are numerically stable and they keep the condition number of the matrix un-
changed (when using the 2-norm). The random transformation proposed in [17]
is based on the Discrete Fourier Transform and the transformation proposed
in [16] is referred to as Random Butterfly Transformation (RBT) which consists
of preconditioning a given matrix A using particular random matrices referred
to as butterfly matrices or products of them. Having the butterfly matrices U
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and V , then GENP is performed on the matrix U∗AV and, to solve Ax = b,
we instead solve (U∗AV )y = U∗b followed by x = V y, where U∗ denotes the
conjugate transpose of U . Both transformations use complex arithmetic and
require efficient implementations of FFT-like computations. In addition to the
drawback of handling complex-valued matrices, resulting in extra-storage and
extra-computation, we may also have an overhead due to random numbers gen-
eration. This is why, in Section 2.3, we perform numerical experiments with
real-valued butterfly matrices. For better stability, we add systematically itera-
tive refinement (in the working precision) when we do GENP on a randomized
matrix.

2.2 Using QR Factorization for Solving Linear Systems

Another element that we would like to point out is that, if we want to avoid piv-
oting, this is always possible to use the QR factorization to solve linear systems.
We recall here the following theorem from [10, p. 361] that shows the interest
in terms of backward stability for using the Householder QR factorization for
linear systems.

Theorem 1 Let A ∈ R
n×n be non singular. Suppose we solve the system Ax = b

with the aid of a QR factorization computed by the Householder algorithm. The

computed x̂ satisfies

(A + ∆A)x̂ = b + ∆b,

where

‖∆aj‖2 ≤ γ̃n2‖aj‖2, j = 1 : n, ‖∆b‖2 ≤ γ̃n2‖b‖2.

In Theorem 1, ∆aj denotes the jth column of A and γ̃n2 is an integer constant

of the form cn2u
1−cn2u

where c is a small integer constant and u is the unit roundoff.
This theorem implies a small column-wise relative backward error but not a
small component-wise relative backward error ω. However, [10] shows also that
ω will be small after one step of iterative refinement, provided that A is not too
ill conditioned and |A||x̂| is not too badly scaled. Contrary to GEPP, we do not
have to worry here about large element growth.

The computational cost for solving a linear system with Householder QR is
about twice that of an LU factorization (4n3/3 + n2 vs 2n3/3 + 2n2) but QR is
well suited for tiled algorithms since it is rich in Level 3 BLAS operations. In
the worst case where pivoting requires half the time of the whole factorization,
QR is a very competitive option because of its stability properties.

2.3 Numerical Experiments

Experiments on accuracy were performed using Matlab on matrices of size 1024
from Matlab gallery and Higham’s Matrix Computation Toolbox [10] (matrix
gfpp for which the growth factor for GEPP is maximum). The right-hand side
is generated from a uniform distribution on [0, 1]. We use here a simple form of
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real-valued butterfly, also given in [16], of the form

(

P Q
R S

)

, where P, Q, R and

S are diagonal random n/2 × n/2 matrices.
In Table 1, we compare the linear system solution obtained using GEPP (as

it is implemented in LAPACK), GENP, GENP followed by RBT, and QR. In
each case we have the possibility to add iterative refinement, depending on the
stopping criterion given below. We report the component-wise relative backward
error from [15] expressed by

ω = max
i

|Ax̂ − b|i
(|A| · |x̂| + |b|)i

,

and, similarly to [2, 19], the iterative refinement algorithm is activated while
ω > (n+1)u. We also report the number of iterations in the iterative refinement
process. For the 3 first matrices, using RBT is not useful because GENP gives
a good solution. However this shows that these matrices are not degenerated
by the randomization applied to them. We observe that GENP fails on the 3
last matrices. Iterative refinement turns out to be necessary when using RBT
and in each case, it gives a backward error that is similar or better than GEPP
except for the matrix “chebspec”. This latter case is in accordance with [16] who
mentioned that RBT is less accurate than GEPP for ill-conditioned matrices.
Note also that even though iterative refinement was not necessary for QR on the
matrices of Table 1, it may be useful in some cases [10, p. 240].

Matrix chebspec circul condex fiedler orthog gfpp

Cond 6 · 1014 5 · 102 1 · 102 2 · 105 1 · 100 2 · 102

GEPP 5 · 10−16 1 · 10−15 2 · 10−15 2 · 10−15 2 · 10−15 2 · 10−2

# iter 0 0 0 0 0 10

GENP 5 · 10−16 1 · 10−15 4 · 10−15 Fail Fail Fail
# iter 0 1 0 − − −

QR 9 · 10−16 2 · 10−15 3 · 10−15 6 · 10−15 3 · 10−16 1 · 10−16

# iter 0 0 0 0 0

RBT+GENP 6 · 10−14 1 · 10−15 4 · 10−15 1 · 10−15 4 · 10−16 2 · 10−16

# iter 3 1 1 1 2 1
Table 1. Comparison of linear system solutions using GEPP and RBT on some ma-
trices.

In Figure 2 we report performance in Gflop/s for the LU factorization on
GPU where GEPP and GENP are LAPACK-like implementations in which we
have changed BLAS routines by CUDA BLAS ones. RBT+GENP gets the per-
formance of GENP since the cost of the random transformation is negligible on
GPU for this particular type of butterfly matrices. We observe that performance
of the LU factorization is improved by more than 30% by using randomization
before GENP with LAPACK-like implementations. However, since by using ran-
domization we know that we are not going to pivot, we can optimize GENP by
using only Level 3 BLAS (contrary to what is done in LAPACK). In that case,
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as shown in Figure 2, the performance of GENP+RBT is more than twice that
of GEPP. More GPU implementation details and performance related issues will
be discussed in the next section.

Fig. 2. Performance of single precision LU factorization using GEPP and RBT+GENP
on GPUs

3 DLA Experiments Using GPUs

We have done a series of experiments using NVIDIA GPUs, trying to further
develop the methodology in efficiently using these architectures for DLA. The
computations presented here are on a Quadro FX 5600 installed on 4× Dual Core
AMD Opteron(tm) Processor 256 (1800 MHz, 1024 KB cache) with PCIe×16.
For most part we used CUDA 1.0 and an optimized sgemm kernel from V. Volkov
[21] running at about 180 Gflop/s. We also used LAPACK and ATLAS. The tech-
niques discovered during our work tend to have common ground with algorithm
design principles for other new architectures, as we show in this section.

The main challenges to effectively program DLA for GPUs, similarly to many-
cores and other new architectures, is to design algorithms of high parallelism and
high ratio of floating point calculations to data required (also known as high
computational intensity). And indeed, algorithms for GPUs, with processors
count much higher than for current multicores (e.g. NVIDIA’s Quadro FX 5600
has 128), have to be designed to split the computation into many parallel tasks
and each task to have high enough computational intensity (CI) in order to be
efficiently executed on a single processing element (PE). Figure 3 shows NVIDIA
GPU’s hardware model and a typical programming pattern [14] where blocks of
data are “pooled” into the fast shared memory followed by computation. Usually
many more treads of execution (than number of PE available) are encouraged
in order to overlap computation and communication (hide high latencies to get
data from the main memory). We outlined in Section 1 one general idea that
seems promising for current multicores, namely to design algorithms of

- fine granularity (through task splitting), and
- asynchronicity.
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Fig. 3. Hardware model and a programming example model for NVIDIA GPU.

Here, as GPUs are better suited for data-parallel computations,

1. The tasks splitting has to be done within the BLAS level (BLAS level par-
allelism), and

2. Asynchronicity can be added in hybrid CPU-GPU computations where
a large computationally intensive task is run on the GPU and small tasks,
independent of the task being run on the GPU and usually sequential part
of an algorithm (that we would like to “hide”), are asynchronously started
on the CPU or other fast computational devices, and in particular FPGAs.

In view of this broad design direction, our first experiment is to test the per-
formance of LAPACK routines by just replacing their BLAS calls with BLAS for
GPUs (e.g. CUBLAS 5). Figure 4, Left shows the performance of LAPACK’s LU,
QR, and Cholesky factorizations on NVIDIA’s Quadro FX 5600 using CUBLAS.
In this experiment memory is allocated on the GPU, the CPU runs the LAPACK
code which is a sequence of BLAS calls that get executed on the GPU. There
is no large memory transfers as the matrix to be factored and the work space
stay only on the GPU throughout the computation. Note that the programming
efforts here are insignificant and we get a “good” performance for large prob-
lems, but still, we are not getting close to the peak (e.g. sgemm in CUBLAS
1.0 runs at 120 Gflop/s). Similar deficiency about this approach, just based on
BLAS level parallelism, has also been observed for multicores. Finally, to under-
line the importance of having entirely Level 3 BLAS algorithms, note that the
block Cholesky factorization is the fastest of the three.

Our next experiment shows the effect of asynchronicity in hybrid CPU-
GPU algorithm designs. An easy way to demonstrate it is using the left-looking
Cholesky factorization [5, p. 86]. A step of the algorithm involves two tasks
that are independent and can be asynchronously scheduled, namely a “large”
sgemm-type update of the trailing matrix can be started on the GPU and at
the same time a Cholesky factorization of a “small” block (from the diagonal

5 See http://www.nvidia.com/object/cuda home.html
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Fig. 4. Left: Performance of LAPACK’s single precision LU, QR, and Cholesky fac-
torizations using NVIDIA’s CUDA BLAS (CUBLAS) on a Quadro FX 5600; Right:
hybrid CPU + GPU computation on Cholesky factorization.

of the matrix) on the CPU (using LAPACK’s spotf2), resulting in overlapping
(or hiding) the sequential small task with the large highly parallel task. Adding
this optimization more than doubles overall performance on smaller problems,
as shown on Figure 4, Right (the pink line ’CPU + CUBLAS’ vs the blue line
’CUBLAS’). The sequence of starting the kernels from the CPU is as follows:
(1) cublasGetMatrix to get the data for spotf2 from the GPU to the CPU,
(2) cublasSgemm, which is asynchrononous so the CPU can start
(3) spotf2, and finally
(4) cublasSetMatrix to move the result of spotf2 back to the GPU.
On current NVIDIA cards communications steps (1) and (4) can not be over-
lapped with computations but in future cards will be provided. We note that
we have also tried to code small tasks (like the diagonal block factorizations in
Cholesky) directly in CUDA but there is not enough parallelism available in these
small problems, and as a result even if no overlap was possible performance is
slower compared to performance of transferring and factoring them on the CPU.
The same is true for Level 2 BLAS panel factorizations, up to certain size, when
the GPU would become more efficient to execute them. The same observations
were made also in [3, 21]. Another idea that we are currently exploring, and
that is related to this observation, is to use reconfigurable computing, and in
particular FPGAs, in hybrid calculations of this type.

The approach, as described so far involves very little programming develop-
ment efforts since we are using LAPACK which plugs into the CUDA BLAS.
The performance though greatly depend on having optimized BLAS. For exam-
ple, Figure 4, Right shows the effect of using better sgemm for the Cholesky
factorization. Namely, we used a code from V. Volkov [21] that achieves 180
Gflop/s on sgemm vs the 120 Gflop/s of CUBLAS 6. We note that based on
optimized sgemm other kernels can be easily derived [12], e.g. it is trivial (two

6 CUDA Beta 2.0 includes sgemm from V. Volkov, achieving 206 Gflop/s.
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if statements) to get a ssyrk implementation from sgemm that achieves around
120 Gflop/s vs 36 Gflop/s in CUBLAS 1.0.

As stressed before, we are able to apply efficiently the techniques mentioned
because we can represent the Cholesky factorization as a collection of small Level
3 BLAS type computational tasks. The techniques from Section 2 allows us to do
the same for the LU factorization, and as a result we see performance of the new
algorithm comparable to that of Cholesky (the blue curve “GEPP (LAPACK)”
from Figure 2 and the orange “CPU+CUBLAS” from Figure 4, Right, both done
using CUBLAS 1.0).

Related to data structures, we found that Block Data Layout (BDL) can give
performance benefits in several ways. First, when using hybrid CPU + GPU
computations small blocks of data have to be transferred between the CPU and
GPU. This operation is much faster when performed on contiguous data, which
is the case when using BDL (and pinned memory). Example is given again on
Figure 4, Right, where the dotted line ’CPU+V.V.Sgemm + Block’ shows a
performance improvement of about 10 Gflop/s. The BDL can also help to speed
up BLAS kernels. Finally, we want to point out that mixed precision iterative
refinement is important for hybrid CPU+GPU computations since, similarly to
[13], it enables us to improve the performance while maintaining the accuracy.

4 Conclusions

We addressed some key issues in designing DLA algorithms and showed that
they are common for both multi/many-cores and special purpose architectures.
We extended these common ideas in an innovative way to GPUs where we de-
signed an LU and a Cholesky factorization algorithms to obtain an impressive
performance of up to 160 GFlop/s. The approach relied on third party opti-
mized BLAS for GPUs and required insignificant programming efforts. Crucial
for the speedups obtained was the use of a hybrid CPU-GPU calculation and
a randomization technique as an alternative to pivoting that allowed us to cast
the LU factorization as an entirely Level 3 BLAS computation.
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